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Large strongly correlated systems provide a challenge to modern electronic structure methods,

because standard density functionals usually fail and traditional quantum chemical approaches

are too demanding. The density-matrix renormalization group method, an extremely powerful

tool for solving such systems, has recently been extended to handle long-range interactions on

real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary

accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong

correlation and developing density functional approximations to handle strong correlation, if they

mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and

provide reference data for exact and standard approximate methods, for future use in this area.

1 Introduction and philosophy

Electronic structure methods such as density functional theory

(DFT) are excellent tools for investigating the properties of

solids and molecules—except when they are not. Standard

density functional approximations in the Kohn–Sham (KS)

framework1 work well in the weakly correlated regime,2–4

but these same approximations can fail miserably when the

electrons become strongly correlated.5 A burning issue in

practical materials science today is the desire to develop

approximate density functionals that work well, even for strong

correlation. This has been emphasized in the work of Cohen

et al.,5,6 where even the simplest molecules, H2 and H2
+, exhibit

features essential to strong correlation when stretched.

Many approximate methods, both within and beyond DFT,

are currently being developed for tackling these problems,

such as the HSE06 functional7 or the dynamical mean-field

theory.8 Their efficacy is usually judged by comparison with

experiment over a range of materials, especially in calculating

gaps and predicting correct magnetic phases. But such com-

parisons are statistical and often mired in controversy, due to

the complexity of extended systems.

In molecular systems, there is now a large variety of tradi-

tional (ab initio) methods for solving the Schrödinger equation

with high accuracy, so approximate methods can be bench-

marked against highly-accurate results, at least for small

molecules.9Most suchmethods have not yet been reliably adopted

for extended systems, where quantum Monte Carlo (QMC)10 has

become one of the few ways to provide theoretical benchmarks.11

But QMC is largely limited to the ground state and is still

relatively expensive. Much more powerful and efficient is the

density-matrix renormalization group (DMRG),12–14 which has

scored some impressive successes in extended systems,15 but

whose efficiency is greatest in one-dimensional systems.

A possible way forward is therefore to study simpler systems,

defined only in one dimension, as a theoretical laboratory for

understanding strong correlation. In fact, there is a long history

of doing just this, but using lattice Hamiltonians such as the

Hubbard model.16 While such methods do yield insight into

strong correlation, such lattice models differ too strongly from

real-space models to learn much that can be directly applied to

DFT of real systems. However, DMRG has recently been

extended to treat long-range interactions in real space.17 This

then begs the question: are one-dimensional analogs sufficiently

similar to their three-dimensional counterparts to allow us to

learn anything about real DFT for real systems?

In this paper, we show that the answer is definitively yes by

carefully and precisely calculating many exact and approxi-

mate properties of small systems. We use DMRG for the exact

calculations and the one-dimensional local-density approxi-

mation for the DFT calculations.18 In passing, we establish

many precise reference values for future calculations. Of

course, the exact calculations could be performed with any

traditional method for such small systems, but DMRG is

ideally suited to this problem, and will in the future be used

to handle 1d systems too correlated for even the gold-standard

of ab initio quantum chemistry, CCSD(T).

Thus our purpose here is not to understand real chemistry,

which is intrinsically three dimensional, but rather to check

that our 1d theoretical laboratory is qualitatively close enough

to teach us lessons about handling strong correlation with

electronic structure theories, especially density functional

theory.
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Our results are illustrated in Fig. 1, which shows 1d H2 with

soft-Coulomb interactions, plotted in atomic units. The exact

density was found by DMRG and inverted to find the

corresponding exact KS potential, vS(x). The bond has been

stretched beyond the Coulson–Fischer point, where Hartree–

Fock and DFT approximations do poorly, as discussed

further in Section 4.5. We comment here that a strong XC

contribution to the KS potential is needed to reproduce the

exact density in the bond region.19 Calculations to obtain the

KS potential have often been performed for few-electron

systems in 3d in the past,20,21 but our method allows exact

treatment of systems with many electrons. In another paper,17

we show how powerful our DMRG method is, by solving a

chain of 100 1d H atoms. All such calculations were previously

unthinkable for systems of this size, and unreachable by any

other method. We have applied these techniques to perform

the first ever Kohn–Sham calculations using the exact XC

functional, essentially implementing the exact Levy–Lieb

constrained search definition of the functional, which we will

present in yet another paper.

2 Background in DMRG

The density matrix renormalization group (DMRG) is a

powerful numerical method for computing essentially exact

many-body ground-state wavefunctions.12,13 Traditionally,

DMRG has been applied to 1d and quasi-2d finite-range

lattice models for strongly correlated electrons.14 DMRG has

also been applied to systems in quantum chemistry, where the

long-range Coulomb interaction is distinctive. The Hamiltonians

which have been studied in this context include the Pariser–

Parr–Pople model22 and the second-quantized form of the

Hartree–Fock equations, where lattice sites represent electronic

orbitals.15,23,24

DMRG works by truncating the exponentially large basis of

the full Hilbert space down to a much smaller one which is

nevertheless able to represent the ground-state wavefunction

accurately. Such a truncation would be highly inefficient in a

real-space, momentum-space, or orbital basis; rather, the most

efficient basis consists of the eigenstates of the reduced density

matrix computed across bipartitions of the system.12 A DMRG

calculation proceeds back and forth through a 1d system in a

sweeping pattern, first optimizing the ground-state in the

current basis then computing an improved basis for the next

step. By increasing the number of basis states m that are kept,

DMRG can find the wavefunction to arbitrary accuracy.

