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We review the role of self-consistency in density functional theory. We apply a recent analysis to
both Kohn-Sham and orbital-free DFT, as well as to Partition-DFT, which generalizes all aspects of
standard DFT. In each case, the analysis distinguishes between errors in approximate functionals
versus errors in the self-consistent density. This yields insights into the origins of many errors in
DFT calculations, especially those often attributed to self-interaction or delocalization error. In
many classes of problems, errors can be substantially reduced by using ‘better’ densities. We review
the history of these approaches, many of their applications, and give simple pedagogical examples.
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1. INTRODUCTION

Density functional theory(DFT) is used in more than
30,000 scientific papers per year[PGB15]. Most of these
applications are routine, where the calculation yields suf-
ficiently accurate results as to provide insight into some
scientific or technological problem. Most use the Kohn-
Sham (KS) scheme with one of a very small set of popular
functional approximations whose successes and failures
are well-documented. For example, the standard approx-
imations are ‘known’ to fail when there is substantial
self-interaction or strong correlation or localization in the
system[MCY08]. These concepts are closely related to one
another.

Partition-DFT (PDFT) is an exact generalization
of DFT using fragment densities as the basic vari-
ables[CW07]. Many difficulties of KS-DFT are overcome
by PDFT. PDFT can deal with strong correlation; it
allows for extremely chemical interpretations of DFT cal-
culations; it provides a direct route to energy differences,
not only total energies; and it is well suited for linear-
scaling implementations and parallelization.

Almost all DFT calculations employ a basic principle
that was used in the original Thomas-Fermi theory[T27;
F28]. When one constructs an approximation to the energy
as a functional of the density, one then uses it to find the
density for that system, by minimizing the approximate
energy. This is true of the exact functional, and is used in
almost all practical DFT calculations with approximate
functionals. With such a choice, basic theorems such
as the Hellmann-Feynman theorem apply, allowing easy
calculation of forces, etc.

This principle appears so common-sensical that it is
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difficult to question. Surely you get the most accurate
energy by minimization? In fact, this is not always the
case. We examine the errors made by self-consistency and
find that, in certain, well-defined, common situations, the
errors made in the density overwhelm those made in the
evaluation of the functional, and often these can be fixed
with little additional computational effort.

We also apply our enery-error analysis to PDFT, show-
ing that several of the key concepts in PDFT are, in fact,
the same as those involved in energy-error analysis, and
how both can be employed to understand the remaining
errors in PDFT.
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FIG. 1. Binding energy curves of H+
2 . Black is exact, blue is

self-consistent PBE, blue-dashed is PBE on HF density, and
red is approximate PDFT, Equation 25. Energies are in eV.

Throughout this article, we use the H+
2 binding energy

curve to illustrate many concepts and approximations
involved. In Figure 1, the black line is the exact curve,
given by a Hartree-Fock (HF) calculation, while the blue
line is for a standard DFT calculation[PBE96], showing
the infamous failure as the bond is stretched[MCY08].
The blue-dashed line is from HF-DFT, meaning the DFT
calculation on the HF density. While this method cures
many problems with standard DFT, it has almost no
effect here, because the bond is symmetric. On the other
hand, a simple approximation within PDFT (Section2 B 4
within) yields a tremendous improvement over standard
DFT. The rest of this review explains how.

2. BACKGROUND

We restrict ourselves to non-relativistic systems within
the Born-Oppenheimer approximation with collinear mag-
netic fields[ED11]. DFT is concerned with efficient meth-
ods for finding the ground-state energy and density of N
electrons whose Hamiltonian is

Ĥ = T̂ + V̂ee + V̂ , V̂ =

N∑
i=1

v(ri). (1)

The first of these is the kinetic energy operator, the second
is the electron-electron repulsion, while the last is the one-
body potential. Only N and v(r) change from one system
to another, be they atoms, molecules or solids. We use
atomic units throughout, unless otherwise stated.

A. Standard DFT

1. Pure DFT

In 1964, Hohenberg and Kohn(HK)[HK64] proved that,
for a given electron-electron interaction, there was at
most one v(r) that could give rise to the ground-state
one-particle density n(r) of a system. If we write [L79;
L83]

F [n] = min
Ψ→n
〈Ψ| T̂ + V̂ee |Ψ〉 = T [n] + Vee[n], (2)

where the minimization is over all normalized, antisym-
metric Ψ with one-particle density n(r), then

E = min
n

{
F [n] +

∫
d3r n(r) v(r)

}
. (3)

The Euler equation corresponding to the above minimiza-
tion for fixed N is simply

δF [n]

δn(r)
= −v(r). (4)

Armed with the exact F [n], the solution of this equation
yields the exact ground-state density which, when inserted
back into F [n], yields the exact ground-state energy.

This theorem proved that the original, crude DFT of
Thomas and Fermi[T27; F28] was an approximation to
an exact approach. Back then, they approximated

T [n] ' TTF[n] =
3(3π2)2/3

10

∫
d3r n5/3(r), (5)

and Vee with the Hartree energy, the classical self-
repulsion of the charge density

Vee[n] ' UH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
. (6)

Adding these together to approximate F yields the iconic
Thomas-Fermi(TF) theory, and the Euler equation for
an atom yields the TF density of atoms. This approx-
imation yields energies that are good to within about
10%, but since, e.g., all thermochemistry depends on very
tiny differences in electronic energies, TF theory is not
accurate enough for chemical or modern materials science
applications.

2. Kohn-Sham DFT

To increase accuracy and construct F [n], modern DFT
calculations use the KS scheme that imagines a fictitious
set of non-interacting electrons with the same ground-
state density as the real Hamiltonian[KS65]. These elec-
trons satisfy the KS equations:{

−1

2
∇2 + vS(r)

}
φi(r) = εi φi(r), (7)
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where vS(r) is defined as the unique potential such that
n(r) =

∑
occ |φi(r)|2. To relate these to the interacting

system, we write

F [n] = TS[n] + EHXC[n],

Ts[n] =
1

2

∫
d3r

N∑
i=1

|∇φi(r)|2, (8)

where TS is the non-interacting (or KS) kinetic energy,
assuming the KS wavefunction (as is usually the case) is
a single Slater determinant. Here EHXC = UH +EXC is the
sum of the Hartree and exchange-correlation (XC) ener-
gies and is defined by Equation 8. Lastly, we differentiate
Equation 8 with respect to the density, yielding

vS(r) = v(r) + vHXC(r), vHXC(r) =
δEHXC

δn(r)
. (9)

