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Abstract

Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent
density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with
catastrophic failures of a toy functional applied to H+

2 at varying bond lengths, where the standard fitting procedure misses
the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be contaminated by large density errors such
as in the WATER27 and B30 datasets; and double-hybrids trained on self-consistent densities, which can perform poorly
on systems with density-driven errors. In these cases, more accurate results are found at no additional cost, by using
Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are
greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect.

For the last quarter century, fitting of empirical parameters in
approximate exchange-correlation functionals has been popular,
especially given the early successes of Becke88 exchange,1 Lee-
Yang-Parr correlation,2 and the global hybrid ideas of Becke,3
ultimately leading to the hugely successful B3LYP.4 Since then,
the number of functionals and the number of parameters has
proliferated,5,6 and often dozens of parameters are fitted to
dozens of databases, with thousands of benchmark data.
There are many pitfalls to such fitting, but we focus on

just one. This danger is unambiguous, has nothing to do
with choices of parameters or datasets, and entirely avoidable.
Almost all such fittings consist of running one or more self-
consistent DFT calculations, evaluating an energy difference,
and comparing it with a (presumably accurate) energy from
the database. (In the case of bond lengths, the difference is
an infinitesimal, determining where an energy derivative van-
ishes). The accuracy of self-consistent densities was recently
highlighted,7 and how errors in the density can be related to
errors in the energy.8–20

Background: The theory of density-corrected DFT (DC-
DFT) has been developed over the past decade.12 Whenever
a self-consistent (SC) DFT calculation is run, there are two
distinct sources of error. The total error of such calculations
is ∆E = Ẽ[ñ] −E[n], where E and n are the exact energy
functional and density, and Ẽ and ñ are their approximate
counterparts. We decompose ∆E as14,19,21:

∆E = Ẽ[ñ] − Ẽ[n]︸ ︷︷ ︸
∆ED

+ Ẽ[n] −E[n]︸ ︷︷ ︸
∆EF

. (1)

where ∆EF is the functional error, defined as the error that
would be found if the exact density were used, while ∆ED is
the (usually much smaller) contribution to the energy error
due to the error in the self-consistent density.

∗esim@yonsei.ac.kr

So long as density-driven errors were small compared to
the functional errors (as was the case in the halcyon days
of B3LYP), they were irrelevant. But in the modern era
of vast databases that include weak interactions, stretched
bonds, etc., these errors are sometimes as big as (or larger
than) the functional errors.17,20 However, the common practice
of direct comparison with accurate energies conflates both
errors and cannot distinguish the two. Recent advances in
machine learning of density functionals target the density as
well as the energy, and likely succeed because both errors are
simultaneously minimized.22

The cure for this difficulty is simple: where relevant, empiri-
cal schemes should be trained on purely functional errors, i.e.,
the functional error of a parameterized approximation to the
energy should be optimized against accurate energy databases,
rather than the self-consistent error. For calculations that are
not density-sensitive, the differences are so small as to make
this irrelevant. But for those that are, this procedure isolates
the self-consistency error and so avoids the corruption of the
optimization process, allowing density-sensitive cases to be
included even in training.
The current paper highlights the consequences of ignoring

this distinction when optimizing parameters in empirical func-
tionals. We first create a totally artificial problem to emphasize
the difficulties, especially when one uses a semilocal approx-
imation for the self-consistent density but a more accurate
form for the energy. In this case, we show how the exact
functional is missed by the standard procedure. Next, we
take the D3 correction of Grimme and co-workers,23 and show
how, if complexes with large density-driven errors are naively
included, the results become noticeably worse. On the other
hand, the use of DC-DFT allows previous good results to be
retained, and the more difficult complexes to be included. We
also apply our method to double-hybrids (DHs), producing
a combination that competes with similar functionals, but
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still works when the density sensitivity is large. Finally, we
find that empirical range-separated hybrid functionals suffer
less from density-driven errors than their conventional global
counterparts.
For the purposes of this paper, we write a 4-parameter

double-hybrid functional (DH4p) as:

EDH4p
XC = ESlater

X + α(EHF
X −ESlater

X ) + β(ẼGGA
X −ESlater

X )

+ γẼGGA
C + δEab−initio

C ,
(2)

where ESlater
X is the local density approximation for exchange,

EHF
X is the HF exchange, ẼGGA

X and ẼGGA
C denote the ap-

proximate GGA exchange and correlation energy, respectively,
and Eab−initio

C is the correlation energy from an ab − initio
calculation such as MP2. The standard procedure then is to
run self-consistent calculations of Eq. 2 without the ab − initio
correlation, but evaluate energies with the full DH expression
on the orbitals.24–26 The parameters are then chosen to mini-
mize errors for specific molecular datasets. As we show, this
assumes that density-driven differences between this and doing
the entire procedure self-consistently are negligible.