The computational cost of DMRG scales as Nsm
3 where Ns

is the number of lattice sites. For gapped systems in 1d, the

number of states m required to compute the ground-state to a

specified accuracy is independent of system size, allowing

DMRG to scale linearly with Ns. For gapless or critical

systems, the m needed grows logarithmically with system size,

making the scaling only slightly worse. The systems considered

here have a relatively low total number of electrons such that

the number of states m required is small, often less than 100.

This in turn enables us to work with the very large numbers of

sites (Ns B 1000–5000) needed to reach the continuum, as

described in more detail below.

3 Methodology

To apply DFT in its natural context—in the continuum—we

shall consider a model of soft-Coulomb interacting matter,25–27

where the electron repulsion has the form

veeðuÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p ; ð1Þ

and the interaction between an electron and a nucleus with

charge Z and location X is

v(x) = �Zvee(x � X). (2)

The soft-Coulomb interaction is chosen to avoid divergences

when particles are close to one another, and has been used to

study molecules in intense laser fields.25,26 The wavefunctions

and densities within this model lack the cusps present in 3d

Coulomb systems. However, the challenge presented by the

long-range interactions in 3d Coulomb systems remains for

these 1d model systems.

Although many methods could be used to solve these 1d

systems, DMRG allows us to work efficiently with any arbitrary

1d real-space system, without the need to develop a basis for

every 1d element. We enable DMRG to operate in the con-

tinuum by discretizing over a fine real-space grid. With a

lattice spacing of a, the real-space Hamiltonian for a 1d system

becomes in second quantized notation,

H ¼
X
j;s

�1
2a2
ðcyjscjþ1;s þ c

y
jþ1;scjsÞ � ~mnjs

þ
X
j

vjnj þ
1

2

X
ij

vijeeniðnj � dijÞ;
ð3Þ

where ~m= m � 1/a2, vj = v(ja) and vijee = vee(|i � j|a). The dij in

the last term cancels self interactions. The operator c
y
js creates

(and cjs annihilates) an electron of spin s on site j, nj= njm+ njk,

and njs ¼ c
y
jscjs. The hopping terms c

y
jscjþ1;s (and complex

conjugate) come about from a finite-difference approximation

to the second derivative. Like the second-quantized Hamiltonians

considered in quantum chemistry, this Hamiltonian corresponds

Fig. 1 The KS potential for a stretched hydrogen molecule found

from interacting electrons in 1d.
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to an extended Hubbard model; eqn (3), however, is motivated

from a desire to study the 1d continuum alongside familiar

DFT approximations. Because we require that the potentials

and interactions vary slowly on the scale of the grid spacing,

the low-energy eigenstates of the discrete Hamiltonian (3) will

approximate the continuum system to very high accuracy.

Moreover, we check convergence with respect to lattice spacing.

Because our potentials—and thus our ground-state densities—

vary slowly on the scale of the grid spacing, we can accelerate

convergence by using a higher-order finite-difference approxi-

mation to the kinetic energy operator; this simply amounts to

including more hopping terms in eqn (3).

Even in its discretized form the Hamiltonian eqn (3) represents

a challenge for DMRG because of the long-range interactions.

Including all N2
s interaction terms, where Ns is the number of

lattice sites, would make the calculation time scale as N3
s

overall. Fortunately, an elegant solution has been recently

developed28 which involves rewriting the Hamiltonian as a

matrix product operator (MPO)—a string of operator-valued

matrices. This form of the Hamiltonian is very convenient for

DMRG, and MPOs naturally encode exponentially-decaying

long-range interactions.29 Assuming that our interaction vee(u)

can be approximated by a sum of exponentials, the calculation

time scales only linearly with the number of exponents Nexp

used. This reduces the computational cost from N3
s to Ns Nexp.

In practice, for our soft-Coulomb interactions and modest

system sizes (Ns o 1000), we find that only Nexp = 20

exponentials are needed to obtain an accuracy of 10�5 in our

approximate vee(u). The largest Nexp we use in this paper is 60,

which is necessary to find the equilibrium bond length of 1d H2

accurate to �0.01 bohr (a system with Ns E 2000).

For technical reasons, we take all of our systems to have open

(or box) boundary conditions. This has no adverse effect on our

results because we can extend the grid well past our edge atoms.

The extra grid sites cost almost no extra simulation time due to

the very low density of electrons in the edge regions. To evaluate

the dependence of the energy on these edge effects and the grid

size, consider Table 1. This table shows the convergence of the

1d model hydrogen atom ground-state energy with respect to

the lattice spacing a and the distance c from the atom to the

edge of the system, using the second-order finite difference

approximation for the kinetic energy, as in eqn (3). Our best

estimate for the 1d H atom energy is�0.66977714, converged to

at least microhartree accuracy, which differs slightly from that

of Eberly et al., who were the first to consider the soft-Coulomb

atom and its eigenstates.25

In addition to the accurate many-body solutions offered by

DMRG, we can also look at approximate solutions given by

standard quantum chemistry tools. Hartree–Fock (HF) theory

can be formulated for these 1d systems by trivially changing

out the Coulomb interaction for the soft-Coulomb. The

exchange energy is then:

EX ¼ �
1

2

X
s

XNs

i;j¼1

Z
dx

Z
dx0veeðx� x0Þ

� fisðxÞfjsðxÞfjsðx0Þfisðx0Þ:

ð4Þ

In performing HF calculations, instead of using an orbital

basis of Gaussians or some other set of functions, our ‘‘basis set’’

will be the grid, as in eqn (3). This simple and brute force

approach allows us a great degree of flexibility, but is only

computationally tractable in 1d.

