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ABSTRACT OF THE DISSERTATION

Two new approaches for electronic structure:
Partition Density Functional Theory and Potential Functional Theory

By

Peter A Elliott

Doctor of Philosophy in Physics

University of California, Irvine, 2009

Professor Kieron Burke, Chair

In this work I discuss two new approaches to the electronic structure problem. Both

these approaches share the same goal of making electronic structure calculations faster

and more accurate and both involve the popular electronic structure method of density

functional theory (DFT). The first is potential functional theory which makes use

of semiclassical methods to understand and improve density functional theory. In

particular it explains why local approximations in DFT work as well as they do and

why the generalized gradient approximations developed in the late 1980’s, early 1990’s

were needed at all. I also develop direct potential functional approximations for the

density and kinetic energy density for particles in an arbitrary potential with hard

walls. As such they avoid solving the difficult Schrödinger’s equation. I demonstrate

their accuracy on a simple system. The second is partition density functional theory

(PDFT) which solves for molecular properties while only requiring calculations on

smaller fragments. This would greatly speed up computations and allow much large

systems to be studied. I give a detailed derivation of PDFT before demonstrating its

formal exactness on three types of system. Both these approaches have the potential

to cure some of the problems DFT suffers from and these possible consequences are

discussed.

x



Chapter 1

Introduction

The goal of electronic structure to be able to understand and predict the behavior of

a wide range of materials, be they atoms, molecules, clusters, or solids. It specifically

deals with the ground state of the electrons in the system, however knowledge of this

also provides a great deal of other information (such as the ground state geometry).

From a certain perspective, this problem is already solved. The solution of Schrödinger’s

equation in quantum mechanics within the Born-Oppenheimer approximation gives

us exactly the information we seek. Unfortunately, to solve the problem exactly is

essentially impossible if you wish to study systems with 1000’s of electrons, even 2

electrons can be a very hard problem to solve exactly. This is due to the interaction

between the electrons being extremely difficult to handle. So the problem becomes

to solve the Schrödinger equation without actually solving the Schrödinger equation.

Many different approaches for solving this problem have been developed, each one

has advantages and disadvantages usually involving a trade off between accuracy and

computational efficiency.

Density functional theory (DFT) is one such method that has become popular. It
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maps the interacting problem to that of a non-interacting system which may be solved

much more easily. It is based upon the rigorous theorem of Hohenberg-Kohn[1] and

the scheme of Kohn and Sham[2]. DFT requires an approximation to an unknown

quantity named the exchange-correlation energy, however there are now many ap-

proximations that work well enough for chemical applications. In fact there is a

plethora of such exchange-correlation approxiamtions, due to the fact that there is

no systematic way to approach its approximation. The simplest of these is a local

density approximation which works far better than one would expect given its sim-

plicity. Despite working with non-interacting fermions, DFT still scales with roughly

the cube of the system size and eventually becomes computationally too expensive

for large systems.

Semiclassical methods lie somewhere inbetween the non-intuitive nano-scale world

of quantum mechanics and the classical Newtonian world of everyday live. These

methds are also a way to avoid solving the Schrödinger equation directly giving ap-

proximations that will become exact in certain limits. The ~ → 0 limit is commonly

called the semiclassical limit.

In this work, I explore two new methods for solving the electronic structure prob-

lem. In both cases, the goal is to be more accurate and more efficient. In the first,

semiclassical methods are used to develop approximations to the density and kinetic

energy density as functionals of the potential. These can then be analyzed from the

perspective of DFT and shed new light on why DFT works. In particular it answers

why local approximations work so well and why the so called generalized gradient ap-

proximations needed to be developed ontop of the simple gradient corrections. This

work not only has the potential to improve DFT but also to become a distinct elec-

tronic structure method in its own right. The second method is partition density

functional theory (PDFT) which solves for molecular properties while only requiring

2



calculations on smaller fragments. This would greatly speed up computations and

allow much large systems to be studied, as it, in principle, scales linearly with system

size.

This dissertation is organized as follows: first I give the relevant background infor-

mation on quantum mechanics, semiclassical methods and finally DFT (including a

detailed look at the generalized gradient approximations (GGAs)). Next is the poten-

tial functional theory section dealing with semiclassical methods and DFT. It includes

the derivation of potential functionals for the density and kinetic energy density for a

simple system as well as detailed analysis into what DFT misses and in the case of the

GGAs, why they have to be made the way they are. Then we move to PDFT, which

is introduced via partition theory, before being rigorous derived and investigated, and

then demonstrated on a series of system. Lastly I conclude with a detailed overview

of the results for each approach followed by a discussion on how they may influence

eachother.

3



Chapter 2

Background

In this chapter, we review the relevant background in semiclassical methods and

density functional theory.

2.1 Quantum Mechanics

I start this chapter with quantum mechanics so that the problem of electronic struc-

ture discussed in later chapters is well defined. I shall be extremely brief as quantum

mechanics is taught at the undergraduate level. We begin with the time-independent

Schrödinger equation[3]:

Ĥψ = Eψ (2.1)

The Hamiltonian at this stage contains both the nuclei and the electrons that make

up a given piece of matter. We next make the Born-Oppenheimer approximation that

separates the nuclear and electronic degrees of freedom, and we concentrate on the

4



electronic Hamiltonian defined by

[

T̂ + V̂ee + V̂ext

]

ψ = Eψ (2.2)

where T̂ is the kinetic energy of the electrons, V̂ext is the electron-nuclear interaction

defined explicitly below, and V̂ee is the coulomb interaction between the electrons. In

co-ordinate space, this is written as

[

−
~

2

2m

N
∑

α=1

∇2
α +

1

2

N
∑

α=1

N
∑

β 6=α

e2

|rα − rβ|
+

N
∑

α=1

vext(rα)

]

ψ(r1, ..., rN ) = Eψ(r1, ..., rN )

(2.3)

for N electrons. The external potential is

vext(r) =
M
∑

a=1

−Za

|r − Ra|
(2.4)

which is the coulomb potential from M nuclei with atomic numbers {Za} at positions

{Ra}. We will not deal with electric or magnetic fields. The probability to find any

electron at a point r is given by the density of the system as defined by

n(r) = N

∫

d3r2 . . .

∫

d3rN |ψ(r, r2, . . . , rN)|2 (2.5)

This them defines the electronic structure problem. We wish to find the ground state

energy for a given number of electrons in a given external potential.

In all the numerical examples that appear later, we will work with non-interacting

fermions in one dimension. The non-interacting Schrödinger equation for this case is

[

−
~

2

2m
∂2

x + vext(x)

]

φj(x) = ǫjφj(x) (2.6)
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where ∂2
x = d2/dx2 and the density is given by

n(x) =
N
∑

j=1

|φj(x)|
2 (2.7)

2.2 Green’s function

Very closely related to Schrödigner’s equation is the Green’s function. For non-

interacting fermions in 1d, the Green’s function satisfies the equation

(

−
~

2

2m
∂2

x + vext(x) − E

)

G(x, x′;E) = −δ(x− x′) (2.8)

with the appropriate boundary conditions. The Green’s function can be written in

terms of the eigenfunctions from Eq. (2.6)

G(x, x′;E) =
∑

j

ψj(x)ψj(x
′)

E − ǫj
(2.9)

where ψj(x) is chosen to be real in this equation. The density of the system can be

written as

n(x) =
1

2πi

∮

C

dE G(x;E) (2.10)

where G(x;E) = G(x, x;E) and the contour C crosses the real energy axis at the

fermi energy EF.

6



EN + 1EN

Im(E)

Re(E)

EF

Figure 2.1: Contour in the complex energy plane that crosses the real axis at the
fermi energy.

In 1 dimension, a different form for G(x, x′;E) may be used

G(x, x′;E) =
ψ1(x;E)ψ2(x

′;E)

W (E)
, for x ≤ x′

=
ψ1(x

′;E)ψ2(x;E)

W (E)
, for x ≥ x′ (2.11)

where ψ1/2(x;E) satisfy the Schrödinger equation

(

−
~

2

2m
∂2

x + vext(x) − E

)

ψ1/2(x;E) = 0 (2.12)

with ψ1(x;E) only satisfying the left boundary condition and ψ2(x;E) the right. The

Wronskian, W (E), is given by

W (E) = ψ1(x)∂xψ2(x) − ψ2(x)∂xψ1(x) (2.13)

7



2.3 Semiclassical Methods

Semiclassical methods exist in the world between the quantum mechanics of the very

small scale and the classical newtonian mechanics of everyday life. The transition

between these two seemingly contradicting world views is an extremely important

problem in physics and has been well studied over the years[4]. We will just look

at the most well-known semiclassical approximation, the Wentzel-Kramers-Brillouin-

Jeffreys (WKB) approximation.

We begin by rewriting the 1-d Schrödinger equation, Eq. (2.6), as

[

~
2 d

2

dx2
+ [kj(x)]

2

]

ψj(x) = 0 (2.14)

where

kj(x) =
√

2m(ǫj − vext(x)) (2.15)

Then we write the wavefunctin as

φ(x) = e−iS(x)/~ (2.16)

and evaluate Eq. (2.14)

−i~S ′′(x) − [S ′(x)]2 + [k(x)]2 = 0 , (2.17)

which is the Riccati equation. If we expand S(x) in powers of ~:

S(x) =
∞
∑

n=0

~
nSn(x) (2.18)

8



and split into even and odd powers S(x) = S+(x) + S−(x), we find

S−(x) = −
i~

2
log[S ′

+(x)] , (2.19)

which gives

φ(x) =
c

√

S ′
+(x)

e−iS+(x)/~ . (2.20)

If we write

S+(x) =

∫ x

dx′ Qj(x
′) , (2.21)

then the wavefunction becomes

φ(x) =
c

√

Qj(x)
exp[−

i

~

∫ x

dx′Qj(x
′)] (2.22)

Again using Eq. (2.14), we find the equation for Q(x)

~
2

(

−
Q′′

j (x)

2Qj(x)
+

3

4

[

Q′
j(x)

Qj(x)

]2
)

− [Qj(x)]
2 + [kj(x)]

2 = 0 (2.23)

where Q(x) will have only even powers of ~ in its expansion. Including just the zero’th

order approximation gives Q(x) = kj(x), which is the usual WKB wavefunction seen

in most quantum mechanics textbooks

φj(x) =
c

√

kj(x)
exp[−

i

~
θj(x)] (2.24)

where

θj(x) =

∫ x

dx′ kj(x
′) (2.25)

9



For a flat box with an arbitrary potential between two hard walls at x = 0 and x = L,

the boundary conditions are

φj(0) = 0 = φj(L) (2.26)

then the WKB wavefunction for this system is

φj(x) =
c

√

kj(x)
sin[

1

~
θj(x)] (2.27)

which is valid when ǫj >> v(x). The approximation diverges at turning points, where

vext(a) = ǫj, which we will discuss later and avoid in our examples. The boundary

condition give the quantization condition

Θj = θj(L) = jπ (2.28)

which discretizes the energy spectrum.

The WKB approximation can be systematically expanded by including more orders

of ~. The next order for Qj(x) will be

Qj(x) = kj(x) + ~
2Q(2)(x) (2.29)

which when inserted into Eq. (2.23) gives

Q(2)(x) = −
k′′j (x)

4k2
j (x)

+
3

8

[

k′j(x)
]2

k3
j (x)

(2.30)

For simplicity, this can be written as

Q(2)(x) = +
v′′(x)

4k3
j (x)

+
5

8

[v′(x)]2

k5
j (x)

(2.31)

10



using

k′j(x) = −
v′(x)

kj(x)
, k′′j (x) = −

v′′(x)

kj(x)
−

[v′(x)]2

k3
j (x)

(2.32)

2.4 DFT

Density functional theory (DFT) is an extremely popular method for solving elec-

tronic structure problems in many fields, due to its balance of reasonable accuracy

with computational efficiency[5]. The price you pay for this efficiency is that DFT

requires an approximation to an unknown quantity, namely the exchange-correlation

(XC) energy as a functional of the density. No systematic approach exists to con-

struct these approximations, which is the reason why so many exist, and is part of the

motivation for the semiclassical approach of chapter 3. I shall introduce DFT in such

a way that the analogies drawn later in chapter 4 are easier to see, before going into a

detailed review of generalized gradient approximations for the XC energy. For a more

complete review of DFT, I recommend the Primer in DFT[5], The ABC of DFT[6]

online book and the background chapter of Ref. [7]. During this review, I shall make

general statements about these approximations and it is understood that more in-

formation can be found by reading these sources. Also, for simplicity everything is

written for the spin-unpolarized case, thus I do not include spin labels. However the

extension to spin-DFT can be found in the sources listed above, and for our purposes,

everything written has a simple spin-densities equivalent.

In DFT, the Hohenberg-Kohn[1] theorem states that for a given electron-electron

interaction the external potential is a unique functional of the density. Hence if the

density is known, then in principle all other properties of the system are known as

these are functionals of the external potential. In particular the total energy of an

11



interacting system can be written as a functional of the density:

E[n] = F [n] + Vext[n] (2.33)

where

Vext[n] =

∫

d3r n(r) vext(r) (2.34)

is the external potential energy and F [n] is the universal functional, as defined by the

Levy-Lieb constrained search over all wavefunctions Ψ yielding density n(r):

F [n] = min
Ψ→n(r)

〈Ψ|T̂ + V̂ee|Ψ〉 (2.35)

where T̂ and V̂ee are the kinetic energy and electron-electron interaction operators

respectively.

Now imagine we have solved the interacting problem, and found ground-state (gs)

density n(r), then for some perverse reason we want to know the non-interacting

system for which this is the gs density of. We can apply the Hohenberg-Kohn theorem

again, this time it states that there is a potential for a non-interacting system that

is a unique functional of the density. We name this potential the Kohn-Sham (KS)

potential vS(r). Therefore if we solve the Kohn-Sham equation[2]:

[

−
1

2
∇2

j + vS(r)

]

φj(r) = εjφj(r) (2.36)

for N non-interacting fermions in this KS potential, then the sum of the orbital

densities is the exact same density as if we solved for N interacting electrons in the

12



external potential, i.e.

n(r) =
N
∑

j=1

|φj(r)|
2 (2.37)

We split the KS potential into vS(r) = vext(r) + vHXC(r), where vHXC(r) is the extra

piece added to the external potential to make the KS potential.

