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Relations between coordinate and potential scaling in the high-density limit
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Exact relations are derived between scaling to the high-density limit of density functional theory and
taking Z to infinity for nondegenerate atoms. Goérling—Levy perturbation results are deduced for
hydrogenic densities. The kinetic contribution to the correlation energy is also studied, and estimates
given for its value for neutral atoms. Popular approximate functionals are tested against these
benchmarks. @005 American Institute of PhysidDOI: 10.1063/1.1872832

I. INTRODUCTION testing their accuracy in the high-density limit. There is a
beautiful simplification of the expression of the highzor-

The validity of density functional theor§DFT) and the  relation coefficients in terms of the Gorling—Lev§L) co-
range of problems to which it may be applied are wellefficients when the sum of kinetic and total correlation ener-
established.However, the usefulness of predicted quantitiesgies is considered. This makes the method more eas”y
is limited by the accuracy and reliability of density func- applicable for testing and is a simple and fairly accurate
tional approximations to the exchange-correlation enérgy;method for extractingr[n], the kinetic contribution to the
hence the constant need for more accurate functionals. Atorrelation energyT [n] is defined as the difference between
though many exact constraints have already been determinggle kinetic energy of the physical systéiim] and that of the
and incorporated into the construction of functioratsere  kohn—Sham systeridn].
is great interest in additional conditions that functionals  Herein we determine, to second order irZlthe expan-
should satisfy. Testing in extreme limits allows us to exploresjon coefficients of the correlation energy for nondegenerate
the limitations of functional approximations. ions, of the density foN=2-, 3-, and 10-electron ions, and of

Scaling of the electronic density is often used to testhe correlation potential fo=2-electron ions. The correla-
functional behavior. Under uniform coordinate Scaling, ation energy coefficients were determined by a least squares
density is either squeezed into a smaller region or spread ot to correlation energy data reported in the literattfr&"
over a larger region, but retains its shape. Exact behaviorhe density coefficients were obtained from exact exchange
under scaling is known for all components of the energycalculations using Engel's atomic DFT cotfeFinally, the
except the correlation energy, for which an inequality hassorrelation potential coefficients were extracted from Umri-
been derived.Most approximate functionals are developed gar and Gonze’s Quantum Monte CaflQMC) calculations
to satisfy these scaling relations. Scaling is simply related t@gr 2-electron iong>14
the adiabatic Connectiaﬁ which is the basis for ConStrUCting For nondegenerate systems, the correlation energy scales
hybrid functionals and understanding their success. to a constant® Not all approximate correlation functionals

There are quantum chemistry benchmarks for correlatio’cale correctly to the high-density limit. The local density
energies of various isoelectronic sertés] i.e., sets of ions  approximatiofi® (LDA) violates this condition. The long-
with the same numbers of electrons. Analogous benchmarknge nature of the Coulomb interaction in an infinite system
do not exist for DFT deSpite their pOtentia| usefulness. In thlqthe uniform electron gas leads to a |Ogarithmic
paper we consider the behavior of the correlation energy ijivergence-’*® The parameterization of the Perdew—Wang
the high-density limit when the nuclear chargebecomes 1991 (PW91) functionaf® fails to capture the correct behav-
infinitely large. In many ways, the effect is similar to that of jor, put the Perdew—Burke—ErnzerhdPBE) correlation
scaling in DFT. functional was designed to correct thfsThe PBE functional

One important difference between coordinate scalingjields good results for the correlation energy of these large-
and scaling by increasing the nuclear charge of ions is thg atoms.

change in the shape of the density with These changes
must be accounted for, and produce small but significant cor-

rection terms to the usual sca'llr}g expansion coeff|C|ent?|- SCALING IN DENSITY FUNCTIONAL THEORY
when relating them to the coefficients of scalingdnAl-

though the densities become hydrogenicZas «, correc- A method widely used in density functional theory to
tions appear at higher orders inZ/It would be useful to  giscover exact properties of functionals is the study of their
have benchmarks on hydrogenic densities because the abiligshavior under uniform scaling of the electron density).

