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Exact relations are derived between scaling to the high-density limit of density functional theory and
taking Z to infinity for nondegenerate atoms. Görling–Levy perturbation results are deduced for
hydrogenic densities. The kinetic contribution to the correlation energy is also studied, and estimates
given for its value for neutral atoms. Popular approximate functionals are tested against these
benchmarks. ©2005 American Institute of Physics. fDOI: 10.1063/1.1872832g

I. INTRODUCTION

The validity of density functional theorysDFTd and the
range of problems to which it may be applied are well
established.1 However, the usefulness of predicted quantities
is limited by the accuracy and reliability of density func-
tional approximations to the exchange-correlation energy;2

hence the constant need for more accurate functionals. Al-
though many exact constraints have already been determined
and incorporated into the construction of functionals,3 there
is great interest in additional conditions that functionals
should satisfy. Testing in extreme limits allows us to explore
the limitations of functional approximations.

Scaling of the electronic density is often used to test
functional behavior. Under uniform coordinate scaling, a
density is either squeezed into a smaller region or spread out
over a larger region, but retains its shape. Exact behavior
under scaling is known for all components of the energy
except the correlation energy, for which an inequality has
been derived.4 Most approximate functionals are developed
to satisfy these scaling relations. Scaling is simply related to
the adiabatic connection5,6 which is the basis for constructing
hybrid functionals and understanding their success.7–9

There are quantum chemistry benchmarks for correlation
energies of various isoelectronic series,10,11 i.e., sets of ions
with the same numbers of electrons. Analogous benchmarks
do not exist for DFT despite their potential usefulness. In this
paper we consider the behavior of the correlation energy in
the high-density limit when the nuclear chargeZ becomes
infinitely large. In many ways, the effect is similar to that of
scaling in DFT.

One important difference between coordinate scaling
and scaling by increasing the nuclear charge of ions is the
change in the shape of the density withZ. These changes
must be accounted for, and produce small but significant cor-
rection terms to the usual scaling expansion coefficients
when relating them to the coefficients of scaling inZ. Al-
though the densities become hydrogenic asZ→`, correc-
tions appear at higher orders in 1/Z. It would be useful to
have benchmarks on hydrogenic densities because the ability
of functionals to reproduce these benchmarks is a means of

testing their accuracy in the high-density limit. There is a
beautiful simplification of the expression of the high-Z cor-
relation coefficients in terms of the Görling–LevysGLd co-
efficients when the sum of kinetic and total correlation ener-
gies is considered. This makes the method more easily
applicable for testing and is a simple and fairly accurate
method for extractingTcfng, the kinetic contribution to the
correlation energy.Tcfng is defined as the difference between
the kinetic energy of the physical systemTfng and that of the
Kohn–Sham systemTsfng.

Herein we determine, to second order in 1/Z, the expan-
sion coefficients of the correlation energy for nondegenerate
ions, of the density forN=2-, 3-, and 10-electron ions, and of
the correlation potential forN=2-electron ions. The correla-
tion energy coefficients were determined by a least squares
fit to correlation energy data reported in the literature.10,11

The density coefficients were obtained from exact exchange
calculations using Engel’s atomic DFT code.12 Finally, the
correlation potential coefficients were extracted from Umri-
gar and Gonze’s Quantum Monte CarlosQMCd calculations
for 2-electron ions.13,14

For nondegenerate systems, the correlation energy scales
to a constant.15 Not all approximate correlation functionals
scale correctly to the high-density limit. The local density
approximation16 sLDA d violates this condition. The long-
range nature of the Coulomb interaction in an infinite system
sthe uniform electron gasd leads to a logarithmic
divergence.17,18 The parameterization of the Perdew–Wang
1991sPW91d functional19 fails to capture the correct behav-
ior, but the Perdew–Burke–ErnzerhofsPBEd correlation
functional was designed to correct this.18 The PBE functional
yields good results for the correlation energy of these large-
Z atoms.