Now suppose we cannot solve the exact system, can we use this non-interacting system

to find the exact density and energy? The answer is yes, and is done by considering

all quantities as density functionals. We first define an energy ES[n]:

ES[n] = 〈ΦKS[n]|T̂ + V̂ext|ΦKS[n]〉 (2.38)

= TS[n] + Vext[n] (2.39)

where ΦKS[n] is the KS wavefunction of density n(r), and TS[n] is the non-interacting

kinetic energy. If we then define EHXC[n] as the difference between the total system

energy and this non-interacting energy:

EHXC[n] = E[n] − ES[n] (2.40)

then minimization of this functional with respect to the density yields

vHXC(r) =
δEHXC[n]

δn(r)
(2.41)

as the total energy is by definition stationary and vHXC(r) = − δES[n]/δn(r) (as the

KS system is stationary when the potential is vS(r)).

This then defines a closed loop, once EHXC[n] is known (or approximated), then vHXC(r)

13



can be found and an iterative cycle begins where the KS equation is solved to find a

new density and the cycle repeats. At self-consistency n(r) will be (or approximate)

the molecular density and the total energy is given by Eq. 2.40. This is the Kohn-

Sham approach[2].

Finally we note that the universal functional can be written in terms of the KS

quantities, F [n] = TS[n] +U [n] +EXC[n], where we separate EHXC[n] = U [n] +EXC[n],

as the Hartree energy U [n] is known, but the exchange-correlation (XC) is not. The

Hartree energy is defined as

U [n] =
1

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r − r′|
(2.42)

leading to the KS potential being written as

vS(r) = v(r) + vH(r) + vXC(r) (2.43)

where

vH(r) =
δU [n]

δn(r)
=

∫

d3r′
n(r′)

|r − r′|
(2.44)

is the Hartree potential, and

vXC[n](r) =
δEXC[n]

δn(r)
(2.45)

is the XC potential.

With good approximations to EXC[n], some of which are discussed next, this scheme

has proven useful in many applications[5].
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2.4.1 Exchange-Correlation functionals

The exchange-correlation functionals in common use can be loosely divided into two

classes. Non-empirical functionals, largely developed by Perdew and co-workers[8],

that start from the uniform and slowly-varying gases, and empirically-fitted function-

als that are typically more accurate for systems close to the fit set[9, 10, 11]. The

former apply more broadly and are more commonly used in physics, especially for

bulk metals. The latter are more popular in chemistry, and are more accurate for

specific systems and properties, such as transition-state barriers.

We start with the simplest approximation for the XC energy, namely the local density

approximation (LDA)[2]. The LDA can be defined as follows, for a point r in space,

with density n(r) at the point, then the XC energy density as this point is that of a

uniform electron gas with constant density nunif = n(r). For the exchange part, this

can be found analytically:

ELDA
X

[n] = AX

∫

d3r n4/3(r) =

∫

d3r ǫLDA
X

(n(r)) (2.46)

where

AX = −
3

4

[

3

π

]1/3

= −0.7386 (2.47)

whereas for correlation, Monte-Carlo simulations were parameterized[] in order to

write it as a density functional.

LDA works remarkably well given its simplicity, however it does not reach the levels of

accuracy needed for chemical applications. Thus more complicated functionals have

been developed and the widely used analogy is of a ladder of increasingly sophisticated

density-functional approximations[12] leading up to heaven (chemical accuracy), but
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at higher computational cost. We shall only concentrate on the next step up after

LDA, the generalized gradient approximations.

If in LDA, the information given to the XC functional is just the density at a point,

then to make a more accurate approximation, we could add information about how

rapidly the density is varying at that point. Hence we make a semi-local approxima-

tion, i.e one which includes the gradient of the density. To do so, first we introduce

the dimensionless measure of the gradient:

s(r) =
|∇n(r)|

2kF(r)n(r)
(2.48)

where kF(r) = (3π2n(r))1/3 is the local Fermi wavevector. This is often written in

terms of x = |∇n|2/n4/3, which is simply proportional to s. Assuming smoothness in s

and no preferred spatial direction, we know any sensible approximation depends only

on s2. The gradient expansion is defined as the expansion of the energy as a functional

of the density around the uniform limit. The leading correction for exchange is:

E
(2)
X [n] = µ

∫

d3r s2(r) ǫLDA
X

(n(r)), (2.49)

where ǫLDA
X

(n(r)) = AXn
4/3 and µ is a constant. Alternatively, we may write:

E
(2)
X [n] = −β

∫

d3r n4/3(r) x2. (2.50)

with

β =
3

16π

[

1

3π2

]1/3

µ. (2.51)

In a very slowly-varying electron gas, the gradient is very small, and the exchange

energy will be accurately given by ELDA
X

+ E
(2)
X . For such systems, the constant
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µ = 10/81[13], so that β ≈ 0.0024.

The gradient expansion approximation (GEA) means applying this form to a finite

system, using the value of µ from the slowly-varying gas. The GEA for exchange

typically reduces the LDA error by about 50%. However it’s counterpart for corre-

lation worsens the LDA error, as its energy density is not even always negative. In

many cases, GEA strongly overcorrects LDA leading to positive correlation energies

and giving poor total energies[14].

A generalized gradient approximation (GGA) seeks to include the information con-

tained in s(r) while improving on the success of LDA. The B88 exchange functional

was designed to reduce to the GEA form when s is small, but also recover the cor-

rect −n(r)/2r decay of the exchange energy density for large r in atoms. Thus it

interpolates between two known limits, and has the form:

∆EB88

X
[n] = −βB88

∫

d3r n4/3(r)
x2

1 + 6xβB88 sinh−1[21/3x]
, (2.52)

where ∆EX denotes the correction to LDA. Thus the B88 functional[9] contains one

unknown parameter, βB88. In 1988 Becke found this parameter by fitting to the

Hartree-Fock exchange energies of the noble gases, finding a value of 0.0053. In fact,

Becke notes that this value is consistent with the observation of a high-Z asymptote

for β. In Ref. [15], Becke calculates what value of β in Eq. (2.50) is required in order

to give the HF exchange energy for each atom in the first two rows of the periodic

table along with the noble gas atoms. Thus, β is treated as a function of Z, and he

observes that it converges for high-Z. Thanks to the previous section on asymptotic

series, we can now understand why this convergence occurs. Although the B88 form

reduces to that of the gradient expansion for small gradients, the value for β is about

twice as large as that predicted from the slowly-varying gas.
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Another common GGA for exchange is the Perdew-Burke-Ernzerhof (PBE) approximation[8],

usually written in terms of an enhancement factor, FX(s), to the LDA exchange energy

density:

EPBE
X

[n] =

∫

d3r FPBE
X

(s) ǫLDA
X

[n] (2.53)

where

F PBE
X

(s) = 1 + κ−
κ

1 + µs2/κ
, (2.54)

and µ = 0.2195 and κ = 0.8040. This form for the enhancement factor is chosen so

that it reduces to LDA for s = 0 and again recovers the form of the gradient expansion

for small s. For large s it becomes a constant determined by the parameter κ. Both

κ and µ are determined via satisfaction of various exact conditions. The value of

µ was chosen to preserve the good linear response of LDA for the uniform electron

gas under a weak perturbation[16, 17], while κ is set by the Lieb-Oxford bound[18]

on the exchange-correlation energy. (That condition is obviously violated by B88,

while PBE does not accurately recover the X energy density in the tails of Coulombic

systems).

2.4.2 Thomas-Fermi Theory

Before leaving DFT, we must discuss Thomas-Fermi (TF) theory[19, 20] which is

now seen as the original DFT. It amounts to making an LDA-like approximation for

the non-interacting kinetic energy functional, making no approximation to the XC

energy, and minimizing the total energy functional directly. So we approximate the
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universal functional as

F [n] ≈ FTF[n] = T LDA
S

[n] + U [n] (2.55)

where

T LDA
S

[n] = T
(0)
S [n] = AS

∫

d3r n5/3(r) (2.56)

with AS = (3/10)(3π2)2/3. The total energy is written with this approximation and

then minimized with respect to the density. This approach is often called pure-DFT

or orbital-free-DFT to differentiate it from the standard KS DFT.

Although TF is not accurate for chemical applications, as we will see later, it has many

interesting properties and in fact will serve as the major link between the semiclassical

work of chapter 3 and DFT. In fact the link between WKB and Thomas-Fermi was

studied as early as 1957[21].

Since we will work in 1d non-interacting systems, we will need the TF approximation

in this case. The total energy is written as

E[n] = TTF
S

[n] + Vext[n] =
π2

6

∫

dx n3(x) +

∫

dx n(x) vext(x) (2.57)

Finally note that just as for the GEA exchange energy, the TF kinetic energy density

functional has gradient corrections, these will be introduced when they are needed in

later chapters.
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Chapter 3

Potential Functional Theory

The name potential functional theory (PFT) is not quite precise since one can say that

everything is a functional of the potential. It is the potential that defines the system.

As noted in the introduction, the exact solution of the Schrödinger equation would

be called a potential functional. To clarify this ambiguity, PFT is an approximation

that just uses the potential as input to directly yield a quantity without solving any

Schrödinger equations. The WKB wavefunction of Eq. (2.27) is an example of a

potential functional.

In this chapter, we will use semiclassical methods to analyze DFT and provide a

derivation of potential functionals for the density and kinetic energy density that

clearly show what DFT is missing. During the analysis of DFT, two topics emerged

that required treatment in separate sections. Both use the scaling of the potential to

shed new light on density functionals, the first of these finds new inequalities that the

universal functional must obey and the second is a derivation (in the loosest sense)

of the popular B88 exchange energy density functional. Finally we look at some of

the implications for DFT that we can already see.
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Semiclassical methods are standard in physics and in a tour-de-force, Schwinger[22]

used semiclassical methods to rigorously derive the asymptotic expansion of the en-

ergies of neutral atoms for large Z. Now, in the pre-KS world of pure DFT, i.e.,

Thomas-Fermi and related theories, there is a long history of derivation of density

functionals via semiclassical arguments, including the gradient expansion for both

the kinetic[23] and exchange[13] energies, by considering an infinite slowly-varying

electron gas. But its failure for finite systems led to these other approaches to XC

functional construction.

To understand the essential difference between solids of moderate density variation

and all finite systems, consider the cartoons of Fig. 3.1. Both prototypes can be

treated semiclassically, i.e., via expansion in ~, which is equivalent to an expansion

in gradients of the potential. For the valence electrons of a simple metal, the Fermi

energy, EF , is everywhere above the (pseudo)-potential, and periodic boundary con-

ditions apply. This makes semiclassics simple, because there are no turning points,

evanescent regions, or Coulomb cores. In finite systems (and typical insulators), EF

cuts the potential surface, leading to turning points and evanescent regions. Without

a pseudopotential, there are also Coulomb cores, which require special treatment. The

dominant term (in a sense specified below) in all cases is correctly given by the local

density approximation, but in the latter case, there are important quantum correc-

tions, which produce many features missing from semilocal density approximations,

such as shell structure, self-interaction, etc.

Our semiclassical analysis applies to all systems, and explains the universality of local

approximations (without mentioning the uniform gas). For slowly-varying densities,

it is equivalent to the density-gradient expansion, but includes quantum corrections

for other cases. These corrections explain why the gradient approximation had to be

‘generalized’ and why local and semilocal approximations miss essential features of
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Figure 3.1: Cartoons of potential and Fermi energy in a simple metal (left) and
molecule (right).

the kinetic energy. Insights based on our approach have already produced a revised

version of PBE that is proving successful in many contexts[24]. Ultimately, the theory

suggests that potential functionals[25] provide a more promising and systematic route

to higher accuracy.

We illustrate this with a model in one dimension, and find much more accurate results

by correcting this. We close with a discussion of the implications for modern DFT

development.

3.1 What is missing in DFT?

We begin by discussing an asymptotic limit for all matter that corresponds to a

semiclassical expansion, of which Schwinger’s results are a specific example. The

approach to the limit identifies the essential failure of the gradient expansion for

finite systems. We (re)-introduce a potential scaling[26]:

vζ
ext(r) = ζ4/3 vext(ζ

1/3r), N → ζN, (3.1)

where vext(r) is the one-body potential. For molecules with nuclear positions Rα and

charges Zα, under this scaling, Zα → ζZα and Rα → ζ−1/3Rα. In an electric field,
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E → ζ5/3E . We say an approximation is large-N asymptotically exact to the p-th

degree (AEp) if it recovers exactly the first p corrections for a given quantity under

the potential scaling of Eq. (3.1). For neutral atoms, scaling ζ is the same as scaling

Z, which is well-known:

E(ζ) = −0.768745 ζ7/3 + ζ2/2 − 0.269900 ζ5/3 + ... (3.2)

and is ‘unreasonably accurate’[22], with less than 10% error even for H. An approxima-

tion that reproduces these three coefficients is AE2 and is likely to be very accurate.

Lieb[26] showed that Thomas-Fermi theory becomes exact in the limit ζ → ∞ for

all systems. However, TF theory recovers only the first term in Eq. (3.2), while

Schwinger derived all three, but only for neutral atoms.

Because of this exactness for any system, as ζ → ∞,

nζ(r) → ζ2
(

nTF (ζ1/3r) + nQC(ζ, r)/ζ1/3 + ...
)

(3.3)

where nQC becomes negligible compared to nTF everywhere except in regions whose

size is vanishing. So consider instead scaling the density rather than the potential,

denoted by a subscript:

nζ(r) = ζ2 n(ζ1/3r). (3.4)

This density-scaling is unusual, in that both the coordinate[27] and the particle num-

ber are scaled[28] (N to ζN). The universal functional is

F [n] = min
Ψ→n

〈Ψ| T̂ + V̂ee |Ψ〉 (3.5)

where Ψ is any antisymmetric wavefunction with density n(r) and T̂ and V̂ee are the
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kinetic and Coulomb repulsion operators, respectively. For large ζ, we find:

F [nζ ] = ζ7/3 F TF [n] + ζ5/3 FWD[n] + ζ F2[n] + ... (3.6)

using the arguments of Ref. [29], i.e., that the gradients of the density become small

almost everywhere under this scaling. Here F TF [n] = T
(0)
S [n] + U [n], where TS is

the non-interacting KS kinetic energy, U the Hartree energy, and a superscript (j)

denotes the j-th order contribution to the gradient expansion of a functional. The

second term is FWD[n] = T
(2)
S +E

(0)
X , i.e. the leading gradient correction to the kinetic

energy, TW/9, where TW =
∫

d3r |∇n|2/(8n) is the von Weizsäcker term[23], and the

Dirac correction, i.e., the local approximation to exchange, while F2[n] = T
(4)
S +E

(2)
X .

Thus, scaling the density in this way justifies using the complete WD correction to

TF theory (rather than just one or the other).