of functionals to reproduce these benchmarks is a means @fscale factory is introduced that changes the length scale of
the density while maintaining normalization. A scaled den-
dpresently at Kean University, 1000 Morris Ave, Union, NJ 07083. sity is defined as
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TABLE I. Correlation energy coefficients of Z/expansion for select elec-
tron numberN in milliHartrees. Obtained by least squares fit to the initial
slope ofE; as a function of 1Z from data of Refs. 10 and 11.

n,(r)=y’n(y), (1)

and the behavior of functionals is studied wheiis varied
between 0 ande. We will limit our discussion to the usual

. . . . N ) E® E@
case in which the Kohn-ShafKS) wave function associ- & c c
ated withn(r) is a single Slater determinant, i.e., the KS 2 ~46.67 0.98 14
system is nondegenerate. In such systems, the exact ex- 3 -53.62 25.1 -0.6
change functional satisfigs{n,|=yE,n], as does any repu- 7 -236.9 353 -93
table approximation to it. Only inequalities and limiting 8 —306.0 446 -210
cases have been proven so far for the scaling behavior of the 9 -369.1 521 —540
correlation energy: 10 —428.2 601 -1400

1 -460.2 793 -900

En,] > yEn], 2

The energy at different coupling constants(keeping n
fixed) can also be given in terms of the scaled den&ity®

Exdn] = NEdnip . €)
The adiabatic connection provides a continuous link betweeifl\/e use superscript parentheses to denote powersZyfili

the physical and Kohn-Sham systems by varying th ave shifted these powers by 2 to coincide with the usual

strength of the interaction while keeping the density fixed.DFT notation in Eq/(4). .
The high-density limit(y—x) corresponds to a wealk 5o We must now address the difference between the quan-

Hybrid functionals are constructed by analyzing the depenEum chemical and DFT definitions of correlation eneﬁ%i.

dence on\ and replacing a portion of the approximate den-"0lowing Levy™® we can consider two distinct origins of
sity functional for exchange with exact exchar?g?e. this cﬁfference. For a given density, i_n thg absence of degeq—
Scaling to the high-density limit is particularly simple in €raCies, the Kohn—Sham wave function is the Slater determi-

DFT, and a perturbation theory has been developed to tal%ant that minimizes the kinetic energy operator for a given

advantage of it. For the nondegenerate case JLSESJ}OWS ensity. The HF wave function, however, minimizes both
' ’ kinetic and electron-electron repulsion energies, but its orbit-

als do not arise from a single multiplicative potential, in
general. This difference vanishes fd=2 (we consider only
spin saturated systembut, by construction, the HF energy
is more negative than the DFT exchange energy for a given
- ) density of otheN. This difference has been found to be very
tion theory for these functionals. o small numerically?® A second difference occurs because, in
It would be natural to equatg above withZ in largeZ  he quantum-mechanical definition, the HF energy is evalu-

atoms, as both quantities perform the same under dimenyeq on the self-consistent HF density, which differs from the
sional analysis and many functions tend to the same value ag.; ¢ density. This is a difference for &ll includingN=2.
eitherZ or y— . But a crucial difference is that in coordi- The bulk of the data useful for our study are those of
nate scaling, the density does not change shape, whife asp,yigson and co-workers in a series of extremely careful
—, it does. We show below that this difference is irrelevantgy dies of the total energies of atoms and ions of varius

at zeroth order, but requires careful treatment for all order§ese include accurate HFE calculations yieIdE&C. Only

beyond that. in the special case di=2 do we also have accurate data for
the DFT correlation energy, and also for the densities and
exchange-correlation potentials as a functiorzof

Table | lists the coefficients of the high-quantum-

We consider the behavior of ions of fixed electron num-chemical correlation energy expansion for various atoms.
ber N as Z—. Results for these systems are well These were determined by a quadratic least squares fit of the
knownt®*?%in wave function theory for many values @f initial slope of correlation energy as a function of inverse
Many quantities can be expanded as a function & ace  nuclear charge dafd:* For series wittN>7, points furthest
their largeZ behavior is understood. We consider only thosefrom the origin were selectively removed and a least squares
atoms that do not exhibit degeneracies in Zivec limit. For  fit performed with each omission. This procedure was re-
all others, Linderberg and Shull show that in the high- peated until the values of the coefficients had converged,
limit, the energies of these atoms become degenerate and thesulting in the inclusion of only points correspondingZo
correlation energy does not approach a consfant. =17 in the final fit. The maximum absolute difference be-

Begin with the correlation energy. For an atom whosetween our quadratic fit, with the coefficients given in Table I,
outermost electron is in a nondegenerate orbital, the&nd any single point is 0.04 mH.
quantum-chemical correlation energy, defined as the differ- The leading ternE(Cz)[n] is an extrapolation to Z=0
ence between an exact nonrelativistic quantum mechanicand is the most accurate term given in the table. The accu-

y>1.