Often, highly-accurate densities required in Eq. 1 are too ex-
pensive to calculate. A practical measure of density sensitivity
is given by:19–21

S̃ =
∣∣Ẽ[nLDA] − Ẽ[nHF]

∣∣ , (3)

where tilde indicates a given functional approximation. Given
the HF tendency to overlocalize, and the LDA tendency to
delocalize, and that both are non-empirical, S̃ is a practical
guide to the density sensitivity of a given reaction and ap-
proximate functional. For small molecules, S̃ > 2 kcal/mol
implies density sensitivity and suggests DC-DFT will improve
a functional’s performance19. In such cases, usually the HF
density is sufficient to produce improved energies (HF-DFT).
Illustration: Missing the exact solution for one electron–

In this section, we illustrate the dangers of ignoring the distinc-
tion between density-driven and functional errors in a simple,
toy model: A simplified hybrid applied to the elementary case
of H+

2 as a function of bond length, which is a paradigm of self-
interaction error, or more generally, delocalization error.27,28
Standard semilocal approximations yield long-recognized catas-
trophic errors as the bond is stretched, missing entirely the
dissociation limit (see Fig 1).28 A HF calculation trivially gets
this exactly right, since it is exact for (fully spin-polarized)
one-electron systems.

Fig. 1(a) shows the exact binding curve (black) easily found
by HF, and two other curves of the PBEX evaluated either self-
consistently (blue) or on the HF density (green). The largely
irrelevant difference between blue and green curves show that
this is a true functional error, not a density-driven one. Even
on the exact density, PBEX fails very badly as the bond is
stretched. However, the difference in the two curves becomes
greater than 2 kcal/mol at about 1.5Å, showing a density

Figure 1: Potential energy surface (PES) of H+
2 from: (a)

exactly (black), self-consistent PBEX (blue) and PBEX on the
exact (HF) density (green) and on the LDA density (grey); (b)
the toy functional of Eq. 2 with γ = δ = 0 and no HF in the
self-consistent density, with the a and b parameters optimized in
different regions: (magenta) the density-insensitive (DI) region
(0.9Å-1.5Å), (green) the density-sensitive (DS) region (2.5Å-
3.1Å), (blue) combination of both DS and DI regions. The inset
shows ∆E decomposition for the toy functional trained on the
DI region. See also Fig. S1, S2, and Table S2.

sensitivity (the curve with LDA density is indistinguishable
from the self-consistent curve) in this problem. (Standard
HF-DFT produces accurate curves for heteronuclear diatomics,
not homonuclear ones.16,17)
Now, to mimic the standard DH procedure, we perform

self-consistent calculations without the HF contribution (since
it yields the exact answer in this case), but evaluate the energy
with it included. We apply the DH philosophy to our H+

2
molecule, using different separations to generate datasets.
Because this is a one-electron system, we simplify the general
DH form to just exchange, setting γ = δ = 0 in Eq. 2, and
use the PBE exchange29 as a GGA. Fig. 1(b) shows the results
of training in the density-sensitive (stretched, DS) and density-
insensitive (near equilibrium, DI) region of the binding curve.
In each case, the optimal parameterization yields accurate
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energies on the training data, but fails badly outside the
training range. Even a combination of both equilibrium and
stretched data does not help much.

How can this be happening? Obviously, if we set α = 1 and
β = 0 in Eq. 2, we get HF, and so produce the exact answer.
But, because the self-consistent calculation uses only a GGA
form, which has an unbalanced self-interaction error as the
bond is stretched, the exact result is never found. To quantify,
we define

D[n′] = Ẽ[n′] − Ẽ[n], (4)

generalizing30 ∆ED to arbitrary densities (D[ñ] = ∆ED, and
D[n] = 0). We decompose the error for the functional trained
near equilibrium, showing ∆EF and D in the inset of Fig. 1(b).
The optimal parameters (which are nonsensical, see Table S2 of
the supporting information) keep the total error to a minimum
in the training region where ∆EF and D cancel each other by
being about equal and opposite. Outside the training region
of our H+

2 curve, this artificial cancellation of errors fails badly.
Obviously, we trivially solve this toy problem if we always
train on the HF (exact, in this case) density instead of the
self-consistent GGA density.