Next, we compare the expansion of Eq. (3.2) with that of Eq. (3.6). Since T = −E

for atoms, and T ≈ TS to the order we are working with, we see that ζ-scaling the

density produces Eq. (3.6), which is the usual gradient expansion, but misses the ζ2

term of Eq. (3.2). This quantum correction has long been recognized as missing from

TF theory, but the gradient expansion misses it altogether. If TF theory is AE0,

why is TFWD not AE1? The answer is that, for systems like those on the left of Fig

3.1, without turning points, edges, or Coulomb cores, there is no quantum correction,

and the gradient expansion is the asymptotic expansion. For all others, there are

quantum corrections to the energy, qualitatively changing its asymptotic expansion.

Because EF → ∞ as ζ → ∞, these can be calculated with semiclassical techniques,

just as Schwinger did for atoms.

To give an explicit example of these principles, we consider non-interacting spinless

fermions in 1d in a potential v(x) with infinite walls at x = 0 and L. For this case,
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vζ(x) = ζ4 v(ζx), and the analog of Eq. (3.6) is

T [nζ ] = ζ5 T (0)[n] + ζ3 T (2)[n] + ζ T (4)[n] + ... (3.7)

where T (0) = π2
∫

dxn3(x)/6, T (2) = −TW/3, etc. [30]. Even a flat box (v(x) = 0)

yields some insight. Then:

T ζ =
π2

6L2

(

ζ5N3 + ζ4 3

2
N2 + ζ3 1

2
N

)

(3.8)

and the exact ground-state density is

nζ(x) =
kζ

F

π
−

sin(2kζ
Fx)

2L sin(ζπx/L)
(3.9)

where kζ
F = ζ π (ζ N + 1/2)/L. As ζ → ∞, n → ζ2N/L and T is dominated by

its leading term, agreeing with TF theory[26]. For N = 1, T [nζ ] = π2 (5ζ5 − 2ζ3 +

...)/(12L2), missing the quantum correction. The second term in Eq. (3.9) contains

quantum oscillations and is of O(ζ), i.e., one order less, everywhere but at the edges

(a region of size L/ζ), where it cancels the dominant term.

How can one calculate exactly the leading correction to the dominant term in E[vζ ] for

any system? As ζ → ∞, vζ(r) dominates over kinetic energy, and the system becomes

semiclassical. In d dimensions, the diagonal Green’s function for non-interacting

particles satisfies:

g[vζ ](~, r, E) = ζ1−4/d g[v](~/ζ1/d, ζ1/dr, E/ζ4/d) (3.10)

So as ζ → ∞, effectively ~ → 0. Furthermore, in 1d[31]:

g(x,E) = gsemi(x,E)

(

1 +O

(

1

E3/2

dv

dx

))

(3.11)
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where gsemi is approximated semiclassically. We can extract, e.g., the density from

the Green’s function, via Eq. (2.10), with C any contour in the complex energy E-

plane that encloses all the eigenvalues E1, ..., EN along the real axis. By choosing a

vertical line along E = EF + iη, which is then closed by a large circle enclosing all the

occupied poles, the smallest |E| used is EF, which is growing with ζ. The semiclassical

approximation is combined with the best choice of contour to give a density error of

O(1/ζ).

To illustrate how these quantum corrections can be found for both the density and

the kinetic energy density, we use a 1d system with an arbitrary potential but with

hard walls at x = 0 and x = L. Using the WKB approximation for this problem

requires that EF > v(x) everywhere.

3.2 Semiclassical Density

If the WKB approximation, Eq (2.27), is used for ψ1(x) and ψ2(x) in Eq. (2.11) and

then this Green’s function inserted into Eq. (2.10), then an approximation to the

density can be found. Also note that WKB yields the exact results for v = 0, but

only once the boundary conditions are imposed. The WKB wavefunction satisfying

the boundary conditions on the left is sin θ(x)/
√

k(x), θ(x) =
∫ x

0
dx′ k(x′) is the

semiclassical phase, yielding

gsemi(x,E) =
cos θ(L) − cos [2θ(x) − θ(L)]

k(x) sin θ(L)
. (3.12)

where for brevity we drop the E argument of θ(x), θ(L), and k(x). The first term

yields the TF result using cot[θ(L)] → −i as the dominate piece when we shift off the

real axis and perform the contour integral as shown in Fig. 3.2

26



C

branch cut

C’

I1

I2

Figure 3.2: The contour in the complex energy plane is split into two parts due to
the branch cut along the real axis, starting at E = v(x).

Thus we find that the dominate correction is

nTF(x) =
kF (x)

π
(3.13)

where the subscript F implies evaluation at EF . This then leaves the quantum cor-

rection to TF as

nQC(x) = −
1

4π

∮

C

dE

k(x)

e2iθ(x) + e−2i(θ(x)−θ(L))

e2iθ(L) − 1
(3.14)

The semiclassical quantization condition is θ(L)/π an integer, so θF (L) = π(N +

δ), 0 ≤ δ ≤ 1. The most convenient choice is δ = 1/2. As N → ∞, EF >> η for

the dominant contributions to the integral, so we expand all quantities to first order

in η. This is the same as the ℓ contour used in Ref. [31]. Substituting u = TFη and

y = τF(x)/TF,

nQC(x) = −
ℑ{e2iθF(x)}

2πTFkF(x)

∫ ∞

0

du
e−yu + e−(1−y)u

e−u + 1
, (3.15)

with τF(x) =
∫ x

0
dx′/kF(x

′) the classical time for a particle at EF to travel from 0 to

x, TF = τF(L), and finally

nsemi(x) =
kF(x)

π
−

sin 2θ
F
(x)

2T
F
k

F
(x) sinα(x)

, (3.16)

where α(x) = πτF(x)/TF.
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Figure 3.3: Densities for v(x) = −80 sin2(2πx) for N = 4.

We plot results for v(x) = −80 sin2(2πx), a well with two deep valleys. The four

lowest single particle energies are −46.32,−42.50, 10.18, 37.25, so that the lower two

have turning points. In Fig. 3.3, we show the density, both exact and approximate,

for N = 4 particles. The density is not automatically normalized, but its error is less

than 0.2%.

Evaluating T
(0)
S tests the accuracy of a density: The exact value is 153.0, it is 115.5

in self-consistent TF, 114.6 in non-self-consistent TFW, and 151.4 for nsemi.

Although the lower two eigenstates will have turning points where vext(a) = ǫj, the

Fermi energy does not, allowing us to use Eq. (3.16). We do not deal with turning

points in this work, prefering to work with this type of system as it is less complicated

and easily to see the quantum corrections. We use the semiclassical approximation

of Airy functions to deal with this case, but this is work as yet unpublished.

The exact solution was found numerically by solving the solving the Schrödinger

equation on a real space grid using a finite-difference method for the derivative in the

kinetic energy. The Fermi energies are found using the Newton method described in

the appendix B.
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3.3 Semiclassic Kinetic Energy Density

The kinetic energy density (KED) may be defined in two ways:

τ 1(x) = −
1

2

N
∑

j=1

ψ∗
j (x)∂

2
xψj(x) (3.17)

and

τ 2(x) = +
1

2

N
∑

j=1

|∂xψj(x)|
2 (3.18)

Both integrate to the same quantity TS, the total kinetic energy,

TS =

∫

τ 1(x)dx =

∫

τ 2(x)dx (3.19)

as can be seen by an integration by parts with the requirement that ψj(x) → 0 as

x → ±∞. This will not be true for systems with periodic boundary conditions. We

will use the definition:

τ(x) =
N
∑

j=1

(ǫj − v(x))|ψj(x)|
2 (3.20)

This definition will yield the same KED as τ 1(x), as can be seen by inserting the

definition of ǫj from Eq. (2.6) into Eq. (3.20). In the 1DSE code written, this is the

definition used. We may use a similar definition to write τ(x) in terms of the Green’s

function

τ(x) =
1

2πi

∮

C

dE k2(x)G(x;E) (3.21)

We use the same Green’s function as for the density, Eq. (3.12), and insert into Eq.
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(3.21).

τ(x) =
1

2πi

∮

C

dE k(x)
cos[θ(L)] − cos[2θ(x) − θ(L)]

sin[θ(L)]
(3.22)

Picking out the dominate piece of Eq. (3.22) when E has a small imaginary part

and either the particle number or the box size is large gives the Thomas-Fermi (TF)

kinetic energy density

τTF(x) =
k3

F
(x)

6π
(3.23)

If the Thomas-Fermi contribution is subtracted off, then the kinetic energy density

will be

τ(x) = τTF(x) + τOSC(x) (3.24)

where

τOSC(x) =
1

2πi

∮

C

dE k(x)
exp[iθ(L)] − cos[2θ(x) − θ(L)]

sin[θ(L)]
(3.25)

We choose the same contour as for the quantum corrections to the density, along ℓ

where E = ǫF+iξ and ξ goes from 0 → ∞. We also choose ǫF to be always larger than

ξ and thus we can expand quantities in ξ. This can be done as we know from Ref.

[31] that the integrand falls off as 1/E2 in the complex E plane. The final expression
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can be written as:

τOSC(x) = k2
F
(x)nOSC(x) (1 + β(x)γ(x)) /2

−
kF(x)β(x)

4TF

(

1

6
+ cot[α(x)]

cos 2[θ1F (x)]

sin[α(x)]

)

(3.26)

where β(x) = π[T
(2)
F /TF + k−2

F
(x)]/(2TF), γ(x) = π(1/2− csc2[α(x)])/(2k2

F
(x)TF),TF =

T (ǫF) and T
(2)
F =

∫ L

0
dx′/p3

F (x′).

Figure 3.4: Kinetic energy densities of Fig. 3.3.

We plot results for the same potential as for Fig. 3.3, v(x) = −80 sin2(2πx). In fact,

tsemi
S

is ill-behaved right at the end points, so we model its approach to the boundaries

with a simple parabola for x < 0.0875, with constant chosen to match the logarithmic

derivative at that point. The resulting integrated TS is 156.2, compared to the exact

result 157.2.

We emphasize that the correct semiclassical treatment has reduced the error in self-

consistent TF theory by a factor of 40. Thus the semiclassical approach is far more

powerful and systematic than the usual gradient expansion. How then do density
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functionals achieve the accuracy needed for chemical and materials applications?

The answer already appears for the flat box. Inserting the exact density in T (0)

yields π2

6L2 (ζ
5N3 + ζ4 9

8
N2 + ζ3 3

8
N), i.e. reasonably accurate quantum corrections, be-

cause most of the contribution comes from regions of not-too-rapidly varying density.

In the double-well potential, T
(0)
S on the exact density is only 4 times worse than

our semiclassical approximation. Thus semilocal functionals, applied to the highly

accurate densities from the KS scheme, contain typically good approximations to the

quantum corrections in the energy. In fact, for the flat box, the leading gradient

correction worsens the energy. If we alter the coefficient of TW from −1/3 to +0.424,

the corresponding ‘generalized’ gradient expansion is AE1, and far more accurate for

particles in boxes.

3.4 Including gradient terms

We can include terms of higher order in ~ in the WKB wavefunction to find gradient

corrections to the semiclassical kinetic energy formula, Eq. (3.26). Careful analysis

of this formula shows that it includes terms of order ~
2. As we shall see, the next

order gradient correction to Thomas-Fermi is of order ~, hence to be a complete semi-

classical description, one must include these terms. Below I shall simply demonstrate

that using the WKB wavefunction with higher order terms and the Green’s function

methods developed above, one can recover the known gradient correction to TF[30].

However, since quantum correction terms can also be found by including these terms,

we can go further than these simple corrections. This is an obvious candidate for

future work and may shed light on the generalized gradient corrections of DFT.
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Recall that for higher order WKB, the wavefunction is given by

φ(x) =
c

√

Q(x)
sin[

1

~

∫ x

dx′Q(x′)] (3.27)

where to next order

Q(x) = k(x) + ~
2Q(2)(x) (3.28)

and

Q(2)(x) = +
v′′(x)

4k3(x)
+

5[v′(x)]2

8k5(x)
(3.29)

If we now construct the Green’s function

G(x, x′;E) = −
2 sin [γ1(x;E)] sin [γ2(x;E)]

~
√

Q(x;E)Q(x′;E) sin [Γ(E)]
(3.30)

where

γ1(x;E) = γ(x;E) =
1

~

∫ x

0

Q(x′′;E)dx′′ (3.31)

γ2(x;E) =
1

~

∫ L

x′

Q(x′′;E)dx′′ (3.32)

Γ(E) =
1

~

∫ L

0

Q(x′′;E)dx′′ (3.33)

If we first calculate the TF like term, τ1(x), TF in the sense that this gives TF to first

order and we calculate the contour integral in the same manner. As in the previous

case, we shift off the real axis and follow the contour of Fig. 3.2, then

τ1(x) = −
1

4π~

∮

EF

dE
[k(x;E)]2

Q(x;E)
(3.34)
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integrates to

τ1(x) =
k3

F

6π~
+ ~

[

v′′

8πkF

+
5v′2

48πk3
F

]

(3.35)

using

1

Q
=

1

k
− ~

2

(

v′′

4k5
+

5v′2

8k7

)

+ ... (3.36)

This is exactly the gradient correction to Thomas-Fermi as calculated in Ref. [30].

3.5 Potential Scaling

Density scaling has been a particularly useful tool for the analysis and development

of DFT. A singular example is uniform coordinate scaling[27], where the coordi-

nates of a given density are linearly scaled, but normalization is preserved. This

has led to fundamental exact conditions on the exchange-correlation (XC) energy

functional[27, 32, 33, 34]. For example, the form of the local approximation to

the exchange energy can be deduced from this scaling. The adiabatic-connection

formulation[35, 36, 37, 38], much studied and used in DFT development, is essen-

tially an integral over the uniform coordinate scaling parameter[27, 39, 40]. Here, the

electron-electron interaction is scaled by a constant while the density is kept fixed,

linking the non-interacting Kohn-Sham and the fully interacting systems, and leads

to many more conditions. For example, the adiabatic connection formula is behind

rationalizing the hybrid approach[41, 42, 43, 44].

Recently, a different form of density scaling was used in the development of the PBEsol

functional[45]. Here, both the coordinate and the particle number are scaled, leading

to new insights into the XC functional. We refer to this as charge-neutral scaling[29],
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as it is equivalent to simultaneously changing the charges on atoms and the number

of electrons, so as to keep overall neutrality.

In this section, we extend the use of density scaling as a tool in DFT. Most importantly

we introduce the concept that any form of density scaling defines a related form of

potential scaling. This leads to more exact conditions on the various DFT quantities

as functionals of densities of different particle number. Yang and others[25] have

emphasized the duality of the potential with the density, but have not related scaling

of one to the other.