This is the single most important result in DFT, as it
closes the set of KS equations[KS65]. Since UH is known
as an explicit density functional (Equation 6) given any
expression for EXC in terms of n(r), either approximate
or exact, the KS equations can be solved self-consistently
to find n(r) for a given v(r). The self-consistency is
simply finding the minimum of an approximate F de-
termined from an approximate EXC. In Figure 2, we
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FIG. 2. Exact[UG94] and approximate DFT densities and
KS potentials of the He atom, using PBE, PBE0 and exact
exchange, in a.u. The dashed horizontal lines indicate the
eigenvalues of the 1s orbitals.

show the exact vS(r) of the He atom, found by inverting
Equation 7 after finding a highly accurate density by
solving the Schrödinger equation[UG94]. Inserting two
non-interacting KS electrons in the 1s orbital of vS(r)
yields the exact n(r). All practical KS-DFT calculations
approximate vS(r). The 1s HOMO is at precisely −I,
where I is the ionization energy. The energies and eigen-
values for both He and H−, both exactly, given by quan-
tum Monte-Carlo(QMC) densities, and approximately,
are given in Table I.

Many forms of approximation1 exist for EXC[n], the
most popular being the generalized gradient approxima-
tion (GGA)[P86; B88; LYP88; PCVJ92; PBE96], and
hybrids of GGA with exact exchange from a HF calcula-
tion[B93; PEB96; AB99; HSE03],

EGGA
XC =

∫
d3r eGGA

XC (n(r), |∇n(r)|),

Ehyb
XC = a (EX − EGGA

X ) + EGGA
XC . (10)

Here a is the fixed mixing parameter, usually chosen be-
tween about 0.2 and 0.25 to optimize energetics for a large
range of molecular dissociation energies[B93; PEB96]. All
practical calculations generalize the preceding formulas
for arbitrary spin using spin-DFT [BH72]. The computa-
tional ease of DFT calculations relative to more accurate
wavefunction methods usually allows much larger systems
to be calculated2, leading to DFT’s immense popularity
today[PGB15]. However, all these approximations fail in
the paradigm case of stretched H2, the simplest example
of a strongly correlated system[B01].

For just one particle, we know the explicit functionals:

TS =

∫
d3r
|∇n|2

8n
, EX = −UH, EC = 0, (N = 1).

(11)
None of the popular functionals satisfy these conditions
for all one-electron systems, and their errors are called
self-interaction errors (SIE).

In Figure 2, vPBE
S (r) is substantially above the exact

curve, and its HOMO level is several eV too high (Table
I), but the almost constant shift in vS(r) has little effect
on n(r) and therefore on E. Note also that the HF
potential is very close to the true potential, and suffers
none of the difficulties of standard approximations. But
the hybrid functionals have potentials that are essentially
those of GGA with a times the HF potential mixed in,
so their εi tend to have an error that is about a fraction
a smaller than that of their GGA counterparts, i.e., still
large, as in the PBE0 curve of Figure 2. Many of these
concepts are described more precisely these days with the
notion of delocalization error[LZCM15; ZLZY15]. These
localization effects become more subtle in polarizable
solvent models[DJ15], and are especially important in
Na-water clusters[SRR15].

Later, we explain how such popular approximations for
the energy can have such ‘bad’ potentials, yet yield such
useful energetics.

1 No approximate functional should be quite accurate. It looks so
calculating.

2 In matters of density functional theory, reliability, not accuracy,
is the vital thing.
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TABLE I. Energies for He and H− in Hartree.

atom
E EPBE [n] ∆EPBE × 1000 εHOMO

Exact HF PBE nHF nQMC ∆E ∆EF ∆ED exact HF PBE
He -2.904 -2.862 -2.893 -2.892 -2.892 10.8 11.8 -1.0 -0.903 -0.918 -0.579
H− -0.528 -0.488 -0.538 -0.521 -0.527 -10.4 1.0 -11.4 -0.028 -0.046 -0.000

B. Partition DFT

Most codes based on KS-DFT scale as N3, with N an
appropriate measure of the size of the system. This is a
very signicant improvement over correlated wavefunction-
based methods, but still impractical for large systems.
DFT-based Car-Parrinello optimizations, for example,
are limited to systems of no more than a few thou-
sand atoms. In response to this challenge, linear-scaling
schemes have been developed [G99]. Some of these take
advantage of the nearsightedness of electronic proper-
ties [SK66; Y91]. Other schemes break the system into
fragments that are small enough for rapid computation,
and then build the properties of the whole system in
a way which preserves order-N scaling [NG04; FK07].
Since the unfavorable scaling of KS-DFT arises primarily
from the use of KS orbitals, orbital-free schemes have
also been developed that perform direct minimization of
the energy functional and scale linearly with N [WC00;
HC09]. The quasicontinuum-DFT approach (QCDFT)
[PZHC08], combining the coarse-graining idea of mul-
tiscale methods [CLK05] with the coupling strategy of
QM/MM (Quantum-Mechanics / Molecular-Mechanics)
[SHFM96; GT02; FG05], allows for the simulation of
multimillion atoms via orbital-free DFT embedding. Ex-
plicit treatment of a few million atoms has been demon-
strated via linear-scaling orbital-free DFT algorithms
[HC09; CJZ+16]. These, however, rely on approximations
to the non-interacting kinetic energy functional Ts[n],
which are neither sufficiently accurate nor general.

PDFT[CW07; EBCW10] is an exact reformulation of
DFT with the potential to overcome both problems of
scaling with system size and problems related to errors
made by the approximate XC functionals. PDFT was de-
veloped initially to strenghten the foundations of chemical
reactivity theory [CW07; CW03]. Its structure belongs
to the family of density-based embedding methods that
were developed starting in the early 1970’s to improve
the efficiency of electronic-structure calculations via frag-
mentation. PDFT generalizes all aspects of both pure
and KS-DFT with new variables that have an extremely
chemical interpretation, while also providing all the com-
putational advantages of quantum embedding methods.
Because excellent, comprehensive reviews on embedding
have appeared recently [JN14; KSGP15; WSZ15], we list
only a few highlights relevant to this review.

1. A few quantum embedding highlights

1970’s: Based on the assumption that the density of
rare-gas dimers can be well approximated by the sum of
their isolated-atom densities, the first non self-consistent
embedding calculations of the binding-energy curves of
rare-gas dimers were performed by Gordon and Kim(GK
method). [GK72].

1980’s: Corrections were added to the non-self consis-
tent GK calculations to account for self-interaction errors
[WP81] and to include induction effects and dispersion
forces [H84]. The first self-consistent versions of the GK
model were also proposed [SS86].