[SC] [HF]
opt. dataset DI DS DI DS
without opt. 1.53 2.90 1.89 4.95
D3orig 0.43 6.74 0.42 1.20
12DB 0.48 5.66 0.31 0.98
DS-12DB 1.47 2.96 0.38 0.87
DI-12DB 0.42 6.53 0.31 1.01

Table 1: Mean absolute errors (kcal/mol) of PBE and modifica-
tions on density-insensitive (DI) and density-sensitive (DS) test
cases (columns) versus optimization on various databases (rows),
with self-consistent (SC) densities on left and HF densities on
right. D3orig denotes the original Grimme dataset, 12DB is our
large (320 values) mixed dataset, DI-12DB are its 274 DI cases,
and DS-12DB its 46 DS cases.

DFT-D3 for weak interactions– The D3 empirical cor-
rection of Grimme and co-workers has become a standard
technique for improving the accuracy of DFT approximations
when applied to noncovalent interactions.23,31 While most
such calculations are density insensitive, DFT calculations of
specific types of noncovalent interactions, such as halogen
bonds, are plagued by density errors, which can be larger than
the D3 correction itself.20
HF-DFT, as a simple form of DC-DFT, fixes this problem

by replacing the SC density with the HF density, on which
semilocal functionals yield more accurate energies in such
cases.14,19,20,30 It was recently shown that the use of the
HF density in place of the exact density introduces much
smaller errors than the improvements made by HF-DFT.21
(As an aside, this does not imply that the pointwise accuracy
of the underlying HF density is better than that of SC-DFT

densities.19)
The example of Ref. 20 was an extreme case. Here we study

the effects of density sensitivity on SC-DFT-D3 calculations
of weak interactions when they are more subtle. We use
12 datasets (7 from the original D3 parameterization23) of
noncovalent interactions (320 data points in total, see Table S1
of the supporting information).32 The data points are classified
as DS or DI based on their PBE sensitivity, SPBE (see Eq. 3
and Fig. S3). Only 46 are DS, and these are mostly from B3033
and WATER2732, with only one such data point present in the
dataset used for the training of the original D3 parameters.
In Table 1, we demonstrate the importance of accounting

for the density sensitivity when optimizing parameters for D3
corrections. The first two numbers in the 2nd column show
the dramatic reduction in error in the PBE functional when the
original D3 correction is made, on the density-insensitive cases.
The next entry shows that when we optimize over our much
expanded database, the errors for DI cases are only slightly
worse. But if we optimize specifically over our DS cases (4th
entry), this greatly worsens results on our DI test cases.
Moving over one column, we find results when tested on

the DS cases. Now the original D3 parameterization yields
a large (greater than 6 kcal/mol) error, demonstrating that
density-sensitivity creates large errors. Even when optimized
for DS cases, the error remains about 3 kcal/mol.

In the next column, we report the DI test results, but using
HF densities instead of SC densities. In all cases of interest, the
errors are slightly reduced once D3 with any of the parameters
is turned on. The errors fall by more than a factor of 6 if the
D3 is trained on the DI cases. Furthermore, the differences
between the optimal D3 parameters for DS and DI cases are
much smaller when HF densities are used. Fig. 2 shows the
variation of the error with parameters. Fig. 2(a) shows the
usual case (SC densities on DI cases). Fig. 2(b) is SC densities
on DS cases, showing a totally different landscape. A green
circle lying at the minimum of the case (a) is denoted in all
three panels. Fig. 2(c) is HF densities on DS cases, showing
about the same landscape as (a).
Finally, the fourth column of Table 1 shows results on the

DS cases using HF densities. While overall, these are much less
accurate than the DI cases (by about a factor of 3), they are
much better than those of column 2, which uses SC densities

From these findings we can also see the effects of including
DS cases in the training set. Their naive inclusion without
the density correction via HF-DFT gives some improvements
for DS cases at the cost of deteriorated accuracy for DI cases
resulting from the abrupt changes in the optimal parameters.
On the other hand, after the density correction is applied,
the inclusion of DS cases in the training set improves their
accuracy without the side effects for DI cases (Table 1) and
without abrupt changes in the parameter landscape (Fig. 2).