Potential Scaling

Consider a density n(r) that is the ground-state density of some interacting problem

with potential vext(r). Now, introduce some positive parameter, 0 < γ < ∞, which

produces a family of densities, nγ(r), with γ defined so that γ → ∞ corresponds to

the high-density limit.

A simple example is the uniform coordinate scaling of Levy and Perdew[27]:

nγ(r) = γ3n(γr), 0 < γ <∞, (3.37)

where the prefactor was chosen to keep the density normalizd. For example, un-

der uniform coordinate scaling with γ > 1, the density of He is squeezed into a

smaller volume, and looks like a distorted version of a two-electron ion[46]. This

scaling has become a mainstay of DFT and leads to many important results. Most

importantly, when particles interact, the coordinate-scaled wavefunction is not the

ground-state wavefunction of the scaled density. Considering such a wavefunction as

a trial state in the Rayleigh-Ritz principle yields useful inequalities for the various
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density functionals[27]:

T [nγ ] ≤ γ2 T [n], γ ≥ 1, (3.38)

Vee[nγ ] ≥ γ Vee[n], γ ≥ 1, (3.39)

and a similar condition applies for the correlation energy E [̧n] itself.

0 1 2 3 4
r
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1

2

3

4

5

4π
r2 n(

r)

Figure 3.5: The exact radial densities of Beryllium (solid line)[47], and of the CN
scaled (with ζ = 2) Helium (dashed line)[48].

A second example that we focus on here is what we call charge-neutral (CN) scaling,

in which

nζ(r) = ζ2n(ζ1/3r), 0 < ζ <∞ (3.40)

and so Nζ = ζN . We use ζ as the scaling parameter to distinguish from coordinate

scaling. This choice both scales the coordinate and changes the particle number. For

Coulomb-interacting matter, this ensures neutrality as a function of ζ. For example,
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for single atoms, it simply implies Zζ = ζZ and the atom remains neutral. Lieb and

Simon[49] showed that Thomas-Fermi (TF) theory becomes exact for neutral atoms

as ζ → ∞, and Lieb[26] later generalized the proof to all Coulomb-interacting matter.

In Fig 1, we illustrate this scaling on the He atom density.

In both coordinate and CN scaling, as the scaling parameter is taken to ∞, the

solution simplifies. Under uniform coordinate scaling to the high-density limit, the

system becomes effectively non-interacting. Under CN scaling to the high-density

limit, Thomas-Fermi theory becomes relatively exact. In either case, we can ask how

the potential changes when the density is scaled. We define this as the potential

scaling conjugate to the given density scaling, but consider it for all values of the

scaling parameter, not just in the high-density limit.

Under coordinate scaling, in the large γ limit,

vγ(r) = γ2v(γr). (3.41)

We therefore define our potential scaling by this equation, applied for all γ. We use

a superscript to indicate that the potential has been scaled, not the density. This

is simply how the external potential would change when the density is scaled, if

the particles were non-interacting particles. For example, for a neutral atom, this

changes the nuclear charge by γ, keeping the particle number fixed. As γ → ∞, the

repulsion between electrons becomes negligible relative to the nuclear attraction, and

the density becomes that of the non-interacting limit, scaled by γ.

Similarly, under CN scaling with ζ → ∞, the TF equations become relatively exact[50],

and

vζ(r) = ζ4/3v(ζ1/3r), Nζ = ζN. (3.42)
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Again, the conjugate potential scaling is defined by this, applied to all values of ζ.

Analogously, if self-consistent TF theory were exact, this is how the potential would

scale for any ζ as the density is scaled.

Although chosen to match the corresponding density scaling in the high-density or

high-potential limit, these potential scalings can be applied for any values of their

scaling parameter. Since scaling the potential is much more common in quantum

problems than scaling the density, often solutions are known or can be accurately

calculated for different scalings of the potential, but not of the density. In this paper,

we find relations and inequalities between such solutions that complement the ground-

breaking results of the previous generation[27].

Uniform coordinate scaling

In the old work[27], Levy and Perdew compared two different wavefunctions with the

same density, whereas we compare two different wavefunctions in the same potential.

To do this, begin from a given potential vext(r) with ground-state density n(r). Define

nγ(r) as the ground-state density of vγ
ext(r), given by Eq. (3.41). Then nγ

1/γ(r) is a

useful trial density for the original problem. It is found by first scaling the potential,

solving the problem, and then scaling backwards to the original problem. (In Fig. 1,

the dashed line corresponds nζ(r) for the He density, with ζ = 2.) This is exactly

what was done (but with an approximate scale factor) in Ref. [46].

If nγ
1/γ(r) is used as trial density for vext(r), the variational principle states that

F [nγ
1/γ ] + γ−2V γ

ext[n
γ ] ≥ F [n] + γ−2V γ

ext[nγ ], (3.43)

which may be rearranged as

F [nγ
1/γ ] − F [n] ≥ γ−2(V γ

ext[nγ ] − V γ
ext[n

γ]). (3.44)
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Conversely, nγ(r) may be used as a trial density for vγ
ext(r), yielding

Evγ
ext

[nγ ] = F [nγ] + V γ
ext[nγ ]

≥ F [nγ] + V γ
ext[n

γ ], (3.45)

which can also be rearranged as

F [nγ] − F [nγ ] ≤ V γ
ext[nγ ] − V γ

ext[n
γ ]. (3.46)

Combining the two inequalities yields a constraint on the universal functional F [n]:

F [nγ
1/γ ] −

F [nγ]

γ2
≥ F [n] −

F [nγ]

γ2
, (3.47)

which may be written in a concise form, with λ = 1/γ,

∆F λ[n
1/λ
λ ] ≥ ∆F λ[n], (3.48)

where

∆F λ[n] = F [n] − λ2F [n1/λ]. (3.49)

Now, F [n] is typically dominated by the kinetic energy contribution, but this can be

removed, because TS[nγ ] = γ2 TS[n]. Thus

∆Eλ
HXC

[n
1/λ
λ ] ≥ ∆Eλ

HXC
[n], (3.50)

where EHXC = U + EXC. This tells us that if we begin from, e.g., the lowest value of

Z that binds a given N electrons, then ∆Eλ
HXC

[n
1/λ
λ ] is an increasing function of λ.
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Simple results can be extracted from this very general formula by taking γ to be very

large. This makes nγ(r) an essentially non-interacting density, because the external

potential dominates. Thus

n
1/λ
λ (r) → nNI(r), λ→ 0, (3.51)

where nNI(r) is the density of the system with only an infinitesimal electron-electron

repulsion. But ∆Eλ
HXC

[n] also simplifies as λ → 0, because all terms scale less than

quadratically. Thus

∆Eλ
HXC

[n] → EHXC[n], λ→ 0, (3.52)

yielding the universal result that

EHXC[nNI] ≥ EHXC[n], (3.53)

applying to all potentials. For γ < 1, Eq. (3.48) is less useful, as most systems of

interest lose an electron when the external potential becomes too small. To further

simplify Eq. (3.50), we note that both the Hartree and exchange energies scale linearly

with γ, i.e.,

EHX[nγ ] = γ EHX[n], (3.54)

so that

∆Eλ
HX

[n] = (1 − λ)EHX[n]. (3.55)
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Table 3.1: The Hartree energies, U , for the helium iso-electronic series as calculated
with the oep exact-exchange method as implemented in the OPMKS code[51]. We
also demonstrate how, for two values of atomic number Z ′, the inequalities of Eq.
(3.59) with γ = Z ′/Z, are satisfied. Note that if γ < 1, the inequality is reversed.
The values for bordering values of Z bracket the value of U at atomic number Z and
these bounds become tighter as Z ′ increases.

Z U Z’=4 Z’=20
1 0.790970 3.163880 15.819400
2 2.051538 4.103076 20.515380
3 3.303373 4.404497 22.022487
4 4.554137 4.554137 22.770685
6 7.054819 4.703213 23.516063
10 12.055315 4.822126 24.110630
20 24.555661 4.911132 24.555661

Inserted into Eq. (3.50), we find

EHX[nγ
λ] + ∆′Eλ [̧nγ

λ] ≥ EHX[n] + ∆′Eλ[̧n], (3.56)

where

∆′Eλ [̧n] = ∆Eλ[̧n]/(1 − λ). (3.57)

The simplest way to test this result is by doing a Kohn-Sham calculation without any

correlation (such as oep exact exchange). Then the correlation contributions vanish

on both sides of Eq. (3.56), and so

EHX[n] ≤ EHX[nγ ]/γ ≤ EHX[nNI] (3.58)

This simplifies even further for the special case of two electrons in a spin singlet,

where EX[n] = −U [n]/2, so the inequality becomes a bound on the Hartree energy
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Table 3.2: Hartree-exchange energies for the beryllium iso-electronic series. Values
were also calculated with the OPMKS code with oep exact-exchange. Also shown are
two examples of the inequalities of Eq. (3.58), again using γ = Z ′/Z. Although the
quantities are more complicate that those in Table 3.1, the overall trend is the same.

Ion Z EHX Z’=10 Z’=16
Be 4 4.489776 11.224440 17.959104
B+ 5 6.119120 12.238240 19.581184
O4+ 8 10.893545 13.616931 21.787090
Ne6+ 10 14.051482 14.051482 22.482371
S12+ 16 23.498356 14.686473 23.498356

Ca16+ 20 29.788628 14.894314 23.830902

alone:

U [n] ≤ U [nγ ]/γ ≤ U [nNI] (3.59)

In Table 3.1, we analyze the above inequality, Eq. (3.59), while in Fig 3.6, we plot

U [nγ ]/γ as a function of γ for exact-exchange calculations of the two-electron ion

series, beginning with H−. Indeed, the function increases toward the Bohr atom

limit of 5/4, found by inserting a doubly-occupied 1s Hydrogen atom orbital into the

Hartree energy.

To test the exchange contribution in a non-trivial way, i.e., Eq. (3.56), we repeated

the calculations for the four-electron ion series, this time beginning from Be. Again

the inequality is satisfied, and the limiting value is found by evaluating the Hartree

and exchange energies of doubly-occupied 1s and 2s Hydrogenic orbitals, as calculated

in Appendix A. These values are reported in Table 3.2 and plotted in Fig 3.7.

Lastly, we can even include extremely accurate estimates of the correlation contri-

butions for the two-electron series. We work from the data in Table I of Ref. [52].

Since the two-electron ions are generally weakly correlated, one can approximate the

scaling of their correlation energies with a Taylor-series around the high-density limit:
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Figure 3.6: Using the Hartree energies from Table 3.1, Eq. (3.59) is illustrated for
γ = Z ′/Z and Z = 1. The trend is identical to that seen in Table 3.1, however it is
clear that the value is approaching it’s asymptote, 5/4. This is the Hartree energy
for density consisting of the doubly occupied hydrogen 1s orbital.

EC[n] = E
(0)
C [n] + λE

(1)
C [n] (3.60)

where E
(p)
C [n] are scale-invariant functionals. Since TC = −EC + ∂EC[nγ]/∂γ(γ =

1)[27], and TC is reported in their table, one can solve for these two coefficients. This

yields a value of -47.6 mH for E
(0)
C for He, in excellent agreement with the value of

47.9 estimated in Ref. [46], and predicts a value of -56.1 mH for H−. Using this

approximate scaling, we can insert all terms into Eq. (3.50) explicitly and find their

behavior. The numerical corrections to our previous results are negligible.

Charge-neutral Scaling

In this section, we repeat all the logic of the previous section, but apply it now to CN

scaling. After repeating similar steps (given in Appendix C), we arrive at the general
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Figure 3.7: The Hartree-exchange energies reported in Table 3.2 are used to illustrate
the inequalities of Eq. (3.58) with γ = Z ′/Z and Z = 4. Compared to Fig. 3.6, the
value of EHX[nγ ]/γ is not as fully converged to its asymptote, however the maximum
value of γ is 4 times smaller. The asymptotic value for this case is 586373/93312 =
6.284, which is found by doubly occupying both 1s and 2s hydrogenic orbitals with
Z = 4 and calculating Hartree and exchange energies.

result:

∆Fα[n1/α
α ] ≥ ∆Fα[n] , (3.61)

where

∆Fα[n] = F [n] − α7/3F [n1/α] , (3.62)

and α = 1/ζ. Just as we did for coordinate scaling, we can refine our inequality sub-

stantially. By construction, ∆Fα[n] = 0 for FTF[n], so we define the useful functional:

FNT [n] = F [n] − FTF[n] (3.63)
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as the Non-Thomas-Fermi contribution to F [n]. Our inequality then reads:

∆FNTα[n1/α
α ] ≥ ∆FNTα[n] , (3.64)

where

∆FNTα[n] = FNT [n] − α7/3FNT [n1/α] . (3.65)

We find an interesting result in the limit α→ 0, if we make the reasonable assumption

that all non-Thomas-Fermi contributions scale less strongly than ζ7/3 :

FNT [nTF] ≥ FNT [n] , (3.66)

as TF becomes relatively exact in the high ζ. This inequality is fiendishly hard to test,

even in the large ζ limit. Consider, e.g., the He atom. The corresponding TF density

is well-known[53] but we would have to evaluate the exact interacting functional on

it to find the non-TF contribution. All the above results also apply directly to non-

interacting electrons in a potential, such as the Bohr atom[54], with F replaced by TS,

and the TF contributions calculated with no Hartree term. But the same difficulties

remain.

There is one case where we know enough already to test. For the hydrogen atom (or

any one-electron system), F = T only, and is given by the von Weizacker functional.

The TF density (with or without interaction) is well-known and singular at the origin,

making the von Weizacker energy diverge. Thus, the formula is satisfied, but not very

informative.

Lastly, we consider Thomas-Fermi-Dirac-Weizsäker theory[23] (TFDW). Here we add
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to TF the local exchange

E
(0)
X [n] = AX

∫

d3r n4/3(r), (3.67)

where AX = −(3/4)(3/π)1/3, and the next order gradient correction to the kinetic

energy,

T
(2)
S [n] =

1

72

∫

d3r
|∇n(r)|2

n(r)
. (3.68)

Both these terms scale the same way under CN density scaling, i.e.,

F (2)[nζ ] = T (2)[nζ ] + E
(0)
X [nζ ] = ζ5/3(T (2)[n] + E

(0)
X [n]). (3.69)

Then can write the inequality as

F (2)[nζ ] ≥ ζ5/3F (2)[n], (3.70)

where n(r) has been evaluated self-consistently within TFDW and ζ ≥ 1. Thus

F (2)[nTF] ≥ F (2)[nζ ]/ζ5/3 ≥ F (2)[n], (3.71)

where nTF(r) is the Thomas-Fermi solution for the same potential as for n(r).