II. SCALING IN DENSITY FUNCTIONAL THEORY

A method widely used in density functional theory to
discover exact properties of functionals is the study of their
behavior under uniform scaling of the electron densitynsr d.
A scale factorg is introduced that changes the length scale of
the density while maintaining normalization. A scaled den-
sity is defined asadPresently at Kean University, 1000 Morris Ave, Union, NJ 07083.
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ngsr d = g3nsgr d, s1d

and the behavior of functionals is studied wheng is varied
between 0 and̀ . We will limit our discussion to the usual
case in which the Kohn–ShamsKSd wave function associ-
ated with nsr d is a single Slater determinant, i.e., the KS
system is nondegenerate. In such systems, the exact ex-
change functional satisfiesExfngg=gExfng, as does any repu-
table approximation to it. Only inequalities and limiting
cases have been proven so far for the scaling behavior of the
correlation energy:

Ecfngg . gEcfng, g . 1. s2d

The energy at different coupling constantsl skeeping n
fixedd can also be given in terms of the scaled density:20–23

Exc
l fng = l2Excfn1/lg. s3d

The adiabatic connection provides a continuous link between
the physical and Kohn–Sham systems by varying the
strength of the interaction while keeping the density fixed.
The high-density limitsg→`d corresponds to a weakl.5,6

Hybrid functionals are constructed by analyzing the depen-
dence onl and replacing a portion of the approximate den-
sity functional for exchange with exact exchange.8,9

Scaling to the high-density limit is particularly simple in
DFT, and a perturbation theory has been developed to take
advantage of it. For the nondegenerate case, Levy15 shows

Ecfngg = Ec
f2gfng +

1

g
Ec

f3gfng +
1

g2Ec
f4gfng + ¯ , s4d

where eachEc
fpgfng is a scale-independentfunctional, i.e.,

Ec
fpgfngg=Ec

fpgfng. Görling and Levy24 developed a perturba-
tion theory for these functionals.

It would be natural to equateg above withZ in large-Z
atoms, as both quantities perform the same under dimen-
sional analysis and many functions tend to the same value as
eitherZ or g→`. But a crucial difference is that in coordi-
nate scaling, the density does not change shape, while asZ
→`, it does. We show below that this difference is irrelevant
at zeroth order, but requires careful treatment for all orders
beyond that.

III. LARGE-Z ATOMS

We consider the behavior of ions of fixed electron num-
ber N as Z→`. Results for these systems are well
known10,11,25in wave function theory for many values ofZ.
Many quantities can be expanded as a function of 1/Z once
their large-Z behavior is understood. We consider only those
atoms that do not exhibit degeneracies in theZ=` limit. For
all others, Linderberg and Shull show that in the high-Z
limit, the energies of these atoms become degenerate and the
correlation energy does not approach a constant.26

Begin with the correlation energy. For an atom whose
outermost electron is in a nondegenerate orbital, the
quantum-chemical correlation energy, defined as the differ-
ence between an exact nonrelativistic quantum mechanical
ground-state energy and a Hartree–FocksHFd energy, tends
to a finite limit asZ→`. Thus we may write

Ec
QCsZd = Ec

s2d +
Ec

s3d

Z
+

Ec
s4d

Z2 + ¯ , Z → `. s5d

We use superscript parentheses to denote powers of 1/Z, but
have shifted these powers by 2 to coincide with the usual
DFT notation in Eq.s4d.

We must now address the difference between the quan-
tum chemical and DFT definitions of correlation energy.15,27

Following Levy,15 we can consider two distinct origins of
this difference. For a given density, in the absence of degen-
eracies, the Kohn–Sham wave function is the Slater determi-
nant that minimizes the kinetic energy operator for a given
density. The HF wave function, however, minimizes both
kinetic and electron-electron repulsion energies, but its orbit-
als do not arise from a single multiplicative potential, in
general. This difference vanishes forN=2 swe consider only
spin saturated systemsd but, by construction, the HF energy
is more negative than the DFT exchange energy for a given
density of otherN. This difference has been found to be very
small numerically.28 A second difference occurs because, in
the quantum-mechanical definition, the HF energy is evalu-
ated on the self-consistent HF density, which differs from the
exact density. This is a difference for allN, includingN=2.