Most of the DS noncovalent complexes used in the training
set in Table 1 belong to the B30 and WATER27 datasets. In
Fig. 3, we compare errors of SC-PBE and HF-PBE, with and
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Figure 2: Mean absolute error (MAE) of PBE-D3 as a function of dispersion parameters23, for various densities and test sets: (a)
self-consistent (SC) density on density-insensitive (DI) cases, (b) SC density for density-sensitive (DS) cases, and (c) HF density for
DS cases. Contours are shifted by the minimum value (upper left corner) for clarity. The green circle is at the position of the global
minimum of the panel (a).

Figure 3: PBE binding energy error for small water clusters,
Eint = nEH2O − E(H2O)n (n = 2 ∼ 6), in WATER27 dataset.
Blue denotes self-consistent (PBE), while red is for the HF
density (HF-PBE); dashed is without dispersion correction, while
solid denotes with D3 (revised is similar to original). The gray
bar shows the density-sensitivity of Eq. 3. For comparison, we
also show ωB97M-V (magenta) and BL1p (green, defined later
in text) results.

without the (revised)D3 correction, for binding energies of
small water clusters of the WATER27 dataset. The standard
DFT calculations of these binding energies are highly DS, as
shown by the large values for SPBE shown in Fig. 3.
We see that HF-DFT corrections are larger than D3 here,

and that D3 on self-consistent densities actually corrects in
the wrong direction. HF-DFT-D3 reduces errors for the largest
clusters from about 6 kcal/mol to less than 1 kcal/mol, and
thus delivers the performance comparable to ωB97M-V34,
which includes nonlocal correlation35, and BL1p (a DH that
will be introduced later).
Double-hybrids– The energy functional of widely popular

DHs (e.g. Eq. 2) is typically evaluated on the hybrid density
and orbitals found in a self-consistent calculation that neglects

Figure 4: Absolute errors for the AE6 dataset of BL1p as a
function of α (see Eq. 5 ) for individual molecules (dashed lines).
In the black solid curve, where the averaged errors are shown,
the minimum is achieved at α = 0.82.

the Eab−initio
C term.24,25 In contrast, we find that HF-DHs

obtained by applying a DH energy expression to the HF density
and orbitals yield an overall accuracy competitive with their
standard counterparts, but remain accurate for cases where
the standard DHs fail due to density sensitivity. We test the
HF-DH idea with only one empirical parameter:25

EDH1p
XC = EGGA

XC + α(EHF
X −EGGA

X )

+ α2(Eab−initio
C −EGGA

C )
(5)

as suggested by Sharkas et al. based on adiabatic connection
arguments.25 (This is Eq. 2 where β = 1 −α and δ = 1 − γ =
α2.) To construct a HF-DHs based on Eq. 5, we use here a
combination of: B88 exchange1, semilocal LYP correlation;2
and MP2 correlation for Eab−initio

C
36. We call this functional

BL1p. Also, see Fig. S4 to compare 1DH-BLYP (BL1p[SC])
of Ref. 25 and BL1p[HF]. Here we do not aim at reaching
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Figure 5: MAEs for several methods on many databases: BL1p, other double-hybrids (B2PLYP and XYG3), hybrids (B3LYP,M06,
M06-2X), range-separated meta-GGA hybrid (ωB97M-V), and MP2.

the accuracy limit of the HF-DH approach. This is already
prohibited by a functional form of Eq. 5, which contains only
one empirical parameter. Our goal is to show that this approach
delivers an overall performance comparable to the standard
DHs while not being plagued by large density-driven errors.
Thus, we perform the optimization of α of Eq. 5 in an old-
fashioned way, by training BL1p[HF] on the AE6 dataset,
containing atomization energies of 6 molecules.37 The results
of the training are shown in Fig. 4. At α = 0, our BL1p
reduces to HF-BLYP, whereas at α = 1, it reduces to MP2.
The optimal BL1p that minimizes MAE for AE6 has α = 0.82,
which varies little between molecules, except for SiH4 whose
minimum is much shallower. Also, the MAE of optimal BL1p
is about 7.5 kcal/mol smaller than the α = 0 case (HF-BLYP)
and about 9 kcal/mol than the α = 1 case (MP2).
In Fig. 5, we compare the performance of BL1P with the