1990’s: Subsystem-DFT (S-DFT) [C91] and frozen-
density embedding (FDE) [WW93] were developed. FDE
was initially not completely self-consistent, but was later
made self-consistent via freeze-and-thaw cycles, making
it equivalent to S-DFT. The self-consistent atomic defor-
mation theory (SCAD) is a version of S-DFT requiring
the fragment densities to be written as atomic densities
[BM93]. Other methods treat different fragments with
different levels of theory, allowing for critical fragments
of a larger calculation to be treated with higher accuracy
(usually referred to as embedding-DFT). In all cases, the
main equations are the KS equations with constrained
electron density (KSCED) [WW96].

2000’s: Many developments took place, mostly of a
technical nature [HC08]: FDE was applied with a plane-
wave basis and both local and non-local pseudopoten-
tials [TB00]; the idea of buffer fragments was intro-
duced[CW04]; FDE was extended to time-dependent DFT
(TDDFT) [Wes04; NLBW05; Neu07] and to work in combi-
nation with configuration-interaction methods [KGWC02].
In parallel, significant advances were made for computa-
tional sampling procedures in QM/MM [KHW09].

2010’s: New methods can now calculate δT nad
S

/δn(r)
for covalent bonds [FJNV10], or bypass the need for inver-
sions altogether via exact density embedding [MSGM12];
FDE develops to study charge-transfer reactions [PN11],
calculate charge-transfer excitation energies and diabatic
couplings [PVVN13], and include van der Waals interac-
tions [KEP14]. Much is now known about the performance
of approximate self-consistent S-DFT [SKMV15]. Sources
of error in WFT-in-DFT embedding was investigated
[GBMMI14].
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2. PDFT in a nutshell

Although PDFT has been extended to the time-
dependent case [MJW13; MW14; MW15], we focus here
on the ground-state theory, where the goal is to calculate
E and n(r) of a molecule via fragment calculations. The
user chooses how the nuclei are assigned into fragments
by dividing the one-body potential. For simplicity, we
give formulas for just two fragments, but there can be as
many as desired. Here

v(r) = v1(r) + v2(r). (12)

The choice of {v1, v2}, together with N , unambigu-
ously determine a unique, global partition potential
vp(r) and a unique set of fragment densities [CW06]:
n = (n1(r), n2(r)). Each resulting nα(r) is the ground-
ensemble density of Nα electrons in vα(r) + vp(r), with
N1 +N2 = N . At self-consistency, vp(r) is global (inde-
pendent of α), and

n1(r) + n2(r) = n(r). (13)

We omit here spin indices for notational simplicity (but
see [MW13; NW14]). The self-consistent equations that
are solved to find n and the partition potential vp(r) follow
from the Euler equation of a constrained minimization.
The quantity being minimized is not the total energy of
the molecule, as in standard FDE and S-DFT, but rather

Efrag[n] = E1[n1] + E2[n2], (14)

the sum of the fragment energies, where Eα[n] is the
ground-state energy functional for potential vα(r). If N1

is not an integer, then write N1 = M + ν, 0 ≤ ν < 1, and
[PPLB82]:

E1[n] = (1− ν)E1[nM ] + νE1[nM+1],

n1(r) = (1− ν)nM (r) + νnM+1(r). (15)

Thus, only integer calculations need be performed, but
Efrag[n] is minimized with respect to ν as well, so N1

need not be an integer.
The formal constraints under which Efrag[n] is mini-

mized are Equation 13 and the number constraint N =
N1 + N2. The partition potential vp(r) and the chemi-
cal potential µ can be seen as the Lagrange multipliers
guaranteeing these constraints. Writing E1,2[n] in terms
of KS quantities, this constrained minimization leads to
the KS-PDFT equations[EBCW10] which, for a given
approximation to the XC functional, exactly reproduce
the results of the corresponding KS calculation for the
entire system (using the same XC functional). At the
minimum, Efrag[n] differs from the true energy by the par-
tition energy Ep[n], whose functional derivative evaluated
at any minimizing nα(r) is the partition potential:

Ep[n] ≡ E[n]− Efrag[n], vp(r) =
δEp
δn1(r)

=
δEp
δn2(r)

.

(16)

As in S-DFT, the partition energy is divided into the
non-additive Kohn-Sham components:

Ep[n] = F nad[n] + V nad[n] (17)

where F nad[n] = F [n1 + n2] − F [n1] − F [n2]. In Equa-
tion 17, V nad includes both the non-additive electron-
nuclear and nuclear-nuclear interactions. The calculation
requires either an explicit density-functional approxima-
tion for T nad

s [n], as in Ref.[WEW98], or (computationally
expensive) inversions, as in Ref.[GAMM10]. If one only
minimizes E[n], this non-additive term may be made to
vanish by requiring that orbitals from different fragments
are orthogonal to each other[MSGM12]. This, however,
requires a molecular KS calculation ahead of time.

Why minimize Efrag[n] (Equation 14) rather than the
total energy directly? With the constraint of Equation 13,
the answer is clear: When n(r) is the true ground-state
density, the HK theorem guarantees that we have also
minimized E[n], and produced “chemically meaningful”
fragments[RP86]. The total work done in deforming the
isolated fragment densities to produce the PDFT fragment
densities is the relaxation energy Erel,

Erel = E
(∞)
frag − Efrag, (18)

where E
(∞)
frag is the sum of the fragment energies when

the fragments are infinitely separated from each other.
(In the original GK model [GK72], Erel = 0.) The true

dissociation energy of the system, Edis = E − E(∞)
frag is

related to the partition energy, Equation 16, by:

Ep = Erel + Edis. (19)

In Figure 3, we show the exact contributions and their
PBE counterparts. Both Erel and Ep contribute sub-
stantially at equilibrium. Clearly, the failure of PBE is
primarily in Ep.

The partition trick is thus analogous to the KS trick:
The former maps the system into isolated fragments,
while the latter maps the system to non-interacting elec-
trons[N15]. In KS-DFT, the self-consistent density from
solution of the KS equations is also that which minimizes
E[n]. The KS “density constraint” guarantees this, by
construction. Furthermore, vp(r) in PDFT, like vHXC(r)
in KS-DFT, is a global potential that is added to v(r) to
make the auxiliary system. It is unique for a choice of
partitioning, as follows from the minimization of Efrag[n]
[CW06]. In this analogy, PDFT is to subsystem-DFT like
KS-DFT is to Hartree-Fock theory.