In this setting we also implement DFT. As mentioned in the

introduction, DFT has been applied directly to lattice models.

But our model and interaction are meant to mimic the usual

application of DFT to the continuum. In particular, the LDA

functionals we will use are similar to their 3d counterparts,

unlike the Bethe ansatz LDA (BALDA), which has a gap built

in ref. 30 and 31. One calculates the LDA exchange energy by

taking the exchange energy density per electron for a uniform

gas of density n, namely eunifX (n), and then integrating it along

with the electronic density:

ELDA
X [n] =

R
dx n(x)eunifX (n(x)). (5)

We find eunifX (n) by evaluating eqn (4) with the KS orbitals of a

uniform gas. For a uniform gas, the KS orbitals are the

eigenfunctions of a particle in a box, whose edges are pushed

to infinity while the bulk density is kept fixed. Because the

interaction has a length-scale, i.e. vee(gu)a gpvee(u) for some p,

even exchange is not a simple function. One finds:

eunifX (n) = �nf(kF)/2, (6)

where kF = pn/2 is the Fermi wavevector and

fðzÞ ¼
Z1

0

dy
sin2 y

y2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ y2
p : ð7Þ

In fact, f is related to the Meijer G function:z

fðzÞ ¼ G2;2
2;4

1
2; 1

1
2;

1
2;�1

2; 0

����z2
� ��

ð4zÞ: ð8Þ

We write rs = 1/(2n) as the average spacing between electrons

in 1d. In Fig. 2, we show the exchange energy per electron for

the unpolarized gas as a function of rs. For small rs (high

density), eunifX - �1/2 + 0.203rs; for large rs (low density),

eunifX - �0.291/rs � ln(rs)/(4rs). For contrast, in 3d, the

exchange energy per electron is always �0.458/rs,32 where

rs = (3/(4pn))1/3.
In practice, we do not use pure DFT, but rather spin-DFT,

in which all quantities are considered functionals of the up

and down spin densities. In that case, we need LSD, the local

Table 1 Convergence of model hydrogen energy with respect to
lattice spacing a and distance c from the atom to the edge of the
system, with differences in units of microhartree from the infinite
continuum extrapolation of E = �0.66977714

a c = 8 c = 9 c = 10 c - N

0.1000 �81.50 �82.30 �82.40 �82.41
0.0500 �19.58 �20.46 �20.57 �20.58
0.0200 �2.22 �3.16 �3.27 �3.29
0.0100 0.27 �0.68 �0.80 �0.82
0.0050 0.90 �0.07 �0.18 �0.20
0.0025 1.06 0.09 �0.03 �0.05
-0 1.12 0.14 0.02 0.00

z Information about the Meijer G function can be found online at
http://mathworld.wolfram.com/MeijerG-Function.html
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spin-density approximation. For exchange, there is a simple

spin scaling relation that tells us33

eunifX ðn"; n#Þ ¼ �n
X
s¼�1
ð1þ szÞ2fðkFð1þ szÞÞ=4; ð9Þ

where z = (nm � nk)/n is the polarization. This is less trivial

than for simple Coulomb repulsion. At high densities, there is

no increase in exchange energy due to spin polarization, while

there is a huge increase (tending to a factor of 2) at low

density, as shown by the solid black line in Fig. 2. In fact,

eunifX (rs, z = 1) = eunifX (rs/2, z = 0).

To complete LDA, we need the correlation energy density of

the uniform gas at various densities and polarizations. We are

very fortunate to be able to make use of the pioneering work

of ref. 18, which performs just such a QMC calculation and

parametrizes the results, yielding accurate values for eunifC (rs, z),
which are also plotted for the unpolarized and fully polarized

cases in Fig. 2. These curves are not qualitatively similar to the

3d eunifXC (rs, z). For these 1d model systems, the fully polarized

electrons almost completely avoid one another at the exchange

level, so that correlation barely decreases their energy for any

value of rs. For unpolarized electrons, the effect of correlation

is to make them avoid each other entirely for low densities

(rs 4 5) and the XC energy per electron becomes independent

of polarization. However, for unpolarized electrons at high

density, correlation vanishes with rs, and exchange dominates,

as in the usual 3d case. For moderate rs values, the correlation

contribution grows with rs, as shown by the red dashed line of

Fig. 2. To give an idea of what range of rs is important, for the

hydrogen atom of Fig. 3, 95% of the density has rs(x) =

(2n(x))�1 between 1 and 8.

Armed with these parametrizations and tools, we are ready

to discover 1d electronic structure.

4 Results

DMRG gives us an excellent tool for finding exact answers

within a model 1d world. Our 1d world is designed to mimic

qualitatively the 3d world, not match it exactly. Below we

explain some important differences between our model 1d systems

and real 3d systems, starting with the simplest element.