Conclusion

Potential scaling, conjugate to a given density scaling, promises to be a useful tool

in density functional theory. It leads to many exact conditions that can be used in

functional construction. We have applied it to two distinct types of scaling: uniform

coordinate scaling and charge neutral scaling. In both cases, we have found sev-

eral interesting bounds. Uniform coordinate scaling was useful for analyzing Kohn-
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Sham DFT, leading to inequalities involving the only unknown in DFT, the exchange-

correlation functional. The limit of this inequality involves evaluating the Hartree-

exchange-correlation energy of the density of non-interacting fermions in the external

potential. This connection between the interacting and non-interacting systems res-

onates with standard approaches in many-body perturbation theory. We illustrate

the bounds on the Hartree-exchange energy this inequality provides by performing

OEP exact exchange calculations on helium and beryllium, showing the approach

to their asymptote. On the other hand, charge-neutral scaling provides inequalities

involving Thomas-Fermi quantities. The Thomas-Fermi approximation becomes rel-

atively exact for all electronic systems[49, 26] and these relations link the corrections

to Thomas-Fermi with the true system, including those of TFDW theory. However

evaluating the TF density within these theories often leads to divergences[55, 56].

In the derivation of these inequalities, the variational principle was used to link the

unscaled and scaled systems. If we now use an approximate functional and use its

self-consistent densities, the inequalities are automatically satisfied if the previous

scaling relationships are true. This makes it more difficult to use these inequalities

as exact conditions for functional construction, however work is ongoing to interprete

the effect of these inequalities on potential functionals, like those of Ref. [25].

We thank Eberhard Engel for use of the OPMKS code and also thank Cyrus Umrigar

for providing exact densities.

3.6 B88 Derivation

As discussed in chapter 2.4.1, the natural successor to LDA is a semi-local (or

gradient-corrected) approximation which adds information about the derivative of

the density at that point. In fact, in the same paper in which LDA is introduced, so
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too is the gradient expansion approximation (GEA) for XC. The coefficients of the

GEA are determined by the energy of a slowly-varying gas[13, 14, 57]. However it

was found that the GEA often worsened LDA results and two decades passed before

substantial improvements were made.

Generalized gradient approximations (GGAs) effectively resum the gradient expan-

sion, but using only |∇n|. The B88 functional[9] is the most used GGA for exchange

overall (as part of B3LYP[10, 58]), but the most popular GGA in solid state appli-

cations is PBE[8]. Neither reduces to the GEA in the limit of small gradients. In

this paper we explain the reason why this must be the case. Asymptotic expressions

for the energy components as functionals of N , the number of electrons, display ‘un-

reasonable accuracy’[59] even for low N . In order to give good energies for finite

systems, any approximate XC functional must have accurate coefficients in its large-

N expansion. LDA gives the dominant contribution, but the GEA does not yield an

accurate leading correction for atoms. Popular GGAs such as B88 and PBE do get

this correction right.

In Ref. [29], the underlying ideas behind this work were developed, however the rea-

soning was based upon scaling the density and not on the potential scaling discussed

below. We refine these ideas and explicitly show how they can be used for functional

development, and in particular we show how the parameter in B88 may be derived in

a non-empirical manner.

Asymptotic expansion in N Begin with any system (atom, molecule, cluster, or

solid) containing N electrons. We then imagine changing the number of electrons to

N ′. Since we usually begin from a neutral system, usually we consider only N ′ > N .

Thus we define a scaling parameter ζ = N ′/N > 1. As we change the particle

number, we simultaneously change the one-body potential vext(r) as in Eq. (3.1) so

as to retain overall charge neutrality. We refer to this as charge-neutral (CN) scaling.
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For an isolated atom, Z → ζZ under this scaling, so it remains neutral as the electron

number grows. For molecules with nuclear positions Rα and charges Zα, Zα → ζZα

and Rα → ζ−1/3Rα. In the special case of neutral atoms, the resulting series for the

energy is well-known:

E = −a0N
7/3 − a1N

2 − a2N
5/3 − ... (3.72)

where a0 = 0.768745, a1 = −1/2, and a2 = 0.269900 [59, 60]. We say an approxima-

tion is large-N asymptotically exact to the p-th degree (AEp) if it recovers exactly

the first p+1 coefficients for a given quantity under the potential scaling of Eq. (3.1).

Lieb and Simon[49, 26] showed that Thomas-Fermi (TF) theory becomes exact in the

limit ζ → ∞ for all systems. TF is exact in a statistical sense, in that TF gives the

correct first term of Eq. (3.72), but not the other terms. We say TF is AE0 for the

total energy.

A similar expression exists for the exchange component of the energy alone:

EX = −c0N
5/3 − c1N − ... (3.73)

where c0 = 0.2208 = 9a2/11 and c1 will be the main topic of this paper. In a

similar fashion, Schwinger demonstrated that the local approximation for exchange

is AE0, and this coefficient is given exactly by local exchange evaluated on the TF

density[59, 60, 50]. However in order to give atomic exchange energies needed for

chemical accuracy, any exchange approximation should be at least AE1.

Now suppose we want to make a local approximation for EX but know nothing about

the uniform gas. Dimensional analysis (coordinate scaling[27]) tells us that it must
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be of the form:

ELDA
X

[n] = AXI, I =

∫

d3r n4/3(r). (3.74)

Requiring that this gives the leading contribution to Eq. (3.73) then fixes the value

of the constant AX. Using any (all-electron) Hartree-Fock atomic code, such as were

already available in the 1960’s[61], one calculates I for densities running down a

particular column of the periodic table and then deduces its dependence on Z5/3.

A modern alternative is to use the fully numerical OPMKS code[51] using the OEP

exact exchange functional to find densities for neutral atoms from Z = 1 to Z = 88.

By fitting, one finds I = 0.2965Z5/3 and hence AX = −0.7446. This is remarkably

close to the derived result of

AX = −
3

4

[

3

π

]1/3

= −0.7386. (3.75)

Thus, without any recourse to the uniform electron gas, we have derived the correct

local approximation to EX[n].

This demonstrates that, via asymptotic exactness, the local approximation to ex-

change is a universal feature of all systems as N → ∞, when scaled appropriately.

(In fact, Schwinger only proved this for atoms[59], we know of no proof for arbitrary

systems).

Theory

LDA yields the dominant term in either the asymptotic charge-neutral expansion

(ζ → ∞) or the gradient expansion for the slowly-varying electron gas, s → 0. We

next show that, contrary to popular myth, the important expansion is the charge-

neutral expansion, not the gradient expansion.
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Figure 3.8: The OEP exact exchange energies EX for neutral atoms from Z = 1 to 88,
divided by Z5/3 in order to pick out the leading term in its asymptotic series. The
leading corrections are proportional to powers of Z−1/3. The values for the noble gas
atoms are given as the circle symbols.

The charge-neutral expansion can be applied to any type of matter, be it molecule

or extended solid. For any finite system, the density decays exponentially far from

the nuclei. This is a key distinction between finite systems and bulk matter, treated

with periodic boundary conditions. Bulk matter has no such regions.

But, for slowly-varying gases, or more generally when there are no classical turning

points at the Fermi surface, the charge-neutral scaling and the gradient expansion

become identical, i.e., the gradient expansion for the slowly-varying gas is simply a

special case of charge-neutral scaling. To see that this is so, consider just the kinetic

energy as a density-functional. Here the gradient expansion is known out to 6th

order[55], and eventually the integrated quantity itself diverges for atomic densities,

due to the evanescent tail. But no such divergence occurs for extended systems with

finite density everywhere[55, 56].

Thus CN scaling applies to all systems, but only becomes identical to the gradient

expansion for slowly-varying bulk systems. For the dominant contribution, effectively

the local Fermi wavelength becomes short on the length scale on which the density is
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Figure 3.9: We add to Fig. 3.8 the results for the LDA functional evaluated on the
OEP densities (dashed-line) keeping the XX values (solid line). As in Fig. 3.8, the
Noble gas atom are highlighted with circle and square symbols for XX and LDA
respectively.

changing, so that the local approximation applies, and yields the exact answer for this

term. Hence LDA reproduces the AE0 terms, but GEA does not produce the leading

corrections. All this has been amply demonstrated for simple 1d model systems[50],

and for the Kohn-Sham kinetic energy for atoms[62].

Here we apply the same reasoning for exchange. The local approximation becomes

relatively exact as ζ → ∞, but the gradient expansion does not reproduce the leading

correction in the CN expansion. Below, we use the simple reasoning of Ref. [29] to

recover this leading correction. We perform a much more extensive calculation of the

asymptotic behavior, using methods developed in Ref. [62]. We find, in agreement

with Ref. [29], that the leading correction for atoms is about double that given by

the gradient expansion, matching quite closely that of B88 and of PBE. Reversing

this logic for B88, we show that B88 may be more or less derived non-empirically via

the constraint that the approximation be AE1. If we enforce AE1 exactly, we find a

slightly different value for β, and discuss the properties of the resulting functional,

excogitated B88.
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Figure 3.10: We now find the next coefficient in the exchange asymptotic series.
To minimize the error due to shell structure oscillations, the LDA exchange energy
is subtracted from the exact exchange for each atom. As both give the leading
correction, their difference will then have ∆cZ, ∆c = c1 − cLDA

1 , as the leading term
in its asymptotic expansion, . The dashed line is the result of fitting to the noble gas
atoms (circle symbols).

Extracting asymptotic coefficients

Under the potential scaling of Eq. (3.1), any approximation for the exchange energy

that reduces to LDA in the uniform limit has an expansion in N like Eq. (3.73),

with the same value for c0. However the coefficient c1 depends on the particular

approximation. Below we explain the procedure used to extract these coefficients.

As mentioned in the previous section, the OPMKS[51] electronic structure code is a

fully numerical electronic structure code that has the ability to perform optimized

effective potential (OEP) calculations. We evaluate the various approximations using

atomic densities found with the OEP exact exchange (XX) method. The densities

found using this method will be extremely close to the exact densities despite the

fact that correlation is missing. Moreover the effect of correlation will contribute at

higher orders in the asymptotic expansions of the energy than those we are interested

in. Thus EXX calculations are in principle sufficient for extracting the coefficient we
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Figure 3.11: In order to see that LDA does not significantly contribute to the higher
orders of the exchange asymptotic series, we plot the difference between LDA and
the leading term c0Z

5/3 (dashed line), as a function of Z. The exact exchange value
is also shown (solid line).

seek.

In Fig. 3.8, we plot EX/Z
5/3 vs Z−1/3 where EX is the exchange energy from the

exact exchange calculation. Since the leading term in the asymptotic expansion of

Eq. (3.73) is Z5/3, this procedure picks out the c0 coefficient as a constant while

all other terms are functions of Z−1/3. One can see that the curve in Fig. 3.8 is

heading towards the exact value of c0 = −0.2208, but it is difficult to extract higher

coefficients due to oscillation of the curve due to the shell structure.

To overcome this difficulty, in Fig.3.9 we add the LDA curve to Fig.3.8. It can be seen

that it too recovers the exact c0 coefficient, but also clearly differs in higher orders

in the asymptotic expansion. More usefully, we see that the LDA curve mimics the

oscillations shown by exact exchange, so subtracting LDA from EXX will minimize

this effect and make the extraction of asymptotic coefficients more accurate.

In Fig. 3.10, we plot (EX − ELDA
X

)/Z vs Z−1/3 and find that it behaves close to

linearly. There appears to be no Z4/3 term in EX. Such a contribution was argued
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Figure 3.12: We use the same procedure as in Fig. 3.10 to find the ∆c coefficient for
the gradient correction to LDA, E

(2)
X [n], as defined in Eq. (2.49). The dashed line

was fitted to the noble gas atoms (circle symbols).

not to exist in Ref. [29], but this was based on CN scaling of the density and studying

the behavior of the terms in the gradient expansion. That reasoning is insufficient, as

the expansion should be performed in terms of the potential, as described in Sec. 3.6.

But since the Scott correction (the Z2 contribution to the total energy) comes from

the core region, there is no reason to expect an analogous contribution for exchange.

In order to show this and also to precisely determine the c1 coefficient, one should use

the techniques developed by Schwinger for deriving the Scott correction to the total

energy[59], but apply them to exchange.

To further reduce the remaining uncertainty due to shell structure oscillations, we

choose simply to use the noble gas atoms (excluding helium) for our fit. The strongest

deviations from linearity come from the transition metals and lanthanides and ac-

tinides. We fit the difference (EX − ELDA
X

)/Z with a straight line in Z−1/3, and

extrapolate to Z → ∞, finding ∆c = −0.2240, where ∆c = c1 − cLDA
1 , and

EX ≈ ELDA
X

− 0.2240Z + 0.2467Z2/3. (3.76)
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The coefficient of the last term is given by the slope of the dashed line in Fig. 3.10,

although the meaning of this term is unclear in the presence of such strong oscillating

contributions.
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Figure 3.13: The percentage error of the approximate asymptotic series given in Eq.
(3.76) is plotted as a function of Z. The error is remarkably low and demonstrates
the power of these asymptotic series.

If instead we used the alkaline earth atoms (excluding beryllium), we find an almost

identical value, ∆c = −0.2236. If we use all elements with Z > 10, we find a

similar value, ∆c = −0.2164. If all elements from Z = 1 to 88 are used, we find

∆c = −0.1982. In Ref. [29], ∆c was found using noble gas atoms, except with

the helium value included, and that method gave a value of ∆c = −0.1978. In our

analysis, atoms with Z < 10 are not used as they are not necessarily dominated by

the asymptotic series.

Since LDA displays the shell oscillations that prevented us from fitting EXX directly,

the value of the LDA c1 coefficient cannot be found exactly. But we estimate 0 ≥

cLDA
1 ≥ −0.04, i.e., at least five times smaller in magnitude than ∆c. In Fig 3.11,

we show EX − c0 Z
5/3 as a function of Z for both the exact values and within LDA,

demonstrating that the linear contribution comes almost entirely from the beyond-

LDA terms.
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Finally we determine ∆c for GEA. In Fig. 3.12, we plot (EGEA
X

− ELDA
X

)/Z vs Z−1/3

in order to find ∆c = cGEA
1 − cLDA

1 , finding ∆c = −0.1062. This plot is much closer

to linear than the previous one. The leading corrections to LDA in the asymptotic

expansion produce corrections to the shell structure beyond those captured by LDA

evaluated on the exact density [50, 62]. Although the smooth contribution can be

partially captured by GEA, there is almost no correction to the shell structure. Just

as for the kinetic energy[62], GEA yields a correction to the smooth part that is about

half of the accurate value.
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Figure 3.14: The percentage error for LDA, GEA and the modified GEA (MGEA)

exchange functionals for Z > 10. The coefficient of E
(2)
X is multiplied by 2.109 in

order to make the MGEA AE1 asymptotically exact.