standard DHs (B2PLYP24 and XYG338), hybrids (B3LYP,
M06, M06-2X), and also with the range-separated functional
(ωB97M-V34), which we detail in the supporting information.
This figure shows that the one-parameter BL1p, trained only
6 atomization energies, yields an accuracy that is competitive
with the standard DHs for all databases, and works for noncova-
lent interactions, without using Grimme’s empirical correction.
Usually, we recommend against using the HF density when it
suffers from spin-contamination.14 Nevertheless, for all data
in this section, we include the spin-contaminated cases for fair
comparison. Performance without spin-contaminated cases is
shown in the supporting information (see Table S3).
Returning to our starting point, stretched NaCl is a pro-

totypical case where self-consistent hybrids and GGAs are
contaminated by large density errors.16 These errors are typi-
cal of semilocal functionals for dissociating heterodimers.39,40
HF densities fix this problem, and HF-DFT is able to disso-

Figure 6: Dissociation curves of NaCl obtained from various
approaches. For stretched bond lengths, standard double-hybrid
functionals fail due to the density-driven errors (see Ref. 16).

ciate heterodimers correctly.16 From Fig. 6, in contrast to a
standard DHs (B2PLYP and XYG3 shown here) that fail at
large bond lengths, our BL1p, as a representative of HF-DH,
dissociates NaCl correctly (See also Fig S6).

Another case where BL1p outperforms other methods is the
SIE4x4 dataset, containing four positively charged dimers at
four different separations, where standard DFT methods have
large self-interaction error.32 Fig. 7 shows the dissociation
curve of He+2 , as a representative of this dataset. First, the
errors of the standard DFT methods for He+2 are almost entirely
functional errors (see Fig. S5), because they differ little between
accurate and self-consistent densities. The accurate densities
are obtained by Kohn-Sham inversion from CCSD densities.21
In this way, the source of error of the standard DFT for He+2 is
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Figure 7: Dissociation curve of He+2 obtained from various
functionals. See also Fig. S5, showing that the errors of stan-
dard functionals for He+2 are mostly functional errors, since
self-consistent results are almost identical to those when the
functionals are applied to accurate densities (obtained from the
Kohn-Sham inversion scheme from the CCSD wavefunction21).

very different from that of stretched NaCl. Fig. 7 shows that,
even though these are not density-driven errors, the error of
BL1p for He+2 is much smaller than that of other approaches.
Range-separated vs. conventional hybrids– We have shown

a number of examples where large density-driven errors of con-
ventional (global) hybrid functionals are substantially reduced
when they are evaluated on the HF instead of SC densities.
Range-separated hybrids (RSHs) often use 100% of the HF
exchange in the long-range (lr)34,41,42, and so should suf-
fer less from density-driven errors.43. To test this, we use
ωB97M-V as a representative of RSHs34, given its remarkable
performance for many of the databases in Fig. 5. We will
compare ωB97M-V with B97M-V, its conventional analog.44.
The density-driven errors of ωB97M-V and B97M-V are shown
in Fig. 8 for our two standard cases, with PBE and B3LYP
also shown for comparison. For H+

2 , the HF density is exact,
while for NaCl, we invert the accurate Kohn-Sham density from
CCSD.21 In each case, the density-driven error of ωB97M-V
is much smaller than that of the other functionals. It does not
vanish, because of the semilocal part of the functional. We see
similar behavior for larger systems where the error of conven-
tional hybrid functionals is contaminated by the densities, and
is much smaller in ωB97M-V. Sensitivity plots are used as a
diagnostic tool for density-driven errors, and in Fig. 9 we show
that the sensitivity of ωB97M-V for the WATER27 complexes
is a fraction of that of B3LYP and B97M-V.
Concluding remarks– We have shown the dangers of ignor-

ing density errors in the construction of empirical approxima-
tions. In our simple H+

2 example, a parameterized semilocal
functional trained on a limited region of the H+

2 binding curve
fails in all other regions. Even high accuracy in the training
region results from an enforced error cancellation between the

Figure 8: Density-driven errors (see Eq. 1) of selected func-
tionals along the dissociation curves of:e H+

2 (top panel) and
NaCl (bottom panel). For H+

2 , the (exact) HF density is used
to extract the density-driven errors. For NaCl, we use CCSD
as a reference in tandem with the Kohn–Sham inversion scheme
described in Ref. 21 to obtain the ’exact’ density and orbitals
needed to isolate density-driven errors.