3. In practice: Converging to self-consistency

For each fragment α, two KS-like equations are solved
simultaneously:{
−1

2
∇2 + veff

α [n±α ](r) + vp(r)

}
φ±i,α(r) = ε±i,αφ

±
i,α(r),

(20)
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FIG. 3. Partitioned energy contributions to binding curve of H+
2 . The dissociation curve (Edis, solid) is the difference between

the partition energy (Ep, dotted, 1/R included) and the relaxation energy (Erel, dashed), Equation 19. Black are exact, blue are
PBE, red are the overlap approximation.

where the effective potential is just the usual KS form,
Equation 9, and ± denotes evaluation for M and M + 1
electrons. The various partition potentials generally differ
until a self-consistent solution is reached. For a given set
of trial fragment densities, define

v±p,α(r) = δEp[n]/δn±α (r). (21)

We construct a weighted average partition potential over
all fragments and particle numbers:

vp(r) =

∫
d3r′

2∑
α=1

∑
λ=±

vλp,α(r′)Qλα(r′, r). (22)

The Q-functions provide the bridge between PDFT and
S-DFT calculations[NW14], and are approximated in prac-
tice as[MW13]:

Qλα(r′, r) =
δnλα(r′)

δnfrag(r)
≈ nλα(r)

nfrag(r)
δ(r− r′) . (23)

In Equation 23, nfrag(r) is the sum of trial fragment densi-
ties at intermediate iterations, equal to the correct molecu-
lar density only at convergence. When the exact partition
energy is used, either via iterative inversions[NWW11]
or through use of the exact TS[n], any approximate Q-
functions such as Equation 23, satisfying the sum-rule:

2∑
α=1

∑
λ=±

Qλα(r′, r) = δ(r− r′) , (24)

will lead to the optimal vp(r). However, it remains to be
investigated how the solutions depend on the choice of
Q-functions when approximations for Ep[n] are employed.

4. Overlap approximation

For a given XC approximation, the exactly correspond-
ing Ep[n] reproduces the results of a molecular KS cal-
culation, including all of the errors of the underlying
XC functional. Carefully constructed approximations
to Ep[n] have the potential to eliminate some of these
errors, because Ep can depend on individual fragment

densities. An overlap approximation (OA) significantly
reduces the delocalization and static-correlation errors
of semi-local XC functionals. The OA approximates the
Enad

HXC contribution of Equation 17 as:

Ẽnad
HXC[n] = Unad

H [n] +S[n]Enad
XC [n] + (1−S[n])∆Unad

H [n] ,
(25)

where S[n] is an appropriate measure of the spatial overlap
between fragments and ∆Unad

H [n] is a correction to the
non-additive Hartree designed to be used with semi-local
XC-functionals[NW15]. The right panel of Figure 3 for
H+

2 shows how the OA, when used with PBE for the
fragments, greatly improves the dissociation curve, getting
the stretched limit correct. It even improves the fragment
energies. Self-consistency within PDFT works well.

3. A THEORY OF INCONSISTENCY

In almost all DFT calculations, we use the HK theorems
in two ways simultaneously. We make some approximation
to an energy, as a functional of the density, and we use the
Euler equation (or equivalently the KS equations or the
partition equations) to find the density that minimizes
that energy functional. Since such equations are often
solved by an iterative process, the solution is usually
called self-consistent.

But here we will explore how such a procedure might
not always yield the most accurate result for a given ap-
proximation. Our standard approximations have been
designed to yield reasonably accurate energetics for the
Coulombic systems that nature has given us, but not
accurate functional derivatives (Figure 2). Usually, the
kinds of inaccuracies in these derivatives are not very
important but as we show, sometimes they are very im-
portant. Thus we consider performing DFT calculations
in which the density is not the self-consistent solution with
a given approximate energy, i.e., density and energy are
approximated separately. For very good, well-understood,
reasons, such inconsistent density functional calculations
(IDFC’s) can sometimes yield much more accurate ener-
gies than self-consistent DFT calculations.

Our basic tool in analyzing such IDFC’s will be the
energy-error analysis. In practical DFT calculations, F [n]
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is approximated, call it F̃ [n]. The minimizing density ñ(r)
is therefore also approximate. The energy-error is

∆E = Ẽ[ñ]− E[n] = ∆EF + ∆ED,

∆EF = Ẽ[n]− E[n], ∆ED = Ẽ[ñ]− Ẽ[n] (26)

where ∆EF is called the functional (or energy-driven)
error, ∆ED is the density-driven error, and they sum to
the total energy-error. This single line of arithmetic is a
powerful tool for analyzing errors in approximate DFT
calculations.

Since the energy-error of any approximate self-
consistent DFT calculation can be decomposed in this
manner, we choose the following classification scheme.
We call a DFT calculation normal if, for the energy of
interest, |∆EF | >> |∆ED|. The vast majority of present
DFT calculations meet this criterion, which is why we
call this normal. On the other hand, if |∆ED| ≈ |∆EF |
or larger, the calculation is abnormal. Then the error in
the energy of interest is typically substantially reduced if
a more accurate density than the minimizer of F̃ can be
found.

Note that classifying a calculation as abnormal depends
on (a) the approximation used, (b) the system, and (c) the
energy of interest. In applications of ground-state DFT,
overwhelmingly the quantity of interest is not the den-
sity, but rather the ground-state energy of the electrons.
This includes all geometries, bond energies, vibrational
frequencies, transition state barriers, ionization energies
and electron affinities, and even polarizabilities, which
can be deduced from changes in the energy as a weak
field is applied.

A. Toy model

To illustrate the general idea, consider a problem where
we wish to find a function

ey = min
x

(f(x)− y x) (27)

where f is an exact function, while f̃ is some approxima-
tion to it. For example, choose f(x) = βx2, where f(x)

is exact when β = 1. Thus f̃ is a good approximation if
β = 0.9, being within 10% of f for all x. In general, we
can differentiate to find the minimizer:

f ′(xm) = y, xm = [f ′]−1(y),

ey = (f(x)− x f ′(x))

∣∣∣∣
xm(y)

(28)

In our specific case, xm = y/(2β) and ey = −y2/(4β).
Then the error in ẽy is just Equation 26:

ẽy − ey = ∆ey =
1− β
β

ey,

∆eF = (1− β) ey, ∆eD =
(β − 1)2

β
ey. (29)

Since here β = 0.9, ∆eF is slightly smaller than ∆ey,
while ∆eD is much smaller. This is a perfectly normal
system.