To understand the power of these asymptotic expansions, we add the corrections of

Eq. (3.76) to the LDA energies, and in Fig. 3.13 plot the percentage error relative to

exact exchange, as a function of Z. For all but the second row of the periodic table,

the resulting error is below 0.5% in magnitude, and typically of order 0.2%.

Generalized gradient approximations

Generalized gradient expansions were designed to improve energetics over LDA for

electron systems of interest and relevance. Early versions, such as PW91[63, 64], were
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Table 3.3: ∆c = c1 − cLDA
1 values for several different functionals.

EX LDA GEA B88 PBE
∆c −0.2240 - −0.1062 −0.2216 −0.1946

tortured into reducing to the gradient expansion when the density is slowly varying.

But this was later given up, in both B88 and PBE exchange, which both reduce to the

gradient expansion form for slow variations, but with coefficients much larger than

that of the gradient expansion.

Our analysis explains why this must be so. Regardless of its derivation, any modern

GGA for exchange is tested against the neutral atoms. Any approximation that

cannot recover the right c1 will be generally inaccurate for these energies, and so

discarded. Thus any that become popular have already passed this test.
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Figure 3.15: We add to Fig. 3.14 the results for B88, PBE, and the excogitated B88
functional, all evaluated on the OEP exact exchange densities.

In Table 3.3, we give the results for ∆c for several different functionals. The same

methodology was used in all extractions. Both popular GGA’s recover (at least

approximately) the accurate value. B88, designed specifically for molecular systems, is

very close to the accurate value. PBE exchange is less so, but is also designed to bridge

molecular and solid-state systems. The PBE value is between that of GEA and B88,
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but much closer to the latter than the former. Taking advantage of this insight, a new

variation on PBE, called PBEsol[45], restores the original gradient expansion, thereby

worsening atomization energies (total energy differences), but improving many lattice

constants of solids over PBE and LDA.

Deriving the β in B88

The exchange energies found using GGAs such as B88 or PBE are generally dominated

by their gradient expansion components for most chemically relevant densities. Thus,

to make B88 AE1, it is sufficient to impose this exact condition on just the E
(2)
X [n]

functional form. Since both B88 and the GEA are built on top of LDA, we can simple

look at the ∆c values calculated above. If we set µ = 2.109µAK in Eq. (2.49), we

multiply the c1 coefficient of GEA by a factor of 2.109, making it AE1. In Fig. 3.14,

we name this functional MGEA for modified GEA and plot its percentage errors. The

values for LDA and GEA are also shown. It can be seen that modifying GEA to be

AE1 has greatly reduced the error.

We now require that the B88 functional form, Eq. (2.52), reduce to this MGEA for

small values of x. Using Eq. (2.51), this corresponds to using a value of β = 0.0050.

Thus we have derived an excogitated B88 that is free of any empirical parameters.

The actual value used in B88 is βB88 = 0.0053 (for spin-polarized systems this becomes

0.0042, which is the value given in Ref. ([9])), so the values are very close. This is

not surprising as fitting to Hartree-Fock exchange energies is an approximate way

of demanding asymptotic exactness. Interestingly, the value quoted as the high-Z

asymptote in Ref. [9] and found using Ref. [15] is essentially the same as our value,

but was evidently rejected in favor of a better fit. In Fig. 3.15, we plot the percentage

errors for B88, PBE, and the excogitated B88. As is typical for empirically-fitted

functionals, B88 performs very well for systems close to the data set used in the fitted

procedure. Although the error for PBE is higher than both B88 and the excogitated
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B88, it is systematic in its overestimation. As noted, PBE was designed to perform

reasonably well for a wide range of systems, so again its behavior is not surprising. On

this data set, the excogitated B88 was never going to do better than B88, although

it remains to be seen how it performs for more complicated systems.

conclusion

We have carefully and systematically extracted the leading large-Z correction to the

exchange energy of atoms. Our results differ slightly from those of Ref. [29] but yield

the same qualitative conclusion, i.e., that the gradient expansion yields an error of

a factor of 2 or more for this coefficient. We have clarified some of the reasoning,

and applied it more generally to any atom, molecule, or cluster. By looking in detail

at the exchange energy asymptotic series for neutral atoms, we have demonstrated

the power of using such series for functional development. Requiring that the small

gradient expansion of B88 capture the two leading coefficients of the asymptotic

expansion is a method by which the unknown coefficient β can be found. This gives

a coefficient very close to the one actually used in B88 and thus is an ex post facto

‘derivation’ of B88. Inserting our most accurate estimate for β into the B88 form

yields an excogitated B88.

We thank Eberhard Engel for the use of his atomic OPMKS code, and NSF CHE-

0809859 .

3.7 Implications for DFT

So what does this mean for modern electronic structure theory? Most importantly,

this work unites rigorous proofs about TF theory[26], Schwinger’s semiclassical results

for neutral atoms[22], and modern functional development for KS calculations.
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Exchange: We have shown that the local approximation to exchange becomes exact

as ζ → ∞ for all systems, consistent with the fact that all popular functionals recover

this limit. Furthermore, to be AE1 for EX of atoms, their small gradient limit must

be about double that of the gradient expansion[29], and this is also true for both

empirical[9] and non-empirical functionals[8]. These functionals agree for moderate

gradients, and differ for large gradients. For periodic systems without turning points,

the gradient expansion is AE to the order of the gradients. Restoring the original gra-

dient expansion greatly improves lattice parameters[24]. Finally, recent beyond-GGA

functionals that recover the 4th-order gradient expansion yield good approximations

for the enhanced gradient coefficient in atoms[29].

To apply the methods developed here directly to atoms, we need to generalize them

to include turning points, evanescent regions, and Coulomb cores. Such a scheme

might produce a derivation of an GGA beyond the small gradient limit.

Correlation: As the behavior ofEC is not governed by a simple asymptotic expansion[29],

we have not found a universal limit in which local correlation becomes exact. Con-

sistent with this, most non-empirical EC functionals are designed to be exact when

the density is uniform[8], but this condition is violated by empirical functionals[10].

Now EXC for a large jellium cluster is dominated by a bulk contribution (exact in

LDA), and a surface contribution, which can be accurately approximated by a GGA.

Restoring the density-gradient expansion for EX in PBE yields a highly accurate

surface exchange energy, so the analog is to recover the surface correlation energy[24].

KS kinetic energy: A holy grail for many years[65] has been to find an accurate

kinetic energy functional, TS[n], bypassing the construction of KS orbitals. Almost all

approaches begin from a semilocal expression, sometimes enhanced by non-locality

based on linear response. This study shows that, if one is interested in total energies,
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a vital feature is to be asymptotically correct for neutral atoms. Thus, as ζ → ∞ in

either potential- or density-scaling, the functional must reduce to TF. For atoms, the

gradient expansion of TS[n] works rather well. The coefficient of Z2 is -0.65 in TF

theory, -0.53 if T (2) is included, and -0.52 if T (4) is added [53]. Thus each succesive

term in the gradient expansion brings it closer to being AE1, since the exact value is

-1/2. Generalizing the gradient expansion to make it AE2 produces a more accurate

functional for total energies of both atoms and molecules[53]. Lastly, our example

here shows how much simpler the kinetic energy is as a functional of the potential

than of the density.

62



Chapter 4

Partition Density Functional

Theory

In the world of electronic structure, molecules and solids are typically considered in

one of two distinct ways. In the first, the system is treated as a whole and molecular

orbitals (or bloch wavefunctions for bulk solids) are calculated. These are solutions

of some effective potential theory, such as Kohn-Sham[1, 2] density functional theory

or Hartree-Fock[66, 67], and often describe well the system near equilibrium geome-

tries. The major difficulty is then finding usefully accurate approximations to the

total energy. In the second view, one considers isolated atoms as the starting point,

and then weak interactions between such units. This view appears necessary for

strongly-correlated solids such as NiO, strongly-correlated molecules such as Cr2, or

any molecule as its bonds are stretched. In such cases, standard approximations for

the single-reference approach usually fail, often quite completely. Thus the worlds of

weak- and strong-correlation have practically divided[68].

In this work, we show that the partition theory of Ref. [69] plays a role analogous to
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that of the Kohn-Sham formalism in density functional theory (DFT). In Kohn-Sham

theory[2], a reference system is created which is much easier to solve and in which

the interactions between electrons have been turned off. In partition theory[69, 70],

the reference system has been constructed from effective isolated fragments (e.g.,

atoms) between which there are no interactions. In both theories, the total electronic

density of the system is used as the connection between reference and reality: it

remains unchanged from one to the other, and so uniquely defines the reference.

Many other analogies are made within the paper. Suffice to say that, just as KS DFT

is particularly well-suited to weakly-correlated systems, partition theory works best

for weakly interacting fragments.

I start with the relevant background information on partition theory. Following this,

density functional partition theory (PDFT) is formally introduced, before being ana-

lyzed in detail. Next I illustration PDFT on three different systems, each highlighting

a feature of PDFT. The point of these illustrations is to show that PDFT is an ex-

act theory and will provide the exact molecular energy and molecular density at

self-consistency.The first system studied is a homonuclear diatomic molecule. This

system is also used to demonstrate partition theory, so we can see the PDFT converge

to the PT results. Next we move to the more complecated case of a heteronuclear

diatomic molecule, which creates non-symmetric charges on the two atoms. In both

of these examples, neutral diatomic molecules are used as the kinetic energy density

functional is known analytically for two or less fermions, in the final example I study

a 12 atom, 12 fermion chain. This example is much more complicated, but is still

solved exactly.
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Figure 4.1: Two examples of binary fragmentation into fragments A and B. The figure
on the left shows a hydrogen molecule at equilibrium bond length, while on the right,
an ethene molecule is shown with one substituent cornered off as a fragment.

4.1 Partition Theory

Partition theory[69] provides a method for breaking a system into a sum of fragments.

Begin from the one-body potential, v(r), which is typically a sum of contributions,

most from individual nuclei; e.g.

v(r) = −
∑

β

Zβ

|r − Rβ|
, (4.1)

where Zβ is the atomic charge of a nucleus at point Rβ. In partition theory, we group

these contributions into Nf fragments of our choosing:

v(r) =

Nf
∑

α=1

vα(r) , (4.2)

and each vα(r) is the sum over one or more nuclei. The simplest possible choice is to

divide the system into two parts (Nf=2), which we call binary fragmentation. These

parts would obviously be the two nuclei in a diatomic molecule, but could also be the

nuclei of a chemical group extracted from a large molecule, or those of a molecule

interacting with a surface. One can imagine many examples that could prove useful,

examples of which can be seen in Fig. 4.1. An alternative choice is atomization,

in which every term in Eq. (4.1) above is separated, and the number of fragments

matches the number of nuclei.
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Once the fragments have been picked, the partition problem is to find fragment den-

sities nα(r) such that they add to the total molecular density:

Nf
∑

α=1

nα(r) = n(r) . (4.3)

Within partition theory, this is done by minimizing the total energy of the frag-

ments, Ef , with the constraint that the sum of the fragment densities must match

the molecular density, i.e. Eq. (4.3). The total energy of the fragments is

Ef =

Nf
∑

α=1

ǫα , (4.4)

where ǫα is the energy of each fragment. Since there is no constraint that a fragment’s

particle number, Nα, be an integer, the PPLB formulation[71, 72] is used. Thus

ǫα = (1 − να)Eα[npα
] + ναEα[npα+1] (4.5)

and

nα(r) = (1 − να)npα
+ ναnpα+1 (4.6)

where

Eα[n] = F [n] + Vα[n] = F [n] +

∫

d3r n(r) vα(r) (4.7)

is the energy density functional for each fragment α. The fragment particle number

is Nα = pα + να, pα and pα + 1 are the lower and upper bordering integers of Nα and

0 ≤ να < 1. The PPLB scheme is simply that of the fragment in contact with an

infinite but distant reservoir.
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Figure 4.2: Top panel: The exact density (solid line) for two non-interacting fermions
in the potential defined in Eq. (4.19) with R = 3 and shown below. The two exact
partition densities (dotted lines) for this system. Bottom panel: The corresponding
molecular potential (solid line) as defined in Eq. (4.19).

We note the following:

• if all fragments are separated from each other, these fragment densities become

exactly those of the isolated fragments, n
(0)
α (r).

• One solves the Hamiltonian for each isolated fragment independently of the

other fragments. It is the sum of these fragment energies that is minimized.

• In principle finding the minimum requires first solving for the molecular density,

and so is even more work than solving the initial problem. But an exactly

analogous statement can be made about KS DFT.

The process of finding the minimum produces an extremely useful conceptual tool.
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Minimizing the Lagrangian:

G = Ef − µ





Nf
∑

α=1

∫

d3r nα(r) −N



+

∫

d3r vp(r)





Nf
∑

α=1

nα(r) − n(r)



 (4.8)

yields the solution to the partition problem[69]. The Lagrange multiplier µ is iden-

tified as the chemical potential, while the Lagrange multiplier that constrains the

sum of the fragment densities to be the molecular density is a potential, dubbed the

partition potential, vp(r). This is a global property of the molecule, uniquely defined

once we have chosen a particular fragmentation. It has the interesting aspect that,

when added to any fragment potential, the sum is exactly that potential for which the

fragment density is a ground state density. In the upper panel of Fig. 4.2, the exact

total density for a model system is shown. It is the solution for two non-interacting

fermions in the potential shown in the lower panel of Fig. 4.2 and is discussed in

detail in Sec. 4.3. Solving the partition problem yields the two fragment densities,

which are also shown in the upper panel of Fig. 4.2. It can be seen that adding these

two fragments densities will give the total density. In the lower panel of Fig. 4.3,

we show the exact partition potential for this problem. When added to a fragment

potential, it gives an effective potential for each fragment, this is shown as the dotted

line in the lower panel of Fig. 4.3. The ground-state density of this effective potential

can be seen in the upper panel of Fig. 4.3, it is exactly the same as the fragment

density shown in the upper panel of Fig. 4.2.