The bulk of the data useful for our study are those of
Davidson and co-workers in a series of extremely careful
studies of the total energies of atoms and ions of variousZ.
These include accurate HF calculations, yieldingEc

QC. Only
in the special case ofN=2 do we also have accurate data for
the DFT correlation energy, and also for the densities and
exchange-correlation potentials as a function ofZ.

Table I lists the coefficients of the high-Z quantum-
chemical correlation energy expansion for various atoms.
These were determined by a quadratic least squares fit of the
initial slope of correlation energy as a function of inverse
nuclear charge data.10,11For series withN.7, points furthest
from the origin were selectively removed and a least squares
fit performed with each omission. This procedure was re-
peated until the values of the coefficients had converged,
resulting in the inclusion of only points corresponding toZ
ù17 in the final fit. The maximum absolute difference be-
tween our quadratic fit, with the coefficients given in Table I,
and any single point is 0.04 mH.

The leading termEc
s2dfng is an extrapolation to 1/Z=0

and is the most accurate term given in the table. The accu-
racy of our predicted coefficients decreases with order, with
a large uncertainty for the second-order correction term,

TABLE I. Correlation energy coefficients of 1/Z expansion for select elec-
tron numberN in milliHartrees. Obtained by least squares fit to the initial
slope ofEc as a function of 1/Z from data of Refs. 10 and 11.

N Ec
s2d Ec

s3d Ec
s4d

2 −46.67 9.98 −1.4
3 −53.62 25.1 −0.6
7 −236.9 353 −93
8 −306.0 446 −210
9 −369.1 521 −540

10 −428.2 601 −1400
11 −460.2 793 −900
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Ec
s4dfng. The numbers agree with data previously

published,25,29–31except for the sodium series, whose value
was incorrectly reported in Ref. 31.

We also calculated the expansion coefficients for the
DFT correlation energy of the two-electron series.14 We find
identical results for the first two contributions, butEc

s4dfng
=1.4 instead of 1.7. Thus the difference between the HF and
exact densities is measurable here. We have no data to esti-
mate this difference for the other series.

The density can also be expanded in powers of 1/Z:

nsZ;r d = Z3hnHsZr d + Dns1dsZr d/Z + Dns2dsZr d/Z2 + ¯ j,

s6d

the leading term being the density of a hydrogenic atom with
N electrons. The quantitiesnHsr d, Dns1dsr d, andDns2dsr d are
all independent ofZ and finite.

We calculated these using Engel’s numerical atomic
code25 that calculates energies and other quantities for atoms
using density functional methods. For our calculation of the
densities, we use exact exchange only. This yields the hydro-
genic density and the first correction termDns1dsr d exactly,
and gives a very accurate second-order correction term in
comparison to Umrigar’s data forN=2 ssee Fig. 1d. Figures
2–4 show the expansion coefficients for the helium, lithium,

and neon isoelectronic densities. The corrections to the hy-
drogenic densities get comparatively larger as the number of
electrons increases.

Lastly, we extract the large-Z limit expansion of the cor-
relation potential:

vcfngsZ;r d = vc
s2dsZr d +

vc
s3dsZr d

Z
+

vc
s4dsZr d

Z2 + ¯ , Z → `.

s7d

Figure 5 shows the large-Z limit expansion coefficients of the
correlation potential for the helium isoelectronic series.

