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Abstract

DFT calculations have become widespread in both chemistry and materials, because they usually provide useful accuracy at
much lower computational cost than wavefunction-based methods. All practical DFT calculations require an approximation
to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn-Sham scheme to produce an
approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative contributions to
the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is negligible.
But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to
contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers,
torsional barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases,
use of a more accurate density significantly improves performance, and often the simple expedient of using the Hartree-Fock
density is enough. This article explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can
produce more accurate functionals. We also outline challenges and prospects for the field.

I. Introduction

Density functional calculations have become ubiquitous in mod-
ern chemistry and materials science since the award of the 1998
Nobel prize in chemistry.[1] There are now many computer
codes available for performing such calculations.[2, 3, 4, 5, 6, 7]
It is a straightforward matter to choose a basis set and an
approximate functional, and calculate an interesting property,
such as a reaction barrier, bond length, or dipole moment.
But it requires judgment and experience to choose wisely.[8]
Ensuring the quantity is converged with respect to basis is rela-
tively simple. Given hundreds of possible DFT approximations
available in a code, the choice can be difficult.[9]
There are myriad approaches to constructing exchange-

correlation (XC) approximations, varying from appeals to
general principles of quantum mechanics to fits to large
databases.[10, 11, 12, 13] Modern approximations include
generalized gradient approximations (GGA), hybrids, range-
separated functionals, the random phase approximation and
variants thereof, dispersion corrections of at least three distinct
flavors, double-hybrids, and many, many more.[11, 14, 15, 16]
All over the world, theorists of many different backgrounds
work at improving (or at least, expanding) on our current
choices, either with improved accuracy, lower computational
cost, or greater reliability.[17]

In each of the countless DFT calculations performed world-
wide each year, the Kohn-Sham (KS) equations[18] are iterated
to a self-consistent (SC) electronic density and orbitals, and
the total energy of the system is reconstructed with these final
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quantities. By definition, this process finds the unique[19]
density that minimizes the approximate energy. All compo-
nents of that energy are exactly determined, apart from the
notorious XC energy. It is that piece which is approximated in
DFT and whose derivative appears in the KS equations as the
XC potential.

Thus, whatever choice of XC is made, it is actually used
twice in the calculation. Once in finding the density and a
second time in finding the energy, so that neither is quite
correct. As the foundation of DFT is to consider the energy
as a functional of the density[19], we may write the error in
any self-consistent KS calculation as:

∆E = Ẽ[ñ]−E[n] (1)

where n(r) is the exact density and E[n] is the exact func-
tional, while tildes denote approximate quantities. In most
practical calculations, modern XC approximations yield excel-
lent approximate densities[20], so that the energy error would
barely change if the approximation were evaluated on the exact
density.

It is certainly extremely convenient to use the self-consistent
solution density. It is easily computed from the KS equations.
By being self-consistent, many important properties, especially
those depending on derivatives of the energy, are much simpler
and many additional terms need not be calculated. This is
so convenient that essentially all modern codes use the self-
consistent density in almost all circumstances. However, this
was not always so. In the earliest days, the Hartree-Fock (HF)
density was often used instead.[24, 25, 26, 27, 28] Mostly, it
was used as a matter of convenience, so as to avoid needing to
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Figure 1: Representative cases where standard self-consistent DFT fails, but DC-DFT restores the correct energetic and/or geometric
information. (a) Reaction coordinate diagram of a textbook SN2 reaction, interconversion between negatively charged F and Cl ions.
(b) Torsional rotation energy profile and selected NBO donor–acceptor pairs of oxalyl chloride.[21] (c) Intermolecular interaction
between NH3 and ClF interacting via halogen bonds; Electrostatic attraction between a partially negatively charged nucleophile (Nuc.)
and a partially positively charged halogen (X) bonded to an electron withdrawing group (EWG).[22] (d) The potential energy surface
of HO·Cl− as a function of the O–Cl− distance and the H–O–Cl− angle.[23] Here, DC-DFT represents the calculation result using
the DC(HF)-DFT method. A detailed description of DC(HF)-DFT is provided later.