4.1 One-electron atoms and ions

As we already mentioned, we find that the energy of the soft-

Coulomb hydrogen atom is E(H) = �0.66977714, accurate to
1 microhartree. Its ground-state energy is similar to the 3d

hydrogen atom energy of �0.5 a.u. Because the potential and

wavefunction is much smoother, the kinetic energy is only

0.11 a.u., as opposed to 0.5 a.u. in 3d. Since the potential does

not scale homogeneously, the virial theorem in 1d does not yield

a simple relation among energy components, unlike in 3d.

Again because of the lack of simple scaling, hydrogenic

energies do not scale quadratically for our system. A simple fit

of energies for Z Z 1 yields:

EZ � �Zþ
ffiffiffiffi
Z
p

=2� 2=9þ a1=
ffiffiffiffi
Z
p

; ðN ¼ 1Þ ð10Þ

where a1 = 0.0524 is chosen to make the result accurate for

Z = 1. The first two coefficients are exact in the large-Z limit,

where the wavefunction is a Gaussian centered on the nucleus.

A well-known deficiency of approximate density functionals

is their self-interaction error. Because EX is approximated,

usually in some local or semilocal form, it fails to cancel the

Hartree energy for all one-electron systems. Thus, within LSD,

the electron incorrectly repels itself. This error can be quanti-

fied by looking at how close ELSD
X is to the true EX. As can be

seen in Table 2, ELSD
X is about 10% too small. For hydrogen,

the self-interaction error is about 30 millihartrees. By adding

in correlation, this error is slightly reduced, but remains finite.

This is an example of the typical cancellation of errors between

exchange and correlation in LSD.

As a result of self-interaction error, the LSD electron

density spreads out too much, as shown in Fig. 3. In this

Fig. 2 Parametrization of the LDA exchange and exchange–correla-

tion energy densities per electron for polarized z = 1 and unpolarized

z = 0 densities.18

Fig. 3 The hydrogen atom with both exact and LSD densities, as well

as the LSD KS potential.

Table 2 Exact and LSD results for 1d one-electron systems

System T E ELSD EX ELSD
X ELSD

C

H 0.111 �0.670 �0.647 �0.346 �0.311 �0.007
He+ 0.192 �1.483 �1.455 �0.380 �0.343 �0.006
Li++ 0.258 �2.336 �2.304 �0.397 �0.359 �0.005
Be3+ 0.316 �3.209 �3.176 �0.408 �0.369 �0.005
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figure we can also see how the LSD KS potential fails to

replicate the true KS potential, which for hydrogen is the same

as the external v(x). And although the LSD KS potential is

almost parallel to v(x) where there is a large amount of density,

it decays too rapidly as |x|-N. What this adds up to, both in

1d and in 3d, is that LSD will not bind another electron easily,

if at all. We will return to this point when considering anions.

4.2 Two-electron atoms and ions

For two or more electrons, the HF approximation is not exact.

The traditional quantum chemistry definition of correlation is

the error made by HF:

EQC
C = E � EHF. (11)

In Table 3, we give accurate energy components for two-

electron systems; recall that the components do not satisfy a

virial theorem in our 1d systems. The total energy can be fit

just as for one-electron systems, but now:

EZ � �2Zþ
ffiffiffiffi
Z
p
þ c0 � a2=

ffiffiffiffi
Z
p

; ðN ¼ 2Þ ð12Þ

where c0 = 0.507 and a2 = 0.235. The HF energies may be fit

with cHF
0 = 0.476 and aHF

2 = 0.167. These fits are not accurate

enough to give the large Z behavior of EQC
C , which seems to

vanish as Z - N. For 3d two-electron systems, the correla-

tion energy scales to a constant at large Z.34 Overall, |EQC
C | is

much smaller in 1d than in 3d. Rather than the dimensionality,

it is the soft nature of our Coulomb interactions that causes

the reduction in correlation energy compared to 3d. The exact

wavefunctions in 3d have cusps whenever two electrons of

opposite spin come together, caused by the divergence of the

electron–electron interaction. This cusp-related correlation is

sometimes called dynamic correlation; any other correlation,

involving larger separations of electrons, is called static.35

(Note that the distinction between static and dynamic correlation

is not precise.) Our soft-Coulomb potential has no divergence

and induces no cusps, so dynamical correlation is minimal. There

is little static correlation in tightly bound closed shell systems,

such as our 1d Li+ and Be++, so |EQC
C | { |E|. In contrast, for

H�, where one electron is loosely bound, one expects most of the

correlation to be static even in 3d, and one sees large and similar

EC values in 1d and 3d. In Section 4.5, we discuss some

quantitative measures of strong correlation.

Next we study the exact Kohn–Sham DFT energy compo-

nents of these two-electron systems. Here we need the DFT

definition of correlation, which differs slightly from the tradi-

tional quantum chemistry version:

EC = E � (TS + V + U + EX) = TC + UC, (13)

where EX is the exchange energy of the exact KS orbitals, TS is

their kinetic energy, U is the Hartree energy, TC = T � TS is

the kinetic correlation energy, and UC = Vee � U � EX is the

potential correlation energy. All these functionals are evaluated

on the exact ground-state density, with numerical results

found in Table 4. The difference between the quantum chem-

istry EQC
C and the DFT EC is never negative and typically

much smaller than |EC|.
38 For the two-electron systems of

Tables 3 and 4, the difference is zero to the given accuracy for

all atoms and ions besides 1d H�. For our systems, just as in

3d, EQC
C � EC vanishes as Z - N. All the large DFT

components (TS, U, EXC) are typically smaller than their 3d

counterparts and scale much more weakly with Z. However,

our numerical results suggest TC-�EC asZ-N, just as in 3d.