IV. RELATION BETWEEN DIFFERENT LIMITS

In this section, we carefully derive the relationships be-
tween the large-Z expansion and the high-density limit of
density functional theory. These relationships are derived for
the DFT correlation energy, kinetic-correlation energy, and
potentials, and we extract numbers for the two-electron ion
series from Umrigar’s data. Applications of these relations to
quantum chemical data forN.2 must also account for the
difference in definitions of correlation energy, especially be-
yond first order. In addition to the expansion of the energy
and density, we also need the expansion of the correlation
potential,vcfnsZ; r dg. From the definition of the functional
derivative, one can show

FIG. 1. Second-order correction to the density,Dns2dsr d, for 2-electron ions.
The solid line is the exact curve extracted from Umrigar’s datasRefs. 13 and
14d. The dashed line is the self-consistent exact exchange-only resultsRef.
12d.

FIG. 2. Coefficients of density expansion in 1/Z for the helium isoelectronic
series: the leading termsthe hydrogenic density for two electronsd ssolid
lined, the coefficient of the leading correctionsshort dashesd, and the coef-
ficient of the second-order correctionslong dashesd.

FIG. 3. Same as Fig. 2, but for the lithium isoelectronic series.

FIG. 4. Same as Fig. 2, but for the neon isoelectronic series.
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vcfnggS r

g
D =

dEcfngg
dnsr d

. s8d

Thus, in the high-density limit, from Eq.s4d,

vcfnggS r

g
D =

dEc
f2gfng

dnsr d
+

1

g

dEc
f3gfng

dnsr d
+ ¯

= vc
f2gfngsr d +

1

g
vc

f3gfngsr d + ¯ . s9d

Applying this expansion to the large-Z limit and substituting
Eq. s6d, we obtain

vcSZ;
r

Z
D = vcFSnHsr d +

1

Z
Dns1dsr d + ¯ D

g=Z
GS r

Z
D

= vc
f2gfngsr d +

1

Z
vc

f3gfngsr d + ¯ . s10d

SinceDns1dsr d /Z is a small perturbation onnHsr d, and

vc
f2gfn + Dngsr d = vc

f2gfngsr d +E d3r8fc
f2gfngsr ,r 8dDnsr 8d,

s11d

wherefc
f2gfngsr ,r 8d is the second functional derivative of the

leading term in the GL expansion,Ec
f2gfng, then to first order

in 1/Z,

vcfnsZ;r dgS r

Z
D = vc

f2gfnHgsr d +
1

Z
Hvc

f3gfnHgsr d

+E d3r8Dns1dsr dfc
f2gfnHgsr ,r 8dJ + ¯ .

s12d

We deduce

vc
s2dfnHgsr d = vc

f2gfnHgsr d s13d

and

vc
s3dfnHgsr d = vc

f3gfnHgsr d +E d3r8Dns1dsr dfc
f2gfnHgsr ,r 8d.

s14d

Thus the leading term in the correlation potential asZ→` is
exactly the high-density limit of the correlation potential of
the hydrogenic density, but this is not true for the first cor-
rection.

We are ready to deduce formulas for the coefficients of
the 1/Z expansion in Eq.s5d. As previously shown,30

Ec
s2d = lim

Z→`
EcfZ3nHsZr d + ¯ g = Ec

f2gfnHg. s15d

This shows that, in the high-density limit, the correlation
energy approaches the GL second-order correlation energy
coefficient, evaluated on the hydrogenic density for a given
number of electrons. Similarly,

Ec
s3d = lim

Z→`
ZfEcsZd − Ec

s2dg. s16d

ExpandingnsZ; r d around nH,Zsr d, the hydrogenic density,
substituting, and taking the limit, we obtain

Ec
s3d = Ec

f3gfnHg +E d3rDns1dsr dvc
f2gfnHgsr d. s17d

Thus the next terms in the two expansionsdiffer, due to the
change in shape of the density. Continuing to the next order,
we find several corrections

Ec
s4d = Ec

f4gfnHg +E d3rDns1dsr dvc
f3gfnHgsr d

+E d3rDns2dsr dvc
f2gfnHgsr d

+
1

2
E d3r E d3r8Dns1dsr dDns1dsr 8dfc

f2gfnHgsr ,r 8d.

s18d

To second order the correlation energy is a sum of GL cor-
relation energy coefficients evaluated on the hydrogenic den-
sity and integrals over their derivatives and corrections to the
hydrogenic density. In density functional terms, changes in
Ec due to changes in nuclear charge are accompanied by
changes in the electronic density.