do a self-consistent calculation, in the belief that it mattered
little. Later, the HF density was used as a matter of principle,
to compare functionals against each other without having to
worry about changes in the density.[26, 27, 28] It was even
presciently noted that, in some cases, it really did seem to
matter, and in those cases, it was often better to use HF
densities.[29, 30, 31]
This article shows that, in fact, it really does matter, both

theoretically and very practically. Until about 10 years ago,
no careful, systematic analysis had been performed on this
question. In fact, every single KS-DFT calculation ever run can
be analyzed, to separate its functional error (energy error made
on exact density) from its density-driven error (the remainder).
Surprisingly large classes of calculation, such as typical reaction
barriers, contain significant density-driven errors with standard
functionals, such as B3LYP. One of the major reasons for
this is the over-delocalization of charges and spins due to
semilocal XC approximation.[32, 33] These errors are typically
substantially reduced by using the HF density instead of the
self-consistent density. Even highly accurate (and expensive)
DFT approximations such as double-hybrids can be improved
by separating out these two error sources in their design.
Figure 1 is a panoply of calculations where the density

really matters. In every case, when self-consistent densities

are replaced by HF densities, the energy errors drop by a
substantial margin. In panel (a), we show an energy diagram
for a textbook SN2 reaction. Starting from either reactants or
products, negatively charged complexes are formed barrierlessly,
while the interconversion between the two involves a barrier
of ∼35 kcal/mol in the backward and ∼5 kcal/mol in the
forward directions. Standard DFT provides reasonable reaction
energies, but fails badly for barrier heights in both directions
for the complex interconversion. DFT underestimates the
backward barrier height by about 10 kcal/mol, implying a
reaction many orders of magnitude faster than reality. The
barrier height is indeed smaller in the forward direction, but
standard DFT yields no barrier at all. A long time ago it has
been demonstrated that the use of HF densities fixes failures
of DFT for barrier heights, and so does here.[31, 34] For the
backward barrier, density-corrected DFT (DC-DFT) reduces
the error of DFT by about 6 kcal/mol, whereas the DC-DFT
forward barrier height matches the reference.
Panel (b) demonstrates the power of using DC-DFT to

fix the failures of DFT for difficult torsional barrier heights,
whose accurate predictions play a crucial role in describing a
range of chemical processes (e.g., selectivity, protein folding,
molecular electronics, etc.).[21] Most torsional barriers are
very accurate with standard DFT (errors below 1 kJ/mol), but
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barriers of a single bond participating in π-conjugation are
particularly problematic for DFT.[12, 35] For the oxalyl chloride
shown, the standard DFT energy diagram is qualitatively wrong,
incorrectly predicting that the perpendicular conformation is
more stable (φ ∼ 90◦) than the trans conformation (φ = 180◦),
where φ is the torsional angle depicted in panel (b). DFT also
finds that there is no barrier upon conversion from trans to
perpendicular. Using DC-DFT with HF densities, these barriers
become far more accurate as shown.
For some weak interactions, such as halogen bonds, DC-

DFT greatly improves over its self-consistent counterpart. The
binding energy curve for one halogen bonded complex is shown
in panel (c).[22] Standard DFT overbinds the complex by about
50 % at equilibrium, whereas the DC-DFT binding curve is
almost indistinguishable from the reference. In contrast to
DC-DFT, dispersion corrections (such as the commonly used
D3[36]) cannot fix bad DFT densities, and their addition has
almost no effect on the DFT binding curve in panel (c). Despite
these large improvements in energetics when HF densities are
used in place of self-consistent densities, their electrostatic
potentials are almost identical, as shown. From the DC-DFT
perspective, there is no need to stare at density or electrostatic
potential plots to decide which density is better. DC-DFT
measures the accuracy of densities directly in terms of their
impact on the energy, the quantity that really matters. Even
the tiny differences visible in the electrostatic potentials can
be measured.

Finally, panel (d) reminds us of one of the earliest successes
of DC-DFT – the description of odd-electron radical complexes,
which play important roles in atmospheric and environmental
chemistry, cell biology, etc.[23] In panel (d), we compare poten-
tial energy surface for the HO·Cl− complex by varying the R
distance and θ angle, as shown. Self-consistent DFT fails badly
in simulating the potential energy surface: (i) it finds that the
equilibrium structure is bent instead of linear (θ ∼ 30◦ instead
of 0◦), (ii) gives contour of the wrong shape leading to wrong
forces, and (iii) gives too blue (too negative) potential energy
surface. DC-DFT again saves its self-consistent counterpart
by not only yielding the correct linear structure of HO·Cl−
as the most stable, but also producing a far more accurate
potential energy surface and equilibrium structure. In this way,
we see that DC-DFT not only improves DFT energetics, but
also gives more accurate geometries and force fields. For appli-
cations of the principles of DC-DFT to geometry optimization
of any electronic structure method, see Ref. [37, 38], which
contains many surprising results about functional performance
for geometry.
For the cognoscenti, in Figure 1, all DFT calculations are