But watch what happens when we add a small Gaussian,
a exp(−[(x− b)/c]2/2) to f(x), where a is 0.02, b is 0.25,

and c = 0.03. This has a relatively small effect on f̃ , and
even on ẽy, as shown in Figure 4. However, consider
the right panel in Figure 4, which shows the total error
and its decomposition as a function of y. For y ≤ 0.3,
the system is normal, and |∆eD| << |∆ey|. But as we
approach y = 0.4, |∆eD| grows much more rapidly than
|∆eF |, and even becomes larger than it after y = 0.4.

How has this happened? The feature we added is not
large, but it does vary rapidly. Thus f̃ ≈ f everywhere,
but f̃ ′ is not close to f ′. This causes a large error in xm
which produces a large error in ẽ(y), whose origin is quite
different from the normal case. A careful expansion about
the exact and approximate minima yields:

∆eD/∆eF = −(∆f ′m)2/(f ′′m∆fm) (30)

where ∆f = f̃ − f . In the normal case, ∆f,∆f ′,∆f ′′

are all comparable in size so Equation 30 is small. we
see that ∆eD is much smaller than ∆eF . But if |∆f ′m| ≥√
f ′′m |∆fm|, then the calculation is abnormal, and |∆eD|

dominates |∆e|. In the specific case we just calculated,
we find y = 2xm, so when xm = 0.1, the center of the
Gaussian, y is 0.2, and the system becomes abnormal.

B. Extension to functionals

We can apply everything from our toy problem to the
minimization of approximate functionals. The density of
any approximate DFT calculation satisfies:

δF̃

δn(r)

∣∣∣∣∣
ñ

= −v(r) or ñ(r) =

{
∆F̃

δn

}−1

[−v](r). (31)

Just as in the toy, even if F̃ ≈ F near n(r), rapid changes

in F with n(r) that are not in F̃ can produce unusu-
ally poor densities, leading to density-driven errors. It is
well-known[PPLB82] that total energies have derivative
discontinuities at integer values of N and that these are
also present in the exact F [n], while standard approxima-
tions that are explicit density functionals (such as TF and
GGA) produce smooth functions of N . Thus, whenever
such discontinuities are important, we should watch out
for density-driven errors.

Taking another functional derivative of Equation 31
with respect to v(r) yields the density change in response
to a perturbation:

δñ(r) =

∫
d3r′ χ̃[n](r, r′) δv(r′) (32)

where χ̃ is the (static) density-density response function,

and is the inverse of δF̃ /δn(r)δn(r′). By analogy with
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(Right) Error at minimum and its decomposition for the toy model.

Equation 30, the ratio ∆ED/∆EF is proportional to χ̃.
An unsually large response function suggests a significant
density-driven error.

Pure DFT calculations, at least those with approxima-
tions dominated by the TF approximation, are always
abnormal, i.e., the error is always density-driven. On the
other hand, most modern self-consistent KS-DFT calcu-
lations have excellent densities and are normal. However,
in a variety of well-known situations, the density-driven
error with standard approximations (GGA and hybrids)
becomes unusually large, and dominates the error in the
calculation. Such errors can all be greatly reduced by
using a more accurate density. Finally, in the last section,
we show how PDFT errors can be understood with this
analysis.

In fact, we can do a simple case exactly[B07]. Consider
same-spin non-interacting fermions in a flat box in one
dimension, the simple problem usualy done first in any
quantum text book. The potential energy is zero every-
where, and the total energy is all kinetic. For one particle
in a box of length 1, T = π2/2 exactly. On the other
hand, the TF approximation for such a problem is:

TTF[n] =
π2

6

∫
dxn3(x). (33)

Minmizing in the box yields a constant density, n = 1.
Thus TTF = π2/6, being too small by a disastrous factor
of 3. However, if we insert n(x) = sin2(x)/2 into TTF[n],
we find a much better answer, TTF[n] = 5π2/12, i.e., we
are now only too small by 1/6. Thus the TF functional
is far more accurate on the exact density than the self-
consistent one. In terms of our energy-error analysis, we
find

∆EF =
1

4
∆E, ∆ED =

3

4
∆E, (34)

i.e., the density-driven error is three times larger than
the functional-error. These features remain true for all
values of N . Although TF theory becomes relatively exact
here as N →∞, the density-driven error is always three
times larger than the functional-error, and dominates the
energy-error. This calculation is always abnormal.

4. PURE DFT

We begin with simple examples that can be easily done
with Mathematica. Consider the Bohr atom, which is an
atom in which the electron-electron repulsion has been
turned off[HL95]. The orbitals are purely hydrogenic, and
the energies are those of a sum of the lowest hydrogenic
levels. Solving the Euler equation yields the TF density
for this problem:

nTF(r) =
4Z

π2r3
c

(rc
r
− 1
)3/2

Θ(rc − r), (35)

where rc=(18/Z)1/3, and Θ is the Heaviside step function.
The TF energy is just −Z2(3N/2)1/3, where Z is the
nuclear charge and N the number of occupied orbitals.
For Z = 1, this yields a ground-state energy of −1.144,
which is more than double the exact answer of −1/2. On
the other hand, evaluating the TF kinetic energy on the
hydrogen atom density yields:

ETF[n] =
81(3π)2/3

1250
− 1 ≈ −0.711, (36)

which is (only) a 40% overestimate in magnitude, and
the calculation is abnormal. TF errors are similar for
real atoms. In radon, ∆E

TF ' −3400, and the relative
energy-error vanishes as Z →∞[LS73]. But ∆EF ' −620,
so most of the energy-error is due to the density-error.
There is no reason to think that this behavior would be
any different in molecular calculations, or calculations of
insulating solids. It might change for simple metals with
a pseudopotential, where the (pseudo)density is closer to
slowly-varying.

Standard approaches to orbital-free DFT that are dom-
inated by local and semilocal approximations are likely
to have errors dominated by the density. Calculations
that test kinetic energy functionals on the exact KS den-
sity rather than self-consistently will typically have much
smaller errors than self-consistent calculations. Further-
more almost all semilocal approximations fail to converge
in self-consistent calculations. [XC15] The focus should
be on improving the functional derivative rather than the
energy itself, and the measure of improvement should be
the reduction of the density-driven error.
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An entirely new method of finding the kinetic-energy
functional has recently appeared, using machine-learning
to learn from solved cases[SRHM12; LSPH15; VSLR15].
But its functional derivatives are so poor that they are
totally unusable for finding a self-consistent solution. Sev-
eral techniques have been developed which constrain a
minimization to stay on the manifold of densities on
which the machine-learned functional is accurate[SRHB13;
SMBM13]. These lead to algorithms that produce accu-
rate densities, although the density-driven error is up
to 10 times greater than the functional error, and the
solutions also are slightly dependent on the starting point.
This has led to attempts to map the density-potential
functional directly, bypassing the need for an accurate
functional derivative[BLBM16].