Next we discuss how further information can be ex-
tracted from highly accurate quantum calculations on atoms
for large Z, if another key quantity,Tc, is available. This
quantity is not usually calculated by standard codes. In fact,
Tc can be extremely demanding to calculate, as it involves a
small difference between two large numbers. In particular,
one needs the noninteracting kinetic energy of the Kohn–
Sham orbitals corresponding to the exact density. The kinetic
energy of a Hartree–Fock calculation will yield a good ap-
proximation, but not good enough for reliable values forTc.
Fortunately, Umrigar has calculatedTc for the two-electron
series for many values ofZ.

We can write expressions for the high-density limit ex-
pansion ofTc similar to those ofEc in Sec. III and IV. Thus
Tcfng may be expanded in the high-density limit in terms of

FIG. 5. Expansion coefficients for Umrigar’s correlation potential for the
helium isoelectronic series: the leading termvc

s2dsr d ssolid lined, the coeffi-
cient of the first-order correction termvc

s3dsr d sshort dashesd, the coefficient
of the second-order correction termvc

s4dsr d slong dashesd.
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scale-independent functionalsTc
fpgfng, as in Eq.s4d; or TcsZd

can be expanded aroundZ→` in terms ofTc
spd, as in Eq.s5d.

If we define its potential by

vTc
fngsr d =

dTcfng
dnsr d

s19d

and expand it aroundZ→`, we find analogs of Eqs.s15d,
s17d, ands18d relating the two expansions forTc.

However, the kinetic correlation and correlation energies
are related by scaling:32

g
dEcfngg

dg
= Ecfngg + Tcfngg. s20d

As determined by Görling and Levy,24 expanding Eq.s20d
aroundg→` we find that the high-density limit of the ki-
netic contribution is simply

Tc
fpgfng = − sp − 1dEc

fpgfng, p = 2,3,4, . . . , s21d

and that

vTc

fpgfngsr d = − sp − 1dvc
fpgfngsr d. s22d

Particularly useful is the fact thatvTc

f2gfng=−vc
f2gfng, so that

the potential corrections toEc
s3d+Tc

s3d cancel, yielding

Ec
s3d + Tc

s3d = Ec
f3g + Tc

f3g = − Ec
f3gfnHg, s23d

that is, expansion ofEc+Tc in powers of 1/Z yields
Ec

f3gfnHg directly. Similarly all integrals with potentials of
order 2 in the next order term cancel, yielding

Ec
s4d + Tc

s4d = − 2Ec
f4g −E d3rDns1dsr dvc

f3gfnHgsr d, s24d

a less useful result.
The high-density limit expansion was first tested on the

helium isoelectronic series for which Umrigar and
co-workers13,14,33have calculated exact values for the density
and potential as well asEc and Tc. The components neces-
sary to evaluateEcsZd+TcsZd were extracted. Table II lists
the coefficients ofTc andEc expansion in 1/Z and the cor-
responding Görling–Levy coefficients for two electrons.
Note that in this limit theTc

s2d andEc
s2d=Ec

f2g terms cancel as
expected.