with PBE, except in (a) which uses B3LYP, and all accurate
reference calculations are DLPNO-CCSD(T)-F12, except in
(d), which is simple CCSD(T). The rest of this article is about
why the basic ideas of DFT do not imply always choosing
the self-consistent density. This is followed by a discussion
of practical DC-DFT, with many examples illustrating crucial
aspects of density-sensitive systems and calculations. We next
explore some of the finer points of theory, ending with a sur-

Figure 2: Cartoon illustrating how semi-local DFT can be more
accurate than HF everywhere, but still produce a more accurate
energy when evaluated at the HF minimum: (a) Total energies
as a function of density and (b) their corresponding derivatives.

prise: Although Diels-Alder reactions are not density sensitive,
functionals (double-hybrids) designed to take advantage of
DC-DFT perform better. We end with many challenges and
potential of DC-DFT.
First we ask, why is this a question at all? Surely the

self-consistent density is ‘best’ because it minimizes the (ap-
proximate) energy functional? It does, but because the func-
tional is approximate, its minimum might well be below the
true ground-state energy. Moreover, all useful properties are
actually energy differences, and the difference between two
minima does not obey a variational property. One of the most
well-documented failings of most density functional approx-
imations is that they are too smooth, especially as particle
numbers pass through integer values.[39, 40] You might object
that, in reality, all molecules have integer numbers of electrons.
But as a bond is stretched, the exact functional develops
sharp cusps that force integer numbers of electrons onto each
fragment, while typical DFT approximations are smooth.[41]
Figure 2 is a cartoon showing how function with a cusp can
be well-approximated by a smooth one everywhere, but whose
derivative is very wrong in the vicinity of that cusp. Semilocal
XC approximations yield curves that are smooth everywhere,
which causes the overdelocalization of charges when bonds are
stretched.[42] The HF energy functional depends explicitly on
only occupied orbitals, making it often even sharper than the
exact functional. Relative to HF, correlation includes infinite
sums over orbitals, which typically dampen the cusp as the
particle number changes.
Basic separation into functional and density-driven errors: Hav-
ing established that the self-consistent density need not yield
the most accurate energy, how then should we decide when
we might want to avoid it? We simply decompose the energy
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error into two well-defined pieces.[20] The functional error is
simply the error in the energy if we had evaluated it on the
true density, not the self-consistent one. Many would consider
this the ‘true’ DFT error, as this is an apples-to-apples com-
parison. Moreover, the beauty of the KS scheme is that only
the XC contribution to the energy is approximated. Thus, in
any KS calculation, the functional error is entirely due to the
XC approximation:

∆EF = Ẽ[n]−E[n] = ẼXC[n]−EXC[n]. (2)

The remainder of the energy error is called the density-driven
error,

∆ED = Ẽ[ñ]− Ẽ[n], (3)
and is given by the difference in the approximate functional on
the exact and self-consistent densities. This is always negative
for any given energy calculation.
Universality of energy decomposition: Thus, no matter what
XC approximation you use or can afford, no matter what
molecule or solid you study, and no matter which property
you extract from your KS-DFT calculation, you will have
some error, and that error is the sum ∆EF + ∆ED. In the
vast majority of routine calculations, the self-consistent DFT
densities are incredibly accurate, so that the density-driven
term has negligible effect, and DC-DFT will not help (|∆ED| �
|∆E|). But, with certain classes of approximation, certain
classes of molecules, and certain properties, it has been found
that the density-driven error is large enough to substantially
contribute or even distort calculations.[43, 44, 45] Moreover,
in such cases, using a better density has led to much better
energetics.[46]
With some thought, these statements would appear para-

doxical. If the functional is working well for the system you
are calculating, how could its density be wrong? Well, this
happens because its derivative, the XC potential, is sufficiently
inaccurate as to produce a sufficiently flawed density as to mess
up your energy evaluation. Return to Figure 2 to see a good
approximation to a function whose derivative is lousy. Doesn’t
a better functional automatically imply a better XC potential?
No, it does not. Almost all modern XC approximations have
very poor-looking XC potentials, often shifted by very large
amounts relative to the exact XC potential.[47] Yet they still
usually yield highly accurate densities in the regions where it
matters. GGA approximations to XC often have worse looking
potentials than their LDA counterparts, but nonetheless have
much better energetics.[48, 49]
In the original work[20], the term ’abnormal’ was used to