To obtain the KS energies for a given problem, we require

the KS potential, which is found by inverting the KS equation.

For one- or two-electron systems, this yields:

vSðxÞ ¼
1

2
ffiffiffiffiffiffiffiffiffi
nðxÞ

p d2

dx2

ffiffiffiffiffiffiffiffiffi
nðxÞ

p
; ðN � 2Þ ð14Þ

For illustration, consider the exact KS potential of 1d helium

in Fig. 4. Inverting a density to find the KS potential has also

Table 3 Exact and HF two-electron atoms and ions, in 1- and 3-d
(exact data from ref. 20, Li+ is fit quadratically to surrounding
elements, and HF data from ref. 36 and 37)

System T V Vee E EHF EQC
C

H� 0.115 �1.326 0.481 �0.731 �0.692 �0.039
He 0.290 �3.219 0.691 �2.238 �2.224 �0.014
Li+ 0.433 �5.084 0.755 �3.896 �3.888 �0.008
Be++ 0.556 �6.961 0.790 �5.615 �5.609 �0.006

3d H� 0.528 �1.367 0.311 �0.528 �0.488 �0.042
3d He 2.904 �6.753 0.946 �2.904 �2.862 �0.042
3d Li+ 7.280 �16.13 1.573 �7.280 �7.236 �0.043
3d Be++ 13.66 �29.50 2.191 �13.66 �13.61 �0.044

Table 4 Energies of the exact KS system for two-electron atoms and
ions. 3d data (Li+ fitted) from ref. 20

System TS U EXC EX EC TC

H� 0.087 1.103 �0.595 �0.552 �0.043 0.028
He 0.277 1.436 �0.733 �0.718 �0.014 0.013
Li+ 0.425 1.542 �0.779 �0.771 �0.008 0.008
Be++ 0.551 1.601 �0.806 �0.801 �0.006 0.005

3d H� 0.500 0.762 �0.423 �0.381 �0.042 0.028
3d He 2.867 2.049 �1.067 �1.025 �0.042 0.037
3d Li+ 7.238 3.313 �1.699 �1.656 �0.043 0.041
3d Be++ 13.61 4.553 �2.321 �2.277 �0.044 0.041

Fig. 4 The exact KS potential for a model helium density found from

interacting electrons in 1d, as well as the LDA density and LDA KS

potential found self-consistently.
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been done for small systems in 3d, where QMC results for a

correlated electron density have proven extremely useful.20

One can find simple and useful constraints on the KS potential

by studying the large and small r behavior of the exact

result.20,39 In 3d, for large r, the Hartree potential screens

the nuclear potential, and the exchange–correlation potential

goes like �1/r.40 In 1d, the softness of the Coulomb potential

is irrelevant, so the Hartree potential screens the nuclear

potential for large |x| as in 3d. Though it seems likely, we

have no proof that the exchange–correlation potential for the

soft-Coulomb interaction should tend to �1/|x| for large |x|,

analogous to the 3d Coulomb result. To check this would

require extreme numerical precision in the density far from the

atom, due to the need to evaluate eqn (14) where the density is

exponentially small. Instead, in Fig. 1 and 4, we require the KS

potential to go as �b/|x| once the density becomes too small

(around n E 10�5, which happens at |x| E 6 for helium), and

we choose b to enforce Koopmans’ theorem for KS-DFT. The

actual value of b has no visible effect on the density on the

scale of these figures.

We now consider the performance of LDA for these two-

electron systems, starting with how well LDA replicates the

true KS potential. Though the LDA density is only slightly

different from the exact density on the scale of Fig. 4, the LDA

potential clearly decays too rapidly (exponentially) at large r

and is too shallow overall, just as in 3d.20 Like the hydrogen

atom discussed earlier, this is a result of self-interaction error.

LDA energy results are given in Table 5. Clearly LDA

becomes relatively more accurate as Z grows, because XC

becomes an ever smaller fraction of the total energy. Comparing

Tables 4 and 5, we also see that LDA underestimates the true

X contribution by about 10%, while overestimating the

correlation contribution, so that XC itself has lower error

than either, i.e., a cancellation of errors.

Much insight into density functionals has been gained by

studying the asymptotic decay of densities and potentials far

from the nucleus.39 In Fig. 5, we plot dn/dx/n to emphasize the

asymptotic decay of the exact, LDA, and HF helium densities.

The HF density is very accurate compared to the LDA

density. For large x, the HF density has very nearly the same

behavior as the exact density, and both approach their

asymptotes very slowly. By contrast, the LDA density reaches

its asymptote by x E 4. For each approximate calculation, its

asymptotic decay constant g can be found using the highest

occupied molecular orbital (HOMO) energy: g ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2eHOMO

p
.

The asymptote for the exact curve can be found using the

ionization potential I= E(N � 1) � E(N) of the system, which

determines the density decay: g ¼ �2
ffiffiffiffiffi
2I
p

. Because the

HF asymptote lies nearly on top of the exact asymptote,

Koopmans’ theorem—or I D �eHF
HOMO—is extremely accurate

for 1d helium. We list both HOMO and total energy differ-

ences in Table 6.