(3) (4)
C

E
EXD) e+ =+ B

Zz e Zg)w.

(5)

£dn,]= B2 + S )+ SESm - (@
Y 'a

where eacrE[cp][n] is a scale-independentunctional, i.e.,
EPP[n,]=E[n]. Gorling and Lev§* developed a perturba-

lll. LARGE-Z ATOMS

ground-state energy and a Hartree—F@dk) energy, tends
to a finite limit asZ— 0. Thus we may write

racy of our predicted coefficients decreases with order, with
a large uncertainty for the second-order correction term,
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FIG. 3. Same as Fig. 2, but for the lithium isoelectronic series.

FIG. 1. Second-order correction to the densig®(r), for 2-electron ions.

The solid line is the exact curve extracted from Umrigar’s dRfs. 13 and . . . .

14). The dashed line is the self-consistent exact exchange-only f&efit ~ and neon 'Soe_l_ECtrOWC densmes_. The corrections to the hy-

12). drogenic densities get comparatively larger as the number of
electrons increases.

Lastly, we extract the larg&-limit expansion of the cor-

E¥n]. The numbers agree with data reviousl| ; )
c L] 9 P yrelatlon potential:

published®?***except for the sodium series, whose value

was incorrectly reported in Ref. 31. 5 "
We also calculated the expansion coefficients for the @ ve (Zr) ve(Zr)

. . vnl(Z;r) =v(Zr) + + >+

DFT correlation energy of the two-electron serféyve find Z z

identical results for the first two contributions, bEf)[n] 7)

=1.4 instead of 1.7. Thus the difference between the HF and

exact densities is measurable here. We have no data to es’lt—'i'gure 5 shows the largédimit expansion coefficients of the

mate this d|ffgrence for the other senes.. correlation potential for the helium isoelectronic series.
The density can also be expanded in powers & 1/

n(Z;r) = Z2%{ny(zr) + AnD(Zr)/Z + An®(Zr) 122 + -},
(6) IV. RELATION BETWEEN DIFFERENT LIMITS

Z— 00,

the leading term being the density of a hydrogenic atom with  |n this section, we carefully derive the relationships be-
N electrons. The quantities,(r), AnY(r), andAn®(r) are  tween the larg expansion and the high-density limit of
all independent of and finite. density functional theory. These relationships are derived for
We calculated these using Engel's numerical atomighe DFT correlation energy, kinetic-correlation energy, and
codé® that calculates energies and other quantities for atomgotentials, and we extract numbers for the two-electron ion
using density functional methods. For our calculation of theseries from Umrigar’s data. Applications of these relations to
densities, we use exact exchange only. This yields the hydrquuantum chemical data fo¥>2 must also account for the
genic density and the first correction tethm™(r) exactly, difference in definitions of correlation energy, especially be-
and gives a very accurate second-order correction term igond first order. In addition to the expansion of the energy
comparison to Umrigar's data fdi=2 (see Fig. 1 Figures and density, we also need the expansion of the correlation
2—4 show the expansion coefficients for the helium, lithium,potential, v [n(Z;r)]. From the definition of the functional
derivative, one can show

L n(o)(r) — 5
AnMr) e 0y —
o ocl Ay === A1) /10 - |
g 06 An®r) /10%- -~
5
© . i
& F) TN E
= /o TN =}
5 0 . B IOt 2 i
s . P N*
L S¥eeoa- - - ~ -
- B IAtarae =
- 4 ~
0.6 Lt 1 1 1 1 1 =
2 4 6 J
r
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FIG. 2. Coefficients of density expansion inZLfor the helium isoelectronic 0 5 10 15 20
’

series: the leading terrtthe hydrogenic density for two electronésolid

line), the coefficient of the leading correctigshort dashes and the coef-
ficient of the second-order correctigiong dashes FIG. 4. Same as Fig. 2, but for the neon isoelectronic series.
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V&) —
0.02 o o[nl(r) = vy ](r) + f o’ An V() f Ny (r,r ).
0 N (14)
- a Thus the leading term in the correlation potentialas o is
% —0.02 . exactly the high-density limit of the correlation potential of
g J the hydrogenic density, but this is not true for the first cor-
—0.04 rection.
We are ready to deduce formulas for the coefficients of
. the 1/Z expansion in Eq(5). As previously showr?
_0.0 1 1 1 1 1
6 .
0 2 , 4 E@= lim E[Z%ny(Zr) + -] = EZng]. (15)