PBE B97M-V

B3LYP

ωB97M-V

WATER27

y = x y = 0.34 x

y = 0.29 x

y = 0.11 x
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Figure 9: The sensitivity (see Eq. 3) of selected functionals vs.
PBE sensitivities for binding energies of the WATER27 clusters.

density and functional error (Eq. 1), which fails outside this
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region. We found that the standard DFT with empirical D3
corrections breaks down in density-sensitive calculations of
noncovalent systems, but is fixed by using the HF density.

We also found that resilience to density-driven errors could
be achieved with simple 1-parameter double-hybrids, once
they are trained and applied to HF densities. As always, our
use of HF densities does not imply that they are point-wise
more accurate than self-consistent densities, but simply that
they yield more accurate energetics when a reaction is density
sensitive. Our BL1p is trained only on atomization energies
of only 6 molecules, but its accuracy is comparable to the
standard doubled hybrids tested here. Moreover, ωB97M-V
outperforms BL1p for most of the datasets considered in Fig 5,
except for the SIE4x4 dataset, where BL1p does much better.
BL1p would also be beaten by ωB97(2), a very recent highly
accurate DH designed to improve over ωB97M-V.45 Given
its excellent performance45,46, we expect it to beat BL1p on
most of the datasets, but not SIE4x4.

Our goal here is not the introduction of a new empirical XC
functional, but to illustrate contamination due to density errors
in fitting procedures and to show how minimizing the functional
error can improve the performance of empirical functionals.
Thus, our primitively optimized BL1p does not reach the
accuracy limit of the HF-DH class of functionals. Technical
advances in optimization and larger parameter spaces could
further improve its accuracy. Furthermore, to improve HF-
DHs, one may also use the new insights into functionals that
explicitly depend on the HF density obtained from the adiabatic
connection that has the MP2 theory as its weak-interaction
expansion.47,48 Finally, we have found that using 100% of
HF exchange in range-separated hybrids means they suffer
much less from density-driven errors than their conventional
counterparts.

In summary, DFT energy errors can be separated into func-
tional and density-driven using DC-DFT. To avoid inaccuracies,
empirical functionals can be trained on functional errors only,
where practical. In cases of large density sensitivity, HF densi-
ties (unless flawed by, e.g., spin-contamination) are typically
more useful than self-consistent semilocal densities. With
100% exchange at large distances, range separated functionals
are relatively density insensitive, and suffer much less from
these issues.

Computational Details

All HF, DFT, HF-DFT, and MP2 calculations have been per-
formed with the TURBOMOLE v7.0.2.49 and PYSCF v1.7.2.50
The following functionals have been used in DFT and HF-DFT
calculations: LDA (SVWN51,52), GGA (PBE29, BLYP1,2),
mGGA (TPSS53), hybrids (B3LYP4, PBE054, M06, M06-
2X55, B97M-V44, ωB97M-V34, B2PLYP24, and XYG338).
The scripts for performing HF-DFT energy calculations are
available.56 Unless otherwise stated, the def2-QZVPPD ba-
sis set has been used. All geometries and the multiplicities

except for the AE637 have been taken from Ref. 32. Fur-
ther computational details can be found in the supporting
information.