5. KS-DFT

We next apply the principles of inconsistency to KS-
DFT. The KS scheme is simply an elaborate way to
minimize an approximation to F , given by Equation 8.
All the same principles apply to ẼXC[n] as we have al-

ready discussed about F̃ . Because GGA and hybrids
use continuous explicit density functional approximations,
they miss the derivative discontinuity, which shows up
in the XC functional. Thus their derivatives are highly
inaccurate, as in Figure 2. The KS potential of these ap-
proximations is too shallow by several eV, yielding poor
orbital energies, but the potentials are almost perfect
constant shifts relative to the exact potentials, at least
within most of the atom or molecule. Such a shift has no
effect on the shape of the orbitals, and therefore on the
density. In fact, most KS-DFT calculations have excellent
densities so even for cases with poor results, their errors
are functional-driven, not density-driven[TS66]. For the
He atom of Figure 2, ∆ED is -9% of ∆E in PBE. The
functional error dominates and the error in PBE worsens
if the exact density is used. Thus, all KS-DFT calcula-
tions with the standard functionals have poor-looking KS
potentials. In a certain subset of cases, these poor quality
potentials will lead to sufficiently poor self-consistent den-
sities that density-driven errors become significant. Such
calculations are abnormal and, if a more accurate density
is available, the error reduces significantly.

Is there any way to know, a priori, if a given approxi-
mate DFT calculation is likely to suffer from a density-
driven error? There is. The KS response function is

χ̃S(r, r′) =
∑
i,j

(fi − fj)
φ̃∗i (r)φ̃∗j (r)φ̃i(r

′)φ̃j(r
′)

ε̃i − ε̃j + i0+
, (37)

where fi is the KS orbital occupation factor[DG90]. The
smallest denominator is ∆ε̃g, the HOMO-LUMO gap.
Normally, the difference between the exact and approxi-
mate vS(r) is small, ignoring any constant shift. If ∆ε̃g is
not unusually small, this error leads to a small error in
ñ(r). But if ∆ε̃g is small, even a small error in vS(r) can

produce a large change in the density, and self-consistency
only increases this effect. Thus small ∆ε̃g suggests a large
density-error, and the calculation should be checked. This
is done by inserting an accurate density in the approxi-
mate functional. If the energy changes significantly, the
energy should be substantially more accurate on the exact
density.

To illustrate this effect in its strongest form, we cal-
culate the energy of H−. This anion has two electrons,
just like He, but it is long known[SRZ77] that a standard
DFT calculation, in the infinite basis-set limit, cannot
bind two electrons. In fact, a fraction of an electron is lost
to the continuum. To fully converge such a calculation,
we set the occupation of the 1s orbital to, e.g., 1.5, and
find a converged solution. We then slowly increase the
occupation until the HOMO level hits exactly zero. This
is then the lowest-energy self-consistent PBE solution. Its
density is very poor (see Figure 5) as it is missing 0.37
electrons3. The error in its energy is the same magnitude
as of He (see Table I), but now it is too negative. On
the other hand, the HF density binds 2 electrons with
a negative HOMO, but its energy is very poor. Finally,
the green curve in Figure 5 is the PBE potential on the
QMC density. It has a positive HOMO (really a reso-
nance) and, in a limited basis set, will yield an accurate
self-consistent density (but is not converged).

Of course, the value of DFT is in its computational
speed, and would be lost if we had to calculate a highly
accurate density by some other method every time we ran
into a density-driven error. But because extreme density-
driven errors are due to the lack of derivative discontinuity
in the energy, which is reflected in the XC potential, a HF
density from an orbital-dependent functional, does not
suffer from such errors, and is exact for one electron. Thus
the HF density is better for such systems, as we show
below. So we name the method HF-DFT, meaning to use
a HF density with DFT energies. From Table I, we see
that, evaluating PBE on the QMC density of H−, yields
an incredibly accurate answer. HF-DFT also substantially
improves over self-consistent DFT but, because this case
is so severe, further improvement is gained from the QMC
density.

Technically, it is not so easy to precisely perform a KS
calculation on a HF density, as one must find the KS
potential by a process of inversion, which can be compli-
cated and difficult to converge. A simple workaround is
to approximate the HF-DFT energy as

EHF−DFT ≈ EHF + (ẼXC[nHF]− EHF
X ). (38)

Because of the variational principle, this is accurate to
second-order in the density difference, which turns out to
be good enough. On a website4 one can find instructions

3 It is fortunate for approximate DFT that no atomic dianions are
bound. To lose one electron may be regarded as a misfortune. To
lose two looks like carelessness.

4 http://tccl.yonsei.ac.kr/mediawiki/index.php/DC-DFT
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FIG. 5. Exact[UG94] and approximate densities and KS potentials of H−. The dashed horizontal lines are eigenvalues of 1s
orbital with PBE and EXX in a.u..

that perform this procedure for several standard codes.
The basic trick is to take the output density of a converged
HF calculation, and feed it into a DFT cycyle, but set
the number of iterations to zero or one depending on the
code.

A. History of HF-DFT

The use of HF densities in DFT calculations has a long
history. Even before the mid 90’s, it was common prac-
tice to test approximate density functionals on HF densi-
ties[B88; SSP86]. When DFT was first becoming popular
for routine calculations on main group elements, the initial
calculations were performed on HF densities, in order to
compare “apples-to-apples”[GJPF92; OB94]. Pioneering
work even noted that, in difficult cases, HF densities some-
how yielded better results than self-consistent results[S92].
More recently, the improvement in barrier heights of
transition states has been repeatedly observered[JS08;
VPB12].

But what was previously missing was a general expla-
nation for these better results, and a way to predict when
HF-DFT would be better than self-consistent DFT. In
fact, for normal systems, HF-DFT is often slightly worse,
as we saw for the He atom, and in many ways, the HF
density is less accurate than the self-consistent DFT den-
sity[GMB16]. Moreover, the theory given in Section 5 is
entirely general, applying to any approximate DFT cal-
culation, not just those with semilocal functionals. Thus
our method explains how and when HF-DFT is a useful
idea.

B. Electron affinities

The origin of the current theory lies in the calculation of
electron affinities with DFT. For many years, the Schaefer
group successfully calculated electron affinities within
DFT[RTS02]. By using the same basis for both the anion
and the neutral species, finding the DFT energy difference,
and increasing the basis set until the answer stopped
changing. This worked in many cases, especially those
of biological interest[DS09; GXS10; GXS10b; CGCS10;
KS10]. A slight flaw was that the HOMO of the anion

would be positive (see Figure 5), which meant these
calculations were unconverged[RT97].