FIG. 5. Expansion coefficients for Umrigar’s correlation potential for the —, . . . . _— .
helium isoelectronic series: the leading tevtﬁff ) (solid line), the coeffi- This shows that, in the hlgh denSIty limit, the correlation

cient of the first-order correction temf)(r) (short dashesthe coefficient ~ €NErgy approaches the GL second-order correlation energy

of the second-order correction tewf!’(r) (long dashes coefficient, evaluated on the hydrogenic density for a given
number of electrons. Similarly,
SE[n, E® = lim Z[EL(2) - E?]. 16
vdn ]<£) = ®) o T ARG TR 1o
on(r)
Expandingn(Z;r) aroundny(r), the hydrogenic density,
Thus, in the high-density limit, from Ed4), substituting, and taking the limit, we obtain
[2] (3]
Uc[ny](i) J%cdnl 1oEn] EQ = E¥n,] + f dPr Ao, (). (17)
on(r) vy on(r)

2] 1 (g Thus the next terms in the two expansiatifier, due to the
=v[n](r) + —vn](r) + ---. (90 change in shape of the density. Continuing to the next order,
I we find several corrections

Applying this expansion to the largelimit and substituting
Eq. (6), we obtain EY = El¥ny] +f dPrAn®(r)o®n,](r)
r 1 (1) r
ve| Zi7 ) =ve nH(r)+zAn (r)+ - 2 Jd3rAn(2 (r)ol2ny](r)
y=Z
=vZn](n) + 3 v[S][n](r)+ (10) +% J d® f ' An V() AN ()2 ](r 1),
SinceAnD(r)/Z is a small perturbation ony(r), and (18)

To second order the correlation energy is a sum of GL cor-
o@n+ An](r) = oP[n](r) + f a3 f2n](r ,r)AN(r), rglation energy coefficient; evalluat.ed on the hydro.genic den-
sity and integrals over their derivatives and corrections to the
(1) hydrogenic density. In density functional terms, changes in
E. due to changes in nuclear charge are accompanied by
wheref[z][n](r r') is the second functlonal derivative of the changes in the electronic density.
leading term in the GL expanS|oE 2], then to first order Next we discuss how further information can be ex-
in1/Z, tracted from highly accurate quantum calculations on atoms
for large Z, if another key quantityT., is available. This
. 2] 1) 3 quantity is not usually calculated by standard codes. In fact,
vdN(Z;N] 7 Z) T le [n](r) + ve [M](r) T, can be extremely demanding to calculate, as it involves a
small difference between two large numbers. In particular,
3.1 A n(D(p ) £2] / one needs the noninteracting kinetic energy of the Kohn-
+j AN OTInG T )} o Sham orbitals corresponding to the exact density. The kinetic
(12) energy of a Hartree—Fock calculation will yield a good ap-
proximation, but not good enough for reliable values Tor

We deduce Fortunately, Umrigar has calculatdd for the two-electron
series for many values @f.
[nH](r) v[z][nH](r) (13) We can write expressions for the high-density limit ex-
pansion ofT, similar to those ofE_ in Sec. lll and IV. Thus
and T n] may be expanded in the high-density limit in terms of
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TABLE II. Coefficients of expansion of . and E; for 2-electron ions, cal-
culated using Eq(15), (17), and(21)—(24).