Supplementary Information

• Dataset description
• Optimized parameters and mean absolute error for H+

2
• Mean absolute error value of Fig. 5
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i. Computational Details
All HF, DFT, HF-DFT, and MP2 calculations have been
performed with the TURBOMOLE v7.0.2.[49] and PYSCF
v1.7.2.[50] The following functionals have been used in DFT
and HF-DFT calculations: LDA (SVWN[51, 52]), GGA
(PBE[29], BLYP[1, 2]), mGGA (TPSS[53]), hybrids (B3LYP[4],
PBE0[54], M06, M06-2X[55], B97M-V[44], ωB97M-V[34],
B2PLYP[24], and XYG3[38]). The scripts for performing HF-
DFT energy calculations are available.[57] Unless otherwise
stated, the def2-QZVPPD basis set has been used. For accel-
erating the self-consistent field (SCF) procedure, we adopted
the resolution of the identity approximation (RI-J) with def2-
QZVPPD auxiliary basis set for G08, PCONF, SCONF, and
WATER27 dataset. For the KB dataset, we omit the noble gas
and the S22 dataset from the original KB65. The energy and
one-electron density convergence threshold have been set to
1e-8 and 1e-6 a.u., respectively. Numerical quadrature grids
of size 4 have been used (grid size 4 in TURBOMOLE). For
VV10 correlation, 99 radial shells with 590 angular grid points
per shell are used with the SG1 prune. For all open shell
calculation, unrestricted scheme is used. The parameters of
Table S2 are first found in the global optimizer shgo and then
optimized locally with the Nelder-Mead method in the SCIPY
package with the 1e-8 convergence criterion. For revised D3,
we scanned 0.00 < sr,6 < 2.00 and 0.00 < s8 < 2.00 (0.01
grid spacing) for all 320 datapoints in 12 databases (DB)
(marked by an asterisks in table S1) for all XC functionals ex-
cept ωB97M-V, XYG3 and HF-DHs. The α value for HF-DHs
is optimized with the slsqp method in the SCIPY package. All
geometries and the multiplicities except for the AE6 [37] have
been taken from Ref. [32].

DB no. points Description
RG6* 6 rare gases
ACONF* 15 alkane conformers
S22+* 66 non-covalent interaction
CYCONF* 10 cysteine conformers
ADIM6* 6 alkane dimers
KB† 27 non-covalent interactions
G08 6 pi-interaction of small carbon complexes
PCONF* 10 peptide conformers
S66† 66 non-covalent interactions
X40† 40 halogen interactions
S22 22 noncovalently bound dimers
DARC 14 Diels–Alder reactions
CARBHB12 12 hydrogen-bonded
BHPERI 26 pericyclic reactions
G21IP 36 adiabatic ionization potentials
ALK8 8 alkaline compounds
SCONF* 17 sugar conformers
B30† 30 non-covalent interactions for halogen
AB9 9 anomalous barrier height
SIE4x4 16 self-interaction-error
BH76 76 reaction barrier height
W4 140 atomization energies
WATER27† 27 water interactions

Table S1: Data sets used in this work. The asterisks indicate
the data sets used for optimization of the original D3 parameters
by Grimme and co-workes as described in Ref. [23]. For the
revised D3, additional 5 datasets (KB, S66, X40, B30, and
WATER27) are used as a training set and marked by a dagger.

RH−H a b training test all
0.9∼1.5 1.397 6.799 0.30 10.15 7.93
2.5∼3.1 1.237 -1.532 0.02 6.64 5.14

0.9∼1.5 & 2.5∼3.1 1.218 4.665 2.22 6.85 4.76

Table S2: Optimized parameters in Fig. 1 and mean absolute
error (MAE) in kcal/mol. Note that when the toy model is applied
to the HF densities, we get a = 1 and b = 0 regardless of the
training set, and thereby both the density-driven and functional
errors are eliminated.
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Figure S1: D and ∆EF error decomposition for H+
2 dissociation curve of the empirical toy functional trained on the DS region (left

panel) and on the combination of DS and DI regions (right panel) when applied to H+
2 along the dissociation curve . The same result,

but for the functional trained on the DI region is shown in the inset of the bottom panel of of Fig. 1.

Figure S2: H+
2 potential energy surface for the various methods.
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Figure S3: Density sensitivity (SPBE) of PBE for the 23 databases in Table S1. The red dotted line denotes 2 kcal/mol. If SPBE is
greater than 2 kcal/mol, it is considered density sensitive.[19] As we go from the left to the right, the averaged SPBE) of the databases
increases. The databases used for the training of the Grimme’s original D3 parameters are marked with an asterisk. The same
databases are also shown in the inset.
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Figure S4: BL1p MAE for the AE6 dataset in Ref. [25]. HF,
BLYP and SC density is used. (SC denotes the self-consistent
density from EXC = αEHF

X + (1 − α)EB88
X + (1 − α2)ELY P

C .)
Reference values are from Ref. [56].

Figure S5: Dissociation curve of He+2 . Note that CCSD density
is used within the WY KS-inversion method to obtain accurate
KS orbitals. Detailed information about KS-inversion can be
found in the Ref. [21].

Figure S6: Na-Cl dissociation curve for the XYG3 with differ-
ent MP2 admixture. The larger the MP2 portion, the quicker
the XYG3 DH bends down.
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