The answer to this apparent conundrum is given by the
green curve of Figure 5. Although the HOMO is tech-
nically a resonance, the width of the barrier holding the
electron in is so wide that any standard basis functions
will not detect the lower-energy state outside the barrier.
Hence the reasonable performance and apparent conver-
gence of electron affinities. However, the truly converged
result is the one mising a fraction of an electron, which
has a terrible energy(Table I).

But this also suggested an alternative, more satisfying
approach. Since the problem is with the self-consistency
of the density, if a more accurate density was available
(in this case, a bound one), it should also work. Thus HF-
DFT was used, and found to give comparable (or better)
results for atoms and small molecules. In fact, using this
method, electron affinities are typically twice as good
as ionization potentials with approximate DFT[LB10;
LFB10]. It should be used for all anionic DFT calculations
in future. It was quite surprising that no-one seemed to
have applied this logic to the anion problem in DFT
before.

The explanations in the papers addressing electron
affinities are given in the language of self-interaction er-
ror[LB10; LFB10; KSB11]. This was later generalized to
the general energy-error analysis discussed here, when it
was discovered that DFT calculations on radicals can also
be improved with HF-DFT, even though no species are
charged[KSB13; KSB14].

We use HF densities because they are computationally
accesible for molecular systems. We should use the ex-
act density, but often HF densities are sufficiently good
that any remaining density-driven error is much smaller
than the functional-error. But HF densities are not al-
ways good enough, or even a good choice. For example,
for H−, the HF-PBE energy is -0.521 Hartree, which is
substantially different from the QMC-PBE energy(-0.527
Hartree). Another typical failing is when the HF calcula-
tion suffers from substantial spin contamination. Then
the HF density is certainly not accurate enough, and a
more advanced method must be used. Finally, we men-
tion that for solids, especially metals, HF calculations can
be very expensive and problematic, so in this case, some
other method would be better for calculating an accurate
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density (for an abnormal system).
Affinities involved in the successive fluorination of ethy-

lene are afflicted by positive HOMO’s and the standard
basis set treatment fails[PDT10]. For the most extreme ex-
ample, see also Refs [MUMG14; GB15]. Using a reasonable
basis set is often used to coax an electron affinity from a
standard functional when evaluating on a data base involv-
ing anions[CPR10; HSXR13]. Many authors emphasize
the importance of the basis for DFT calculations of elec-
tron affinity[CHKK15; CFDH15], and some have explored
the difficulties in extracting electron affinities[TDGT14].
The relation between derivative discontinuities, delocal-
ization error and positive HOMO values is extensively
explored in Ref. [PTHT15]. The importance of exact
exchange has also been noticed for genuinely meta-stable
anions[FDAB14], where the HOMO is positive.

C. Binding curves

Our next abnormality is a well-known failing of stan-
dard DFT approximations[RPC06]. KS-DFT calculations
of molecular dissociation energies (Eb) are usefully accu-
rate with GGA’s, and more so with hybrid functionals.
These errors are often about 0.1 eV/bond[ES99], but are
found by subtracting the calculated molecular energy at
its minimum from the sum of calculated atomic energies.

However, things look very different if one calculates a
binding energy curve by simply plotting the molecular
energy as a function of atomic separation R. This is
because, if one simply increases the bond lengths to very
large values, the fragments fail to dissociate into neutral
atoms. Incorrect dissociation occurs whenever the ap-
proximate HOMO of one atom is below the LUMO of the
other[RPC06], which guarantees a vanishing ∆ε̃g when
the bond is greatly stretched. With standard functionals,
this happens for more than half of all heteronuclear di-
atomic pairs. The exact vXC(r) contains a step between
the atoms which is missed by standard approximations.
Since the step is often dominated by the exchange term,
effectively only a fraction of this step is contained in a
hybrid calculation. In the very stretched case, this effect
can also be explained in terms of the inability of the ap-
proximations to reproduce the derivative discontinuity in
the energy.

HF
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FIG. 6. Binding energy curves of CH+ with various methods.
The cross mark is MRCI results from Ref. [BSM14]. Energies
are in eV.

A recent paper[KPSS15] describes how to perform HF-
DFT calculations that both overcome the dissociation
limit problem, and yield accurate binding energy curves
out to much larger separations than was previously possi-
ble. A beautiful example is posed by a molecule that is
very challenging to theory, CH+ (but of perhaps limited
interest experimentally). All DFT methods perform satis-
factorily near the bond minimum, yielding accurate atom-
ization energies when subtracted from the corresponding
atomic calculations of C+ and H. They can be compared
with the ‘gold standard’ of ab initio quantum chemistry,
CCSD(T). However, as the bond is stretched, it becomes
multi-reference in character, and even CCSD(T) fails
badly. The perturbative treatment of triple excitations
fails as the gap shrinks to zero. CCSD behaves better, but
only a multi-reference configuration interaction (MRCI)
calculation yields an accurate curve. Self-consistent DFT
yields incorrect dissociation limits and, even worse, devi-
ates from the accurate curve at only 2 Å. However, Fig-
ure 6 shows HF-DFT works extremely well here, closely
following the accurate curve out much further, as well
as producing the correct dissociation products, for most
approximate functionals.

D. Potential energy surfaces of radical and charged
complexes

There are many branches of chemistry in which either
radicals or anions, dissolved in water, are vitally impor-
tant. To perform ab initio molecular dynamics simulations
of such systems, KS-DFT calculations must yield accurate
potential energy surfaces for the complexes. DFT calcula-
tions with standard functionals often yield incorrect global
minima with fictious hemi-bonds appearing, in which the
additional electron localizes halfway between two species.
This is blamed on self-interaction error. HF-DFT cures all
these problems, making potential energy surfaces highly
accurate with any of the popular functionals[KSB14].