TABLE lIl. Exact (Refs. 10 and 1)1 our expansion-constructed extrapola-
tion [determined by substituting coefficients from Table | &wN in Eq.
(5)], and the Morrison and Zha@Ref. 34 correlation energies of neutral

Quantity Value(mH) atoms in milliHartrees.
T 46.7 Extrapolation MZ percentage
T(Cs) -21.5 N  Exact Extrapolation percentage error  MZ error
™ 2.7
¢ 2 -42.04 -42.05 <1 -42.02 <1
EY 10.0 3 -4533  -4532 <1 -45.17 <1
JadfrAn®pl?(r) -1.8 7 -188.31 -188.4 <1 -180.5 -4
E -46.7 8 -257.94  -253.6 -2 -244.3 -5
EY 11.5+0.5 9 -32453  -317.8 -2 -307.1 -5
10 -390.47  -382.3 -2 -378.9 -3
11 -395.64  -395.5 <1 -381.1 -4
scale-independent functiona'r%p][n], as in Eq.(4); or T«(2)
can be expanded arou#d-  in terms ofT(Cp), as in Eq.(5).
If we define its potential by —fd3rn(r)r - Voudr) =EJ[n]+TJn]. (25)
_ oT{n] R . . .
vy [n](r) = an(r) (19)  This virial may also be expanded in Zto give a leading
term
and expand it around — <0, we find analogs of Eq915),
(17), and(18) relating the two expansions fdr. —fd3rnH(r)r - VolZn ) =0 (26)
However, the kinetic correlation and correlation energies
are related by scalintf: and a first-order correction
dEJn
YA e 14 Tn,). 20 - f Fr{ng)r - Vold(0) +AnY(0)r - Vo)
Y
. . 4 . =E®+TO (27)
As determined by Goérling and Lewy, expanding Eq(20) c c -

aroundy—oco we find that the high-density limit of the ki-

This first-order virial correction may be written in terms of

netic contribution is simply GL coefficients:

P = - (p - 1)ELP! =
TP =-(p-DEP], p=2,34,..., (21) der{nH(r)r Vol + An®()r - Vol
and that
=], 28
olPinlr) = - (p- DolPn](r). (22

Differentiating Eq.(25), the kinetic correlation may also be
expressed in terms of a virial of total correlation potentials
and derivatives:

vr [n](r) ==vdnl(r) =r - Vodn](r)

Particularly useful is the fact that®[n]=-v!?[n], so that
Cc
the potential corrections 8>+ T% cancel, yielding

ED + 13 = ¥+ 7138 = - El¥[n, ], (23)

that is, expansion ofE.+T. in powers of 1Z yields —JdSr’n(r’)r’ - VAdn](r,r’). (29
EE3][nH] directly. Similarly all integrals with potentials of

order 2 in the next order term cancel, yielding
V. NEUTRAL ATOMS

@ 4 7@ = _ o4 _ | B AnD(r )3
B+ T =-2& fd rAn(rog [nul(r), (24) In this section, we use insight gained from the exact

largeZ limit to deduce approximate results fd=N, thereby
a less useful result. demonstrating that such studies have practical as well as
The high-density limit expansion was first tested on themethodological implications.
helium isoelectronic series for which Umrigar and Correlation energies for a few atoms are listed in Table
co-workerd®**3*have calculated exact values for the densitylll. The correlation energy is consistently underestimated by
and potential as well aE, and T.. The components neces- the Morrison and Zha$ (MZ) estimate, which are deter-
sary to evaluatée,(Z)+T.(Z) were extracted. Table Il lists mined from configuration interaction calculated reference
the coefficients off, and E. expansion in 1Z and the cor- densities using Slater-type orbital basis $et5:*°The Mz
responding Gorling—Levy coefficients for two electrons. estimate is good for small electron number, but its error con-
Note that in this limit theT(Cz) and E(Cz)zE[cz] terms cancel as sistently increases with electron number. This indicates the
expected. difficulty in calculating correlation energies rather than cor-
One can also write a virial expression fag n]+TJn]: relation energy differences. Our expansion-constructed cor-
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TABLE V. T[n]in milliHartrees, whereN is the number of electrons, found
—0.385 . by subtracting Table 1l from Table IV.
I~ 3
_0.395 . N Exactf Extrapolation (4 PBE LYP
I T 2 36.6 36 37 38 34
i —0.405 - . 3 36 38 a7 39
- B 7 138 151 161 129
-0415 B 8 199 194 206 184
_ 9 265 237 257 236
_0.425 Eclny] o 10 328.0 332 299 307 286
. . —0424+0.050%x — 11 304 311 329 307
0 0.2 0.4 0.6 0.8 1

“References 13 and 14.