There is a long history of studying two-electron ions in

DFT, including the smallest anion H�, which presents inter-

esting conundrums for approximate functionals.43,44 Looking

at the ionization energies of these 2 electron systems, we can

extrapolate the critical nuclear charge necessary for binding

two electrons, i.e., figuring out the Z value for which I = 0.

This happens around Z = 0.90 in 1d, and around Z = 0.91 in

3d.45 Within LDA, the critical value is above Z = 1, because

H� will not bind. DFT approximations have a hard time

binding anions—both in 1d and in 3d—due to self-interaction

error. A way to circumvent this problem is to take the HF

anion, which binds an extra electron, and evaluate the LDA

functional on its density. As seen in Table 6, this approach is

far better than either taking total energy differences or the

negative of the HOMO energy from HF alone, just as in 3d.41

As in 3d, �eLSDHOMO is useless as an approximation to I. The HF

results �eHF
HOMO and IHF are close to each other and closest to I

for largerZ; but ILSD does very well for smallZ, and is best for H�.

4.3 Many-electron atoms

Before looking at larger atoms, a word of caution. In 3d

systems, degeneracies in orbitals with different angular

Table 5 LDA for 2 electron systems. H� does not converge in 1d or
3d; the results are taken from using the LDA functional on the HF
density.41 3d LDA data from Engel’s OEP code42

System ELDA % Error ELDA
XC ELDA

X ELDA
C

H� �0.708 �3.1 �0.601 �0.536 �0.065
He �2.201 �1.7 �0.690 �0.646 �0.044
Li+ �3.850 �1.2 �0.731 �0.696 �0.035
Be++ �5.564 �0.9 �0.753 �0.723 �0.030

3d H� �0.511 �3.2 �0.419 �0.345 �0.074
3d He �2.835 �2.4 �0.973 �0.862 �0.111
3d Li+ �7.143 �1.9 �1.531 �1.396 �0.134
3d Be++ �13.44 �1.2 �2.082 �1.931 �0.150

Fig. 5 The differential logarithmic decay of the helium atom density

for various methods. The horizontal, dashed lines correspond to the

asymptotic decay constants.

Table 6 1d HOMO eigenvalues and ionization potentials of two-
electron atoms and ions, for the exact functional, LDA, and HF. LDA
does not converge for H� anion, but LDA energies can be found using
the HF density41

System

LSD HF Exact

�eHOMO I �eHOMO I I = �eHOMO

H� — 0.062 0.054 0.022 0.061
He 0.478 0.747 0.750 0.741 0.755
Li+ 1.242 1.546 1.557 1.552 1.560
Be++ 2.064 2.389 2.404 2.400 2.406
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momentum quantum numbers produce interesting shell structure.

In 1d, there is no angular momentum—each 1d shell is either

half-filled or filled—so it is not clear which real elements our

model 1d atoms correspond to. The first three 1d elements

might well be called hydrogen, helium, and lithium; but the

fourth 1d element may behave more like neon than beryllium.

To be consistent with ref. 18, we call it beryllium. To showcase

1d Be, consider its LDA treatment in Fig. 6. The exact KS

potential is also plotted, and the LDA KS potential roughly

differs only by a constant in the high density region, just as

with hydrogen (Fig. 3) and helium (Fig. 4). In the low density

regions, the LDA correlation potential is the dominant piece

of the LDA KS potential.

As we increase the number N of electrons in our systems,

correlation also increases, but HF theory is still better than

LDA until N = 4. Exact and HF data for many-electron

atoms can be found in Table 7, and LDA data in Table 8.

Despite good agreement with all other data, we did not find

He� or Li� to bind as in ref. 18, neither in HF nor DMRG,

nor LSD (not surprisingly). When using energy differences

to calculate the ionization energy, HF outperforms LSD

until beryllium, as can be seen in Table 9. For these systems,

ILSD 4 I4 IHF: LSD overestimates the ionization energy, and

HF underestimates it—just as in 3d. As with the fewer electron

systems, the LSD HOMO energies are not a good way to

estimate I, whereas the HF HOMO energies are.

To find the KS energy components for these many-electron

(N 4 2) systems, we again require the exact KS potential. For

these systems, eqn (14) is no longer valid, so we must find the

KS potential another way. The simplest procedure is to use

guess-and-check, adjusting the KS potential until its density

can no longer be distinguished from the target density found

using DMRG. Updates to the KS potential can be more or less

sophisticated without changing the final result in the region

where the density is large; in the low-density region, however,

two very different KS potentials can give rise to densities that

are indistinguishable on the scale of our figures. However,

the KS energy components do not rely significantly on the

behavior of the KS potential out in the low-density region. In

Table 10, the exact KS energies for some many-electron

systems are tabulated. For Li and Be+, spin-DFT is used,

but the spin-dependent energy components (such as Ts
S) are

summed together to give a spin-independent energy.

The study of the energies of neutral atoms as N = Z - N

is important due to the semiclassical result being exact in that

limit.46 In this limit, the oldest of all density functional

approximations, Thomas–Fermi (TF) theory, becomes exact.47

However, due to a lack of scaling within the soft-Coulomb

Fig. 6 An LDA ‘‘beryllium’’ atom, complete with the LDA orbitals

fj(x), LDA KS potential vLDA
S (x), exact KS potential vS(x), and

external potential v(x). The density nLDA(x) was found self-consis-

tently using the LDA method, and barely differs from the true n(x) on

this scale.