designate those KS-DFT calculations whose results were con-
taminated by density-driven errors, and this is a characteristic
of the approximate functional, the property of interest, and the
given system. By contaminated, one means that the error in
the energy being calculated changes substantially if the exact
density is used instead. There a small KS HOMO-LUMO gap
in self-consistent DFT was identified as a signal of abnormal-
ity. But the use of the gap as the abnormality indicator is
not ideal, as some calculations (e.g., those involving stretch-
ing of homonuclear bonds) have small HOMO-LUMO gaps

without density-driven errors. More appropriate indicators of
abnormality have been built and are detailed below.

II. Practical DC-DFT

In practice, much of the above is just so much theorizing, as,
if we need to do a DFT calculation, we surely cannot afford to
calculate the exact (or highly accurate) density. Fortunately,
we show below that, in the cases where there is a significant
density-driven error with a standard DFT calculation, very
often using the HF density significantly reduces the density-
driven error. This is presumably because HF, although yielding
woefully inadequate energetics, suffers from the reverse of the
errors of most density functional approximations. Essentially,
DFT approximations almost always include some variety of
semi-local density functional (i.e., depending on the density, its
gradient, and/or its laplacian or kinetic energy density). These
approximations tend to delocalize the density relative to the
exact one, whereas the HF density is typically overlocalized.
This is not to say that HF densities are somehow ’better’ than
approximate self-consistent DFT densities. As discussed above,
there is no well-defined meaning to being better. All this means
is exactly what is stated: In cases where the self-consistent
approximate DFT density is unusually poor, the HF density is
often more accurate in the very precise and limited sense of
yielding more accurate energetics.
Problems with indiscriminant use of HF densities: So, why not
use HF densities in all DFT calculations? The first problem is
that self-consistency simplifies tremendously many practical
aspects of modern DFT calculations, such as finding forces,
vibration frequencies, polarizabilities and hyper-polarizabilities,
etc. Anything that can be written as a derivative of the en-
ergy with respect to some parameter becomes much more
complicated when the calculation is not self-consistent. The
second is that, in general, if a calculation is not ’abnormal’,
we have no reason to think the HF density (or even the exact
density) would yield a more accurate energy than the self-
consistent density. Thus, we may actually reduce accuracy
overall if we blindly use HF densities everywhere.[52] Thirdly,
for some difficult systems, where the HF calculation is sub-
stantially spin contaminated i.e., the HF <S2> is significantly
different from the exact value, (resulting from an artificial
mixing of spin-states[53]) or which are multi-determinantal
in character (systems whose physics is poorly described by a
single-configuration)[54], the HF density is likely to worsen the
energy substantially. Imagine, for example, a database of 100
reaction energies of some kind. Suppose, with a given approxi-
mate XC, that 5 are abnormal. And further suppose that using
HF densities reduces the abnormal errors by 5 kcal/mol, on
average. If the HF densities worsen the normal cases by just
0.26 kcal/mol on average, HF-DFT (always using HF densities)
worsens the overall results on the database, and misses the
large improvements on the abnormal cases.
How to spot when a calculation is density sensitive: Thus it
is crucial to have a procedure or recipe that automatically
determines if a calculation is abnormal. The original criterion,
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Figure 3: Correlation between density sensitivity (S̃ of Eq. 4, blue) and the difference in absolute reaction energy errors between
self-consistent DFT and HF-DFT (red circles) with PBE for various non-covalent interactions. If SPBE > 2 kcal/mol (dashed
horizontal line), the calculation is density sensitive and DC(HF)-DFT equals to HF-DFT. DC(HF)-DFT equals to self-consistent
DFT for SPBE <2 kcal/mol. All calculations use aug-cc-pVQZ basis set, with geometries from the B30[50] and S22[12, 51] datasets.

that the gap is unusually small, is merely qualitative.[20] How
small is small? After many variations were tried, we settled on
a simple heuristic, which was called the density sensitivity.[43]
It is defined as the change in the energy being calculated when
going from the HF density to the LDA density, where LDA
denotes local density approximation[18] (often used in the
SVWN form).[55]

S̃ =
∣∣∣Ẽ[nLDA