1
n PReference 34.

FIG. 6. Correlation energy of the ten-electron series witbstimated from
Z. The line represents the initial slope and is assumed to be the slope at

=1 when estimatinge[n]+Tn]. a Hartree—Fock calculation, by virtue of the virial theorém,

THF=—EHF=T_ where T"F and E"F are the Hartree—Fock

relation energy is an extrapolation from the high-densitykinetic and total electronic energies. Thus knowledge of

limit to the physical(Z=N) limit. We take the correlation E (Z). for fixedN, as reported by Davidscet al. allows us
energy coefficients determined in Table | and substiite [© €stimatey(Z) for a given neutral, and E420) then yields
=N into Eq. (5). The errors in the extrapolated correlation 'c- Figure 6 showsE[n,] estimated in this way fONé)lO-
energies for neutral atoms are smaller than those due to badite that, for example, thg— o value differs fromE_" as
sets in the MZ estimate, indicating that the series convergeliS curve approximateS n, | for the neutral atom density.
rapidly. Las_tly, in the spirit of Table Ill, we use the slope @s»® to

As mentioned in the preceding section, accurate calculagStimateEc+T. from Eq. (20). Clearly, aty=1, the density
tion of T, is very demanding, and only limited results are change_s are too great to be accurately estimated by our crude
available in the literature. In particular, Morrison and Zhao@PProximation. _ _
used a clever algorithm to construct the exact Kohn—-Sham There is interesting structure in tlig+T. data. In par-

potential and orbitals for the densities discussed aB6ve. ficular, extrapolation values in Table IV show a jump in the
This produced a list oT, for neutral atoms up to argon. magnitude of the correlation energy sum when an electron is

If we ignore changes in shape of the density, we carPlaced in a new s'hgll in going from He to Li and from Ne to
approximateE[n,] by E(Z), equating changes witli with Na. In contrast, filling thep orbitals does not appear to be
changes withy. That is, the change in shape of the densityc0Stly. While there is an increase in order of magnitude of
caused only a 15% error in the correlation energy first-ordeforrelation, the energy levels off as this subshell is being
correction terme®. This method was used by Frydel, Te- filled. Tr_ends in the !\/I_Z data are different; there are no
rilla, and Burke® but a correction using the potential was Marked increases in filling a new shell or subshell.

used there, making it extremely accurate. The correction is  'aPlé V was constructed by subtractifg from Table
not accessible here, requiring as it does the correlation pdY: @nd shows that extrapolation from the high-density limit
tential. yields the best estimates ®f.

We must still devise a method for choosing the “best”  Table VI shows the performance of the PBE and Lee-
relation betweerZ andy. We know that under exact scaling Yang—Parr(LYP) correlation functionals in the high-density

limit. PW91 and LDA do not behave correctly in this limit
_Edn] _ [T42) and have been excluded from our study. LYP correlation has
e V1@
WhereTS(Z*) is the KS kinetic energy aZ + N. We can ap- TABLE VI. Correl'ation energy c'oeffi_ci.ents of Z/expgnsion for select
exchange-correlation functionals in milliHartrees, whieres the number of

proximate the latter relatlonShlp with ease for atomic ions. Inelectrons. Exact number obtained by fitting data in the literatRefs. 10

(30

and 11
TABLE IV. EJ[n]+T[n] in millihenry, whereN is the number of electrons. :
Extrapolation obtained using E¢RO). N Method E(CZ> E(c3) E(C4)
N Exacf Extrapolation M2 PBE LYP 2 LYP -55.1 1076 -90276
PBE -48.4 5.1 15
2 -5 -7 -5 —4.3 -9.9 Exact -46.7 10.0 -1.4
3 -9.0 -7 -4.6 -14.8
7 -50 -30 -22 -64 3 LYP -99 221 -383
8 -55 -50 -34 -81 PBE -59 2.4 58
9 -53 =70 -40 -90 Exact -54 25 1
10 -65.0 =50 -80 -45 -98
1 —92 -70 _aa ~102 10 LYP -524 2733 -77818
PBE -459 623 4424
*References 13 and 14. Exact -428 601 —~1423

PReference 34.
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greater structure as a function ofZ,/and so its coefficients
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