Table 7 Exact and HF many-electron atoms and ions, in 1d

System T V Vee E EHF EQC
C

Li 0.625 �6.484 1.648 �4.211 �4.196 �0.015
Be+ 0.922 �9.240 1.864 �6.454 �6.445 �0.010
Be 1.127 �11.13 3.219 �6.785 �6.740 �0.046

Table 8 LSD energies for many-electron 1d systems

ELSD % Error ELSD
XC ELSD

X ELSD
C

Li �4.179 �0.8 �1.044 �1.004 �0.041
Be+ �6.410 �0.7 �1.117 �1.086 �0.031
Be �6.764 �0.3 �1.450 �1.376 �0.075

Table 9 Many-electron ionization energies for LSD, HF, and exact
1d systems

System

LSD HF Exact

�eHOMO I �eHOMO I I = �eHOMO

Li 0.166 0.329 0.316 0.308 0.315
Be+ 0.628 0.846 0.842 0.835 0.839
Be 0.162 0.353 0.313 0.295 0.331

Table 10 Energies of the exact KS system for many-electron 1d
atoms and ions

TS U EXC EX EC TC

Li 0.611 2.749 �1.087 �1.071 �0.016 0.014
Be+ 0.912 3.042 �1.168 �1.157 �0.011 0.009
Be 1.091 4.736 �1.481 �1.430 �0.051 0.036

Fig. 7 Energies of neutral atoms in 1d.
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interaction, the large Z limit of the energy is non-trivial,

making a semiclassical treatment difficult. A plot of the neutral

atom energies as a function of N appears in Fig. 7. On this

scale, both the LDA and HF results lie nearly on top of the

exact curve.

4.4 Equilibrium properties of small molecules

We now briefly discuss small molecules near their equilibrium

separation. In order to find the equilibrium bond length for

our 1d systems, we take the nuclei to be interacting via the

soft-Coulomb interaction, just like the electrons. Given this

interaction, consider the simplest of all molecules: the H2
+

cation. HF yields the exact answer, and LSD suffers from self-

interaction (more generally, a delocalization error5). A plot of

the binding energy is found in Fig. 8. Because the nuclear–

nuclear repulsion is softened, the binding energy does not

diverge as the internuclear separation R goes to zero. As seen

in Table 11, LSD overbinds slightly and produces bonds that

are too long between H atoms, which is also the case in 3d.
The curvature of the LSD binding energy is too small near

equilibrium, which makes for inaccurate vibrational energies,

especially in 3d. This can also be seen in Table 11. Finally, we

note that the energy of stretched H2
+ does not tend to that of

H within LSD, due to delocalization error.5

Next we consider H2. A plot of the binding energy is found

in Fig. 9; the large R behavior will be discussed in the

following section. Just as in 3d, HF underbinds while LDA

overbinds; HF bonds are too short, and LDA bonds are too

long. Further, HF yields vibrational frequencies which are too

high, and LDA are a little small, which is the case both in 1d

and 3d. All of these properties can be seen in Table 11.

4.5 Quantifying correlation

It is often said that DFT works well for weakly correlated

systems, but fails when correlation is too strong. Strong static

correlation, which occurs when molecules are pulled apart, is also

identified with strong correlation in solids.5 Functionals that can

accurately deal with strong static correlation in stretched mole-

cules can also accurately yield the band gap of a solid.50,51 Most

DFT methods, however, fail in these situations. To see these

effects in 1d, we shall now examine three descriptors of strong

correlation, which will be 0 when no correlation is present and

close to 1 when strong correlation is present.

A simple descriptor of strong correlation is simply to

calculate the ratio of correlation to exchange:

a ¼ EC

EX
: ð15Þ

In the limit of weak electron–electron repulsion, a goes to zero

for closed-shell systems, and HF becomes exact. For example,

Fig. 8 The binding energy curve for our 1d model H2
+, shown with

an absolute energy scale, and with nuclear separation R; horizontal

dashed lines indicate the energy of a single H atom.

Table 11 Electronic well depth De, equilibrium bond radius R0, and
vibrational frequency o for the H2

+ and H2 molecules, with percen-
tage error in parentheses. Exact 3d H2 results taken from ref. 48; the
remaining 3d values are from ref. 36 using the aug-cc-pVDZ basis set49

HF LSD Exact

System De/eV
�1

H2
+ 3.88 (0%) 4.00 (3%) 3.88

3d H2
+ 2.77 (0%) 2.89 (4%) 2.77

H2 2.36 (�23%) 3.53 (15%) 3.07
3d H2 3.54 (�25%) 4.80 (1%) 4.75

System R0

H2
+ 2.18 (0%) 2.28 (4%) 2.18

3d H2
+ 2.00 (0%) 2.18 (9%) 2.00

H2 1.50 (�6%) 1.63 (2%) 1.60
3d H2 1.41 (1%) 1.47 (5%) 1.40

System o(�103 cm�1)
H2

+ 2.2 (0%) 2.0 (�9%) 2.2
3d H2

+ 2.4 (0%) 1.9 (�21%) 2.4
H2 3.3 (6%) 3.0 (�3%) 3.1
3d H2 4.6 (5%) 4.2 (�5%) 4.4

Fig. 9 The binding energy curve for our 1d model H2, shown on an

absolute energy scale, with nuclear separation R. Dashed curves

represent unrestricted calculations.