E. Applications of energy-error analysis and other
approaches

There are already many applications in the literature
where the energy-error analysis has been applied to calcu-
lations with abnormal standard approximations. As the
length of a long-chain hydrocarbon grows, the ionization
potential collapses to the KS HOMO level with standard
approximations, due to the incorrect delocalization of
the hole over the entire molecule[WVIJ15]. This effect
should not be present in HF-DFT, but that has yet to
be tested. Gaps have been analyzed to see if a strong
density-driven error is responsible for poor performance
for RNA backbones[KMGH15]. The energy-error analysis
has also been used in analyzing errors in 3-body DFT ener-
gies[G14]. The delocalization error has been implicated in
difficulties calculating alkylcobalamins[GNPM13], where
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HF-DFT might be very helpful. It has also been use-
ful in analyzing intercage electron transfer in Robin-Day
type molecules[WLZL12], and a large density-driven error
has been found in the Kevan model of a solvated elec-
tron[JOD13]. IR spectra of small anionic water clusters
have been shown to be problematic with fixed basis DFT
calculations, and fixed by MP2[GDTJ15]. But HF-DFT
has not been tried, and should be better than MP2.

There are also cases where HF-DFT has definitely
improved results. HF-DFT has been used (success-
fully) to deal with anion, dianion, and radical Fullerene
oligomers[SSSZ14]. In diene isomerization, the energy-
error analysis has been performed, with a strong sug-
gestion that inconsistency improves energetics[WPAS15].
Magnetic exchange couplings can be greatly improved
by inconsistent calculations[PP12], and might also be rel-
evant to organic molecules[KCL13]. It is useful even in
estimating metabolic reaction energies[JRDS14].

Not all suspected density-driven errors turn out to be so,
and in those cases, HF-DFT does not work. For adhesive
energies of hydrogen molecular chains, HF-DFT only
slightly improves over DFT[SX15], presumably because
this is not a density-driven error, as all units in the chain
are identical just as in Figure 1. We have explored
HF-DFT as a cure for self-interaction error in anion-
π complexes[MCRS15], but found it not to be density-
driven.

There are countless other approaches to fixing the
problems of abnormal calculations in the DFT literature.
Range-separated functionals have been shown to cure de-
localization errors of standard functionals in Michael-type
reactions[SAR13], but HF-DFT should also work, while
bypassing the need to introduce a system-dependent pa-
rameter. Other authors have suggested constraining the
potentials of DFT calculations with the correct asymp-
totic forms[GL12], which is another approach ripe for
energy-error analysis. Other alternatives include using
Koopman’s condition[DFPP13], or the use of a model for
the exchange hole that avoids the delocalization effect on
barrier heights[JCDD15]. The beauty of HF-DFT is that
it bypasses the need to find a better potential or do a more
expensive calculation. It is possibly the most pragmatic
approach to these difficulties, and readily available to any
user.

Of course, more sophisticated (and usually more ex-
pensive) calculations such as RPA usually do not suffer
from the specific errors made by standard approxima-
tions[EBF12]. But many such methods suffer from acute
orbital-dependence: significantly different energies are
found by using different non-self-consistent orbitals, and
self-consistent calculations are often hideously expensive,
both in terms of computational time and coding, without
providing improved results. These situations are ripe for
energy-error analysis.

In fact, many applications of hybrid functionals face
a Procrustean dilemma. The small value of a is needed
to yield accurate energetics[Bb93; PEB96], but a value
closer to 100% is needed to generate accurate potentials

and response properties (as in Figure 2). The use of a
local hybrid[BCL98] should overcome the dilemma posed
by global hybrids in this regard[J14]. Abnormal systems
make this problem acute. But HF-DFT sidesteps the
issue, by using a better density without studying the
potential. An ensemble generalization is one of many
other approaches to this problem[KSKK15].

F. Limitations of HF-DFT

The classic examples[MCY08] of failures of popular
DFT approximations are the binding energy curves of
H2 and H+

2 . These two prototypes illustrate starkly the
failures as bonds are stretched, and these effects happen
for most bonds. Unfortunately, HF-DFT does not help
here, because of the left-right symmetry in both cases.
Both these errors are functional-driven, i.e., replacing the
self-consistent density with the exact density makes little
difference. In Figure 1), the dashed lines are on the exact
(HF) density, and are very similar to the self-consistent
solid lines.

6. PDFT AND ENERGY-ERROR ANALYSIS

A. Interpretation of PDFT energies

Separating functional and density-driven errors can
also illuminate the results of embedding calculations
[GBMM12] and clarify the role of self-consistency in S-
DFT calculations [WS13]. Now we apply the energy-error
analysis to a PDFT calculation in which we know the
exact XC functional, but approximate Ẽp = 0. Then we
trivially find our energy as the sum of isolated fragments
with corresponding fragment densities. Our energy-error
is simply

∆E = E
(∞)
frag − E = −Edis, ∆EF = −Ep, ∆ED = Erel,

(39)
i.e., we can interpret the partition energy as (minus)
the functional error of such a calculation, and the re-
laxation energy as the density-driven error. We then
say that bonds are normal when |Erel| << |Edis|. Ab-
normal bonds are those in which the distortion of the
fragment densities relative to the corresponding atomic
densities is sufficiently large to make the relaxation energy
comparable to the dissociation energy. This definition is
precise and unambiguous, and does not depend on any
XC approximation.

B. Energy-error analysis within PDFT

As our last example, we apply the energy-error analysis
within an approximate PDFT calculation. We use the
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FIG. 7. Decomposition of the partition energy-error ∆Ep (left) and total fragment energy-error ∆Efrag (right) for PBE (blue)
and OA (red). Dotted curves functional-driven, dashed density-driven. Energies are in eV.

OA of Equation 25 on PBE[NW15]. We write

∆Ep = ∆Ep,F +∆Ep,D, ∆Efrag = ∆Efrag,F +∆Efrag,D

(40)
We plot these in Figure 7. The blue in the left panel of
Figure 7 shows that the large error in Ep is functional
driven, as expected. Even when largely fixed by the
overlap approximation, for moderate bond lengths, this is
still functional driven. But for R > 5, the density-driven
error comes to dominate even the OA result, suggesting
it can be improved by using the HF density (just as
the heteronuclear bonds of Section 5 C). On the other
hand, the fragment errors of the right panel of Figure
7 are much smaller overall. Moreover, for R > 4, these
errors are density-driven and so can be reduced with HF-
DFT. For R < 4, the density-driven component remains
comparable to the functional-driven piece, which is the
same for both PBE and OA. This strongly suggests that,
at least for H+

2 , HF-DFT can reduce the fragment errors,
once the principal partition energy-error has been tackled
within PDFT.

7. CONCLUSION

Emerson[emerson] was clearly referring to DFT and
PDFT when he wrote that a foolish consistency is the

hobgoblin of little minds. Previously, anyone questioning
whether DFT calculations should be self-consistent would
be regarded as showing signs of triviality. We hope to
have convinced the readers, possibly for the first time in
their lives, of the vital Importance of Being Consistent
(when not foolish).
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