We emphasize here that once a choice of fragmentation has been made, the entire

procedure is then unambiguously defined, and leads to unique fragments. The user

chooses fragments depending on which aspects they wish to study, usually guided by

chemical intuition.
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Figure 4.3: Top panel: The fragment density (dotted line) for the B atom of Fig.
4.1. Bottom panel: The exact partition potential vp(x) (solid line) for this system,
the nuclear potential vB(x) (dotted line), and the fragment potential vB(x) + vp(x)
(dashed line). This potential has the fragment density shown in the upper panel as
its ground state density.

4.2 Partition density functional theory

In this section, we develop a methodology which allows one to calculate a molecular

density and energy from individual calculations on fragments, via a self-consistent

loop. In this sense, it is the analog of the KS method, in which the energy is found from

self-consistent calculations on non-interacting electrons. Clearly such a capability in

general could have tremendous significance for many areas of current research, from

O(N) scaling to QM/MM methods.

To do so, think of the total fragment energy, Eq. (4.4), as analogous to the KS energy

of Eq. (2.39). Then define the partition energy as

Ep = E − Ef , (4.9)

69



analogous to Eq. (2.40), the Hartree-XC energy in KS theory. If E0
f =

∑

α ǫ
0
α is the

total energy of the isolated fragments, then we can write

Ep = Edis + Erel, (4.10)

where Erel is the fragment relaxation energy:

Erel = E0
f − Ef (4.11)

and Edis = E − E0
f , is the dissociation energy. For any bound molecule, Edis < 0.

Furthermore, since E0
f is the ground state energy for the isolated fragments system,

Ef > E0
f . Thus Ep < 0 and is expected to be much smaller than the total energy (on

the scale of chemical bonding), and vanishes as the fragments are pulled apart.

We can consider the partition energy as a functional, Ep[{nα}], of the fragment den-

sities alone, for the given external potential and choice of fragmentation. Now, we

examine the effect of making small variations in one fragment density, δnα(r), to the

partition energy. The first term of Eq. (4.9) is the ground-state energy of the sys-

tem, so variations in the density are zero, because we are at its minimum. For Ef ,

the second term, only the α-th fragment energy changes. Since the fragment density

minimizes the α-th fragment in the presence of vp(r), then vp(r) = δǫα/δnα(r), so

that

vp(r) =
δEp[{nα}]

δnα(r)
, (4.12)

i.e., given any expression for Ep[{nα}], we can extract the corresponding partition

potential, vp(r), and then calculate new fragment densities, which are then used to

generate a new partition potential, and so on. Thus approximating Ep[{nα}] produces

a closed loop, and a direct scheme for doing a PDFT calculation. The steps of a PDFT
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calculation are:

1. Guess the fragment densities {nα}. A reasonable guess would be {n0
α(r)}, the

densities of the isolated fragments.

2. The fragment charges, {Nα} , are determined by the fragment chemical poten-

tials.

3. Construct the partition potential, vp(r), using Eq. (4.12).

4. Solve for each nα(r) in its respective fragment potential vα(r) + vp(r).

5. Cycle steps 2, 3 and 4 until self-consistency.

6. Along with the fragment densities, this yields the total molecular density and

the molecular energy (via E = Ef + Ep).

In principle, any electronic structure method can be used to calculate the fragments.

However, in practice, most of such methods will not provide a way to functionally

differentiate the corresponding Ep. Even within KS DFT, one does not usually know

the non-interacting kinetic energy, TS, as a functional of the density. Only with an

explicit density functional can the corresponding derivative needed for the partition

potential be taken.

To derive an expression for vp(r), we write Ep[n] in terms of DFT quantities:

Ep[n] = F [n] −

Nf
∑

α=1

F [nα] +

Nf
∑

α=1

Nf
∑

β 6=α

∫

nα(r)vβ(r). (4.13)

For simplicity, we assume Nα is an integer, otherwise Eq. (4.5) must be used. so we

can write the partition potential in terms of functional derivatives of the universal
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functional:

vp(r) =
δF [n]

δn(r)
−
δF [nα]

δnα(r)
+

Nf
∑

β 6=α

vβ(r) . (4.14)

This gives an expression for vp(r) for each of the Nf fragments. Using the fact that

the universal function can be decomposed into F [n] = TS[n] + U [n] + EXC[n], this

leads to

vp[{nα}](r) =
δTS[n]

δn(r)
−
δTS[nα]

δnα(r)
+vXC[n](r)−vXC[nα](r)+

Nf
∑

β 6=α

(vβ(r) + vH[nβ](r)) (4.15)

for any α, and using the fact that the Hartree potential is linear in n(r). Explicit

density functional expressions are needed for both TS[n] and EXC[n]. However since

the expression only depends on differences between the functional derivatives of these,

some of the error due to approximating these may cancel.

To find the fragment occupations, note that at self-consistency, the chemical poten-

tials of all the fragments will be equal. We choose N
(k+1)
α = N

(k)
α − Γ

(

µ
(k)
α − µ̄(k)

)

,

where Γ is another positive constant and µ̄ is the average of the fragment chemical

potentials, used in conjunction with Eq. (4.5) for the functionals.

If we use DFT to perform the fragment calculation, the KS potential for the α-th

fragment is found from Eq. (4.12) in KS quantities:

vS,f,α[nα, n̄α](r) = vS[nα](r) + (v(r) + vHXC[n](r) − vS[n](r)) , (4.16)

where vS[n](r) = −δTS[n]/δn(r), and n(r) = nα(r) + n̄α(r). This is the central result

of this paper, as it gives the fragment KS potential for a pair of trial densities, nα(r)

and n̄α(r), in terms of quantities from KS-DFT.
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4.3 Homonuclear Diatomic Molecule

For one or two electron systems, the kinetic energy density functional is given exactly

by the von Weizsäcker functional:

TW[n] =
1

8

∫

d3r
|∇n(r)|2

n(r)
, (4.17)

and if we study non-interacting fermions, then Ep[n] as a density functional is known

exactly. Taking the functional derivative with respect to a fragment density yields

the partition potential, which for a binary fragmentation of a symmetric system is:

vp(r) = vB(r) +

(

n′2(r)

8n2(r)
−
n′′(r)

4n(r)

)

−

(

n′2
A(r)

8n2
A(r)

−
n′′

A(r)

4nA(r)

)

(4.18)

in the absence of electron interaction. For a non-symmetric system, the general

formalism[71] for non-integer particle number must be used. If we work in one di-

mension, then the 1-fermion fragments can be solved easily.

For this example, we use a 1/ cosh2(x) potential for the each ’nucleus’, giving the

total potential for a diatomic system with separation R as:

v(x) = vA(x) + vB(x)

= −
1

cosh2(x−R/2)
−

1

cosh2(x+R/2)
.

(4.19)

In Fig. 4.4, we show the convergence for one of the two fragment densities for this
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Figure 4.4: The density for the left (A) fragment as defined by Eq. (4.19) with R = 3
for the first 3 self-consistency cycles, labelled 0, 1, 2 respectively. Also shown is the
exact fragment density from a partition theory calculation. Even after just 2 cycles,
the fragment density is almost on top of the exact density, on this scale. For more
self-consistency steps, it continues converging towards the exact answer. Calculations
were performed using 3-site finite difference formulas for derivatives and 2001 grid
points with a grid spacing of 0.013a.u.

problem, thought several self-consistency cycles. The total potential is the same as

that shown in the lower panel of Fig. 4.7, while the two fragment potentials, vA(x) and

vB(x), are given in Eq. (4.19) with R = 3. For the initial fragment densities(cycle 0),

we use the densities for the two isolated fragments. We then use these to construct a

partition potential from Eq. (4.18), which is then used to construct effective fragment

potentials, vα(x) + vp(x). If we then solve for each fragment density in this new

potential, we find the cycle 1 density, shown as the dot-dashed line in Fig. 4.4. It

can be seen that some of the density for this fragment has been shifted towards the

other ’nuclei’, as compared the isolated case. This is due to the partition potential

lowering the fragment potential, vA, so as to move density into the bonding region,

as would be expected.

In Fig. 4.5, the total density, i.e., the sum of the two fragment densities, is shown. The

exact molecular density for this problem is also given, it is found by directly solving

for two non-interacting fermions in total potential v(x). In both this case and for the

fragments, the density is found by solving the Schrödinger equation numerically on a
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Figure 4.5: Total densities for various cycles 0, 1, 2, 3 of the self-consistency calculation
for this system. Also shown is the exact density for the full system. The density
after just 2 cycles is very close to the exact density and after 3 cycles it cannot be
distinguished from the exact density on this scale. Convergence continues at more
cycles are added. Since the two fragment densities are added together, deviations
from the exact result can be seen more clearly for the total density.

real space grid. Derivatives of the density are found using a finite-difference scheme.

Similar to the fragment density, we see convergence towards the exact result, however

we also include the result after the 3rd cycle as summing the fragment densities

amplifies their individual errors. In Fig. 4.6, we show the density differences from

the overlapped ’atomic’ densities. Clearly the calculation converges to the exact

molecular density.

The energy of the molecule may also be calculated using Eq. (4.9) for each set of

fragment densities. Again we see the calculation converge to the exact energy of

−1.22008. The energy of the initial guess was −1.17854, while after 3 cycles, it was

−1.22006, essentially converged for this level of calculation .

4.4 Heteronuclear Diatomic Molecule

In the previous section, we illustrated PDFT on a model system of a homonuclear

diatomic molecule. We found, as expected, that PDFT gave exactly the right en-
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Figure 4.6: Difference between the exact molecular density, nex(x), and the sum of
the fragment densities for each self-consistency cycle of the PDFT calculation. It is
the difference between each of the PDFT densities in Fig. 4.5 and the exact density.
After each cycle this difference decreases and the convergence to the exact answer is
clear.

ergy and density. While this demonstrated the principle of PDFT, a more powerful

example of its usefulness and relevance to real systems is a heteronuclear diatomic

molecule. Unlike the symmetric case, the covalently-bonded fragments will contain

fractional numbers of electrons, necessitating the use of PPLB formalism[71]. In

partition theory, the AB heteronuclear system has been studied[73] for insight into

molecular dissociation.

For this example, we use a 1/ cosh2(x) potential for each ’nucleus’, giving the total

potential for a diatomic system with separation R as:

v(x) = vA(x) + vB(x) = −
1

cosh2(x+R/2)
−

1.1

cosh2(x−R/2)
. (4.20)

Here, the A fragment plays the role of a Lewis base while B is a Lewis acid. The

small difference in nuclear charges is choosen so as to mimic the effect of screening in

an interacting system. The total particle number is two, allowing us to use the von

Weizsäcker functional even when fractional charges are present.

The minimization of the Lagrangian, Eq. (4.8), in the partition problem is over both
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Figure 4.7: Top panel: The exact density (solid line) for two non-interacting fermions
in the potential defined in Eq. (4.20) with R = 3 and shown below. The two exact
partition densities (dashed lines) for this system. Bottom panel: The corresponding
molecular potential (solid line) as defined in Eq. (4.20).
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Figure 4.8: Top panel: The fragment density (dashed line) for the B atom of 4.1.
Bottom panel: The exact partition potential vp(x) (solid line) for this system, the
nuclear potential vB(x) (dotted line), and the fragment potential vB(x)+vp(x) (dashed
line). This potential has the fragment density shown in the upper panel as its ground
state density and the same is true for the A atom.
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Figure 4.9: The molecular energy after 3 iteration cycles as a function of the fractional
occupation of the A fragment (NA) used in each PDFT calculation. The occupation on
B is thus 2−NA. The initial fragment densities are the same for each calculation and
are simply those of the respective free fragments. The minimum occurs atNA = 0.655,
which is then the occupation used in all subsequent calculations.
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Figure 4.10: The density for the left (A) fragment as defined by Eq. (4.20) with
R = 3 for the first 3 self-consistency cycles, labelled 0, 1, 2 respectively. Also shown is
the exact fragment density. Even after just 2 cycles, the fragment density is almost
on top of the exact density, on this scale. For more self-consistency steps, it continues
converging towards the exact answer. Calculations were performed using 3-site finite
difference formulas for derivatives and 2001 grid points with a grid spacing of 0.013a.u.

the density nα(x) and the occupation Nα. As described above, we find self-consistent

solutions for fixed values of Nα. In 4.9, we plot the molecular energy found after 3

iteration cycles for 5 occupation numbers. We can clearly see that there is a minimum

at NA = 0.655 and in fact, it is already extremely close to the exact molecular energy.

The convergence for the other occupation numbers is very slow, but the minimum

at NA = 0.655 remains even after 10 iteration steps. For practical calculation the

occupancy may be set on the fly, but for the purposes of this demonstration, this

procedure is sufficient.

To see how the density converges for each iteration, we will use the final occupation

NA = 0.655 from now on. In 4.10, we show the convergence for one of the two

fragment densities for this problem, through several self-consistency cycles. The total

potential is the same as that shown in the lower panel of 4.7, while the two fragment

potentials, vA(x) and vB(x), are given in Eq. (4.20) with R = 3. For the initial

fragment densities(cycle 0), we use the densities for the two isolated fragments. We

then use these to construct a partition potential from Eq. (4.18), which is then used

to construct effective fragment potentials, vα(x) + vp(x). If we then solve for each
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Figure 4.11: Molecular densities for various cycles 0, 1, 2 of the self-consistency cal-
culation for this system. Also shown is the exact density for the full system. The
density after just 2 cycles is very close to the exact density and after 3 cycles it cannot
be distinguished from the exact density on this scale. Convergence continues as more
cycles are added, as can seen in 4.12.

fragment density in this new potential, we find the cycle 1 density, shown as the

dot-dashed line in 4.10. It can be seen that the density for this fragment has been

shifted towards the other ’nucleus’, as compared to the isolated case. This is due to

the partition potential lowering the fragment potential, vA, so as to move density into

the bonding region, as would be expected.

In 4.11, the solid line is the total molecular density, found by directly solving for two

non-interacting fermions in total potential v(x). It is the same as that shown in 4.7. In

both this case and for the fragments, the density is found by solving the Schrödinger

equation numerically on a real-space grid. Derivatives of the density are found using

a finite-difference scheme. If we sum the A fragment density shown in 4.10 with its

counterpart on B at each iteration step, we find the corresponding molecular density.

These are plotted in 4.11 and it can be seen that the density at each self-consistency

cycle is converging to the exact answer. The convergence towards the exact molecular

density can be seen more clearly in 4.12 where we show the density differences from

the overlapped ’atomic’ densities. We add in the results for more iteration steps and
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Figure 4.12: Difference between the exact molecular density, nex(x), and the sum of
the fragment densities for each self-consistency cycle of the PDFT calculation. It
is the difference between each of the PDFT densities in 4.11 and the exact density.
After each cycle this difference decreases and the convergence to the exact answer is
clear.

it is clear that the error decreases with every iteration.