Table 12 Table of correlation descriptors a and b (eqn (15) and (16))
for H2 at an equilibrium and a stretched bond length R. 3d data from
ref. 56

R

1d 3d

1.6 3.4 5.0 1.4 5.0

Exact a 0.04 0.21 0.46 0.06 0.45
b 0.21 0.58 0.87 0.18 0.89

LDA a 0.09 0.16 0.21
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for the two-electron atoms and ions in Table 4, a goes to zero

as Z increases. In Table 12, we compute a for various bond

lengths of the hydrogen molecule, both in 1d and in 3d. At the

equilibrium bond length, a is small, indicating that the HF

solution is very close to the exact. When the bond is stretched

to R = 5, a increases ten-fold: a standard HF solution for a

bond length of R = 5 does not do well at all. The 1d and 3d

results are remarkably similar. We can also compute a using

the LDA functionals for EC and EX evaluated on the LDA

density; however, aLDA is not as good of an indicator for

strong correlation as the true a is.

The second descriptor of strong correlation requires first

understanding where correlation comes from. From eqn (13),

correlation can be separated into two pieces: (1) the kinetic

correlation energy TC = T � TS, due to the small difference

between the true kinetic energy and the KS kinetic energy, and

(2) potential correlation energy, UC = Vee � U � EX. In the

limit of weak correlation in 3d, UC - �2TC, so the ratio:

b ¼ EC þ TC

EC
ð16Þ

has always been found to be positive, and vanishes in the

weakly correlated limit,52 which we have also observed in 1d.

But if TC { |EC|, we have correlation without the usual kinetic

contribution, which occurs when systems have strong static

correlation. For example, in the infinitely stretched limit of H2,

TS - T while EC remains finite, so b - 1. In Table 12, we see

that b increases as we stretch the H2 molecule, both in 1d and 3d.

Thus b is a natural measure of static correlation in chemistry.

There is another test for strong static correlation, which we

can use on closed-shell systems: whether an approximate

calculation prefers to break spin-symmetry or not. This well-

known phenomenon occurs when a molecule, such as H2, is

stretched beyond the Coulson–Fischer point,53 and indicates

the preference for electrons to localize on different atoms.

Spin-symmetry-breaking can be observed in Fig. 9, where the

solid (dashed) curves represent restricted (unrestricted) calcu-

lations for a stretched hydrogen molecule. Unrestricted

HF–LSD breaks spin symmetry around R = 2.1/3.4, beyond

which the unrestricted solution gives accurate total energies,

but very incorrect spin densities.54 The numbers are similar in

3d (R = 2.3/3.3).55

5 Conclusion

In this paper, we have surveyed basic features of the electronic

structure of a one-dimensional world of electrons and protons

interacting via a soft-Coulomb interaction. We have estab-

lished many key reference values for future use in calculations

of atoms, molecules, and even solids. This 1d world forms a

virtual laboratory for understanding and improving electronic

structure methods. A major advantage of the 1d world is

provided by DMRG which is extremely efficient and accurate

for such systems, making large system sizes readily accessible.

Furthermore, the thermodynamic limit is far more quickly

approached in 1d than in 3d.

But none of this would be useful if, in this 1d world, both

exact and approximate calculations did not behave qualita-

tively similarly to their 3d analogs. If bonds are not formed or

ions do not exist, there would be no 1d analog of many of the

energy differences that are used as real electronic structure

benchmarks. This work contains an extremely detailed study

of the qualitative similarities, and differences, between this 1d

world and our own.

For atoms and cations, we find trends in the exact numbers

quite similar to real atoms. However, densities are more diffuse

and correlation is weaker, so that Hartree–Fock is more

accurate than in 3d. An important technical difference is that

the interaction does not scale simply under coordinate scaling,

so that even hydrogenic atoms do not scale simply with Z, and

there is no simple virial relation among the energy components

of atoms and ions. Perhaps the most important caveat is that,

while atoms with more than 2 electrons exist, there are no

orbital shells in 1d, so there is no clear analog to specific real

atoms. Our 1d periodic table has only two columns.

Equally important, if the 1d world is to be useful in studying

DFT, is that the standard approximations work and fail under

the same circumstances as in 3d. We have shown that spin-

polarization effects can be much stronger in the 1d uniform gas

than in 3d, and this has an effect on the local (spin) density

approximation. But LSD behaves very similarly to its 3d

analog, not just for energetics, but also in the poor behavior

of the potential and HOMO eigenvalue.

For the prototype molecules, H2 and H2
+, we find LDA

working well at equilibrium, with errors similar to those in 3d.

As the bonds are stretched and correlation effects grow, H2
+

shows the usual self-interaction or delocalization error, while

approximate treatments of H2 break symmetry, just as in 3d.

Remarkably, simple measures of correlation at both equili-

brium and stretched bonds are quantitatively similar to their

3d counterparts.

These results suggest that understanding electron correla-

tion in this 1d world will provide insight into real 3d systems,

and illuminate the challenges to making approximate DFT

work for strongly correlated systems. Other approximate

approaches to correlation, such as range-separated hybrids,57

dynamical mean-field theory,8 and LDA + U,58 can be tested

in the future. Furthermore, fragmentation schemes such as

partition density functional theory (PDFT),59 can be tested for

fully interacting fragments using the exact exchange–correlation

functional, calculated via DMRG. We expect many further 1d

explorations in the future.
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