One can also write a virial expression forEcfng+Tcfng:

−E d3rnsr dr · = vcsr d = Ecfng + Tcfng. s25d

This virial may also be expanded in 1/Z to give a leading
term

−E d3rnHsr dr · = vc
f2gfnHgsr d = 0 s26d

and a first-order correction

−E d3rhnHsr dr · = vc
s3dsr d + Dns1dsr dr · = vc

s2dsr dj

= Ec
s3d + Tc

s3d. s27d

This first-order virial correction may be written in terms of
GL coefficients:

E d3rhnHsr dr · = vc
f3gsr d + Dns1dsr dr · ¹ vc

f2gsr dj

= Ec
f3gfnHg. s28d

Differentiating Eq.s25d, the kinetic correlation may also be
expressed in terms of a virial of total correlation potentials
and derivatives:

vTc
fngsr d = − vcfngsr d − r · = vcfngsr d

−E d3r8nsr 8dr 8 · = fcfngsr ,r 8d. s29d

V. NEUTRAL ATOMS

In this section, we use insight gained from the exact
large-Z limit to deduce approximate results forZ=N, thereby
demonstrating that such studies have practical as well as
methodological implications.

Correlation energies for a few atoms are listed in Table
III. The correlation energy is consistently underestimated by
the Morrison and Zhao34 sMZd estimate, which are deter-
mined from configuration interaction calculated reference
densities using Slater-type orbital basis sets.11,35,36The MZ
estimate is good for small electron number, but its error con-
sistently increases with electron number. This indicates the
difficulty in calculating correlation energies rather than cor-
relation energy differences. Our expansion-constructed cor-

TABLE II. Coefficients of expansion ofTc andEc for 2-electron ions, cal-
culated using Eq.s15d, s17d, ands21d–s24d.

Quantity ValuesmHd

Tc
s2d 46.7

Tc
s3d −21.5

Tc
s4d 2.7

Ec
s3d 10.0

ed3rDns1dvc
f2gsr d −1.8

Ec
f2g −46.7

Ec
f3g 11.5±0.5

TABLE III. Exact sRefs. 10 and 11d, our expansion-constructed extrapola-
tion fdetermined by substituting coefficients from Table I andZ=N in Eq.
s5dg, and the Morrison and ZhaosRef. 34d correlation energies of neutral
atoms in milliHartrees.

N Exact Extrapolation
Extrapolation

percentage error MZ
MZ percentage

error

2 −42.04 −42.05 ,1 −42.02 ,1
3 −45.33 −45.32 ,1 −45.17 ,1
7 −188.31 −188.4 ,1 −180.5 −4
8 −257.94 −253.6 −2 −244.3 −5
9 −324.53 −317.8 −2 −307.1 −5

10 −390.47 −382.3 −2 −378.9 −3
11 −395.64 −395.5 ,1 −381.1 −4
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relation energy is an extrapolation from the high-density
limit to the physicalsZ=Nd limit. We take the correlation
energy coefficients determined in Table I and substituteZ
=N into Eq. s5d. The errors in the extrapolated correlation
energies for neutral atoms are smaller than those due to basis
sets in the MZ estimate, indicating that the series converges
rapidly.

As mentioned in the preceding section, accurate calcula-
tion of Tc is very demanding, and only limited results are
available in the literature. In particular, Morrison and Zhao
used a clever algorithm to construct the exact Kohn–Sham
potential and orbitals for the densities discussed above.37–39

This produced a list ofTc for neutral atoms up to argon.
If we ignore changes in shape of the density, we can

approximateEcfngg by EcsZd, equating changes withZ with
changes withg. That is, the change in shape of the density
caused only a 15% error in the correlation energy first-order
correction termEc

f3g. This method was used by Frydel, Te-
rilla, and Burke,32 but a correction using the potential was
used there, making it extremely accurate. The correction is
not accessible here, requiring as it does the correlation po-
tential.