The energy of the molecule may also be calculated using Eq. (4.9) for each set of

fragment densities. Again we see the calculation converge to the exact energy of

−1.30106. The energy of the initial guess was −1.26067, while after 3 cycles, it was

−1.30104, essentially converged for this level of calculation .

4.5 Metal Chain

In Eq. (4.16), vS[nα](r) is simply the KS fragment potential from the previous itera-

tion, but vS[n](r) is the KS potential for a trial density for the whole molecule. Many

methods exist for finding this[74, 75, 76, 77, 78, 79]. We iterate[80]:

v
(m+1)
S (r) = v

(m)
S (r) + γ

[

n(m)(r) − n(k)(r)
]

, (4.21)

where n(m)(r) is the density found from potential v
(m)
S (r), γ > 0 is a constant, and

n(k)(r) is the target density (sum of fragment densities from the k’th PDFT iteration)
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Figure 4.13: Solid line: The exact spin-unpolarized ground state of 12 electrons in the
potential of Eq. (4.22). Dashed lines: The fractionally occupied fragment densities.
By symmetry, the other half of the density is simply the mirror image of that shown.
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Figure 4.14: The exact partition potential (solid line) for the atomized chain and
the fragment potential for the last atom (dashed line). The ground state with an
occupation of 0.77 in this potential can be seen as the end fragment density in Fig 1.

whose KS potential we are trying to find. As noted previously, the fragment occupa-

tions are found using the chemical potentials, using N
(k+1)
α = N

(k)
α − Γ

(

µ
(k)
α − µ̄(k)

)

,

where Γ is a positive constant and µ̄ is the average of the fragment chemical potentials.

Note that this use of the inversion algorithm can also be useful (possibly more useful)

for pure PT, to find vp(r) for a known n(r). Replace vS(r) by vp(r) in Eq. (4.21),

n(k)(r) is the fixed molecular density, and n
(n)
f (r) is the sum of fragment densities

found from individual calculations on the fragments using v
(n)
p (r) to construct the

fragment potentials.
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To show that our algorithm converges, we performed a PDFT calculation on a 12-

atom 1d chain with 12 spin-unpolarized non-interacting fermions, with potential:

v(x) =
12
∑

α=1

−1

cosh2[x+ (α− 6.5)R]
. (4.22)

We chose complete atomization into 12 fragments, so we only ever solve one- or two-

electron problems in a single well. Fig. 4.13 shows the atomic and molecular densities

after convergence. The molecular density is identical to that found by direct solution

of the eigenvalue problem for the entire molecule, and doubly occupying the first 6

eigenstates, which are delocalized over the entire molecule. We see a small alternation

between higher and lower densities throughout the molecule. The fragment density

occupations reflect this, being 0.77,1.13,0.98,1.06,1.02,1.04 moving inwards towards

the center of the chain. In Fig. 4.14, we show both the partition potential and

effective fragment potential for the last atom. The (not very large) vp(r) polarizes

the density toward the molecular center, and shifts the density inwards compared to

a free atom. The partition potential continues throughout the whole chain, lowering

each fragment potential in the bonding region between atoms. The depth of these

troughs oscillates, reflecting the oscillation in occupations. In Fig. 4.15, we show

the convergence of the occupation numbers to their final values, after some initial

oscillations. The total energy of the molecular system can be found via Eq. (4.9).

We find Ef = −5.888 and Ep = −1.803 leading to E = −7.691, which is exactly that

of the direct solution. Since E
(0)
f is −6, |Erel| ≪ |Ep| ≪ |E|, as expected.

Our calculation was in fact far more expensive than a regular KS calculation, be-

cause we invert the KS problem for each trial molecular density exactly. But the

purpose here was not speed, but the calculation of exact partition potentials for small

molecules and simple solids. It produces the exact partition potential corresponding

to a given KS calculation for the molecule.
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Figure 4.15: The convergence of the fragment occupation values, Nα, during an exact
PDFT calculation.

4.6 Significance

We have demonstrated that with an explicit expression for the energy functional Ep,

a self-consistent PDFT calculation can be performed, on fragments, and the result

converges to the molecular answer. The fragments are solved individually, which, for

interacting systems, would greatly reduce computational cost.

The many potential uses of PDFT are made clear by this example. In principle, Eq.

(4.16) is exact, but requires the KS potential of the entire system and to deduce the

energy at the end of the calculation, one needs

Ep = ∆TS[nα] + ∆EHXC[nα] +

Nf
∑

α,β 6=α

∫

d3r nα(r)vβ(r), (4.23)

where ∆G[nα] = G[
∑

nα]−
∑

G[nα]. However, any local-type approximation makes

the method O(N). Thus, all the attempts of orbital-free DFT, to find useful approxi-

mations to ∆TS[n], have now a simple framework in which to be tested[81]. Moreover,

there are no formal difficulties arising from taking density variations within a fixed

density, as the trial molecular density is simply the sum of the fragment densities,

which are varied freely. Although the exact fragment TS and vS(r) would be known
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during a calculation, approximations for ∆TS would take full advantage of any can-

cellation of errors. For embedding calculations, a simple approximation would be to

treat the system plus some fraction of its environment (a border region) exactly, and

all the rest approximately. Since the KS potential is typically near-sighted, such a

scheme should converge rapidly.

For the dissociation of molecules, one can also see how to ensure correct dissociation

energies within PDFT: simply constrain occupations to be those of the isolated frag-

ments. For H2, we constrain the spin occupations on the fragments to be (0,1) and

vice versa. Of course, this is what happens when symmetry is broken as the bond

is stretched, and the difficulty is in producing a scheme that seamlessly goes over

to (1/2,1/2) occupations as R reduces to the equilibrium value. The value of our

formalism is that it produces a framework for both addressing these questions and

constructing approximate solutions.

There is a simple adiabatic connection formula for PDFT. Consider scaling all bond

lengths between fragments by λ−1 (again keeping intrafragment densities fixed), where

0 < λ ≤ 1. For each λ, we find those molecular densities whose fragment densities

match those of our molecule, and define the corresponding partition energy, Ep(λ).

At λ = 1, we have the original molecule; as λ → 0, the bonds become large and

the fragments do not interact, so that Ep(0) = 0. For intermediate λ, the molecular

density is simply that of the fragments, overlapped a distance R/λ apart. Then

E = Ef +

∫ 1

0

dλ
dEp(λ)

dλ
. (4.24)

This allows all the methods of traditional intermolecular symmetry-adapted pertur-

bation theory (SAPT)[82] to be applied to this problem, but with the advantage

that the fragment densities remain fixed. Interestingly, because the fragments will
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generally have dipole moments, the partition energy decays as 1/R3, so that the in-

tegrand above behaves as λ2. (For physical systems that are well-separated and have

attractive van der Waals forces, such effects must be cancelled by analogous terms in

Erel).

There has been considerable previous work on schemes designed to allow a frag-

ment calculation of a larger molecule, either within the framework of orbital-free

DFT or atomic deformation potentials, sometimes producing the same (or similar)

equations. Among the earliest, Cortona’s crystal potential (later called embedding

potential)[83, 90] is an intuitive prescription for vp(r). But our formalism reproduces

the exact solution of the original problem, using only quantities that are already de-

fined in KS-DFT. For example, this is not possible in general without the ensemble

definition of Eq. (4.5), which produces the correct self-consistent occupations (unlike,

e.g., the self-consistent atomic deformation method[84, 85], where this choice leads to

a basis set dependence[86]) . We also never freeze the total density[87, 88, 89], but

only ever consider it as a sum of fragment densities. This avoids ever needing density

variations that are limited by some frozen total density, which produces bizarre func-

tional derivatives, different from those of KS DFT. None of these issues arise once

smooth (e.g. local or gradient-corrected) approximations are made to the kinetic en-

ergy functional[83, 90, 85], but they are vital in a formally exact theory. Thus the

present PDFT can be regarded as a formal exactification (and therefore justification)

of these pioneering works.
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Chapter 5

Conclusion

In this work I have discussed two new approaches to the electronic structure problem.

Both these approaches share the same goal of making electronic structure calculations

faster and more accurate.

The first is potential functional theory which used semiclassical methods to find direct

expressions for the density and kinetic energy density as functionals of the potential.

These expressions were derived for an arbitrary potential in a box with hard walls and

with no turning points at the Fermi energy, which although quite primitive already

provides us with much insight. Extending this approach to the more general case that

involves turning points is part of ongoing work, as is the possibility of extending it to

three dimensional systems. If this were to be done, it could be used to massively speed

up DFT using the scheme investigated in Ref. [91]. In any case, the main motivation

behind the area of potential functional theory is to understand and improve DFT.

This work allows us to explain why local approximations like Thomas-Fermi or LDA

exchange work so well, namely they are the dominate terms in the semiclassical limit.

We can also see why gradient corrections like GEA fail to the improve upon local
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approximations as they miss the important quantum oscillation corrections. It also

explains why generalized gradient approximations had to be developed before DFT

became accurate enough for chemistry, and allowed us to provide an ex post facto

derivations of the previously empirical B88 GGA exchange functional. It may also be

possible to fix the GEA by including these quantum corrections.

The second approach is partition density functional theory whereby the electronic

structure of a system can be found by performing calculations on smaller fragments

making up the system. Due to the scaling of computational time with system size for

current electronic structure methods, working on smaller pieces would greatly speed

up such calculations. Unfortunately this speed up comes at the price of having to

approximate more unknown pieces as a density functionals, however there is good

reason to believe that the quantities involved may be quite amenable to approxima-

tion. PDFT may also help solve the problem DFT suffers from when dissociating

atoms as the unknown partition energy Ep[n] must vanish in this limit, making it

easier to approximate.

It is interesting to speculate how the two approaches may influence eachother. In

PDFT, the most difficult term to approximate is ∆TS[n], the difference between the

molecular kinetic energy and the fragment kinetic energies as a density functional.

From test calculations and experience, I expect that local or semi-local approxima-

tions will not be enough to capture this difference, and it is mainly this difference that

causes the dip in the partition potential in a bonding region. However the kinetic

energy in an evanescent region between two atoms is exactly the kind of quantity

PFT allows us to find. Another interesting feature of PDFT is that different methods

could be used on the different fragments, so PDFT gives the exact prescription on

how to perform a QM/MM-like calculation. If in the eventually the density as a

potential functional is not accurate enough for chemical purposes, then it still may be
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a cheap way to include quantum effects in a border region or solvation, PDFT would

be the correct tool to make use of this.
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Appendices

A Exchange energy for non-interacting Beryllium

The limit of the inequality, Eq. (3.56), is the Hartree-exchange functional evaluated on

the density of the corresponding non-interacting system. Since the g.s. orbitals which

sum to this density are known analytically (they are simply hydrogenic orbitals), we

may calculate the exact Hartree-exchange value.

Written in spherical coordinates, r = |r|, the 1s and 2s hydrogenic orbitals are:

φ1s(r) =

(

Z3

π

)1/2

e−Zr , (A.1)

φ2s(r) =

(

Z3

32π

)1/2

(2 − Zr)e−Zr/2 . (A.2)

For beryllium, both these orbitals are doubly occupied, giving the total density as

n(r) = 2|φ1s(r)|
2 + 2|φ2s(r)|

2 . (A.3)

The Hartree energy is defined by Eq. (2.42), however in the special case of spherical
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densities it may be written as:

U [n] =
1

2

∫ ∞

0

dr (f [n](r))2 , (A.4)

where

f [n](r) = 4π

∫ ∞

r

dr′ r′n(r′) , (A.5)

and we use square brackets to indicate that it is a functional of the density. The

exchange energy for a spin-unpolarized system is:

EX = −2
1

2

occ
∑

i,j

∫

d3r

∫

d3r′
φ∗

i (r)φ
∗
j(r

′)φj(r)φi(r
′)

|r − r′|
, (A.6)

where the factor 2 is due to spin, and the sum is over occupied orbitals only, in this

case 1s and 2s. If we define a new quantity, ñ(r):

ñ(r) = φ1s(r)φ2s(r) , (A.7)

then we may write

EX = −2 (U [n1s] + 2U [ñ] + U [n2s]) . (A.8)

We can use Eq. (A.5) and Eq. (A.4) for each term separately and then combine to

find the total exchange energy. The answer will be equivalent to solving Eq. (A.6)

using the orbitals, however this method avoids performing integrals involving 1/|r−r′|

and, in this case, are easy to solve using integration by parts. The values for Hartree,

exchange and their sum are:

U [n] =
5 × 23 × 431

2634
=

49565

5184
= 9.561 ,
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EX = −
59 × 71 × 73

2736
= −

305797

93312
= −3.277 ,

EHX =
383 × 1531

2736
=

586373

93312
= 6.284 .

B Finding EF

Solving the quantization condition for the Fermi energy:

θF(L) =

∫ L

0

dx kF(x) = (N + 0.5)π (B.9)

can be done via a Newton-like method. An initial guess for ǫF is made, usually the

flat box value:

ǫg
F

=

[

(N + 1/2)π

L

]2

This will differ from the correct ǫF by ∆ǫ, which we will assume to be small. Then

we can expand Eq. (B.9) as

θ1(L, ǫ
g
F
) +

∆ǫ

2
τ1(L, ǫ

g
F
) = (N + 1/2)π (B.10)

thus ∆ǫ may be calculated. This can be added to the first initial guess ǫgF to find a

new initial guess and the process repeated until ǫF is found to the accuracy required.
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C Charge-neutral scaling inequality

We follow the steps in deriving Eq. (3.48) but applied to the charge neutral scaling

defined in Eq. (3.42). Taking nζ
1/ζ(r) as a trial density for the v(r) system, then the

variational principle states:

F [nζ
1/ζ ] + V [nζ

1/ζ ] ≥ F [n] + V [n] , (C.11)

where nζ(r) is the exact density for the scaled potential vζ(r). Conversely, use nζ(r)

as a trial density for the vζ(r) system:

F [nζ ] + ζ7/3V [n] ≥ F [nζ ] + ζ7/3V [nζ
1/ζ ] (C.12)

where we have used V ζ [nζ ] = ζ7/3V [n]. Combining these inequalities gives:

F [nζ ] − F [nζ ]

ζ7/3
≥ F [n] − F [nζ

1/ζ ] , (C.13)

which may be written as

∆F ζ [nζ
1/ζ ] ≥ ∆F ζ [n] , (C.14)

with

∆F ζ [n] = F [n] −
F [nζ ]

ζ7/3
. (C.15)
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