We must still devise a method for choosing the “best”
relation betweenZ andg. We know that under exact scaling

g =
EXfngg
EXfng

=ÎTssZ*d
TssZd

, s30d

whereTssZ*d is the KS kinetic energy atZÞN. We can ap-
proximate the latter relationship with ease for atomic ions. In

a Hartree–Fock calculation, by virtue of the virial theorem,40

THF=−EHF.Ts, where THF and EHF are the Hartree–Fock
kinetic and total electronic energies. Thus knowledge of
EHFsZd, for fixed N, as reported by Davidsonet al. allows us
to estimategsZd for a given neutral, and Eq.s20d then yields
Tc. Figure 6 showsEcfngg estimated in this way forN=10.
Note that, for example, theg→` value differs fromEc

s2d as
this curve approximatesEcfngg for the neutral atom density.
Lastly, in the spirit of Table III, we use the slope asg→` to
estimateEc+Tc from Eq. s20d. Clearly, atg=1, the density
changes are too great to be accurately estimated by our crude
approximation.

There is interesting structure in theEc+Tc data. In par-
ticular, extrapolation values in Table IV show a jump in the
magnitude of the correlation energy sum when an electron is
placed in a new shell in going from He to Li and from Ne to
Na. In contrast, filling thep orbitals does not appear to be
costly. While there is an increase in order of magnitude of
correlation, the energy levels off as this subshell is being
filled. Trends in the MZ data are different; there are no
marked increases in filling a new shell or subshell.

Table V was constructed by subtractingEc from Table
IV, and shows that extrapolation from the high-density limit
yields the best estimates ofTc.

Table VI shows the performance of the PBE and Lee–
Yang–ParrsLYPd correlation functionals in the high-density
limit. PW91 and LDA do not behave correctly in this limit
and have been excluded from our study. LYP correlation has

TABLE IV. Ecfng+Tcfng in millihenry, whereN is the number of electrons.
Extrapolation obtained using Eq.s20d.

N Exacta Extrapolation MZb PBE LYP

2 −5.5 −5.7 −5 −4.3 −9.9
3 −9.0 −7 −4.6 −14.8
7 −50 −30 −22 −64
8 −55 −50 −34 −81
9 −53 −70 −40 −90

10 −65.0 −50 −80 −45 −98
11 −92 −70 −44 −102

aReferences 13 and 14.
bReference 34.

TABLE V. Tcfng in milliHartrees, whereN is the number of electrons, found
by subtracting Table III from Table IV.

N Exacta Extrapolation MZb PBE LYP

2 36.6 36 37 38 34
3 36 38 47 39
7 138 151 161 129
8 199 194 206 184
9 265 237 257 236

10 328.0 332 299 307 286
11 304 311 329 307

aReferences 13 and 14.
bReference 34.

FIG. 6. Correlation energy of the ten-electron series withg estimated from
Z. The line represents the initial slope and is assumed to be the slope atg
=1 when estimatingEcfng+Tcfng.

TABLE VI. Correlation energy coefficients of 1/Z expansion for select
exchange-correlation functionals in milliHartrees, whereN is the number of
electrons. Exact number obtained by fitting data in the literaturesRefs. 10
and 11.d

N Method Ec
s2d Ec

s3d Ec
s4d

2 LYP −55.1 1076 −90 276
PBE −48.4 5.1 15
Exact −46.7 10.0 −1.4

3 LYP −99 221 −383
PBE −59 2.4 58
Exact −54 25 1

10 LYP −524 2733 −77 818
PBE −459 623 4 424
Exact −428 601 −1 423
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greater structure as a function of 1/Z, and so its coefficients
are less reliable than the others. The PBE functional behaves
better in this limit, although there is much room for improve-
ment. More accurateEc

s2d values have already been published
for a number of ions.30,31

While this work was being written, we learned of the
work of Staroverovet al.,41 who showed that two conditions
must be satisfied for a functional to accurately reproduce the
total energy in this limit.41 The first is that the functional
must accurately predict the leading term in theZ expansion
of the exchange energy and the second is that the correlation
energy predicted by the functional must scale properly in the
high-density limit according to Eq.s2d. Their paper reports
the behavior of a number of functionals in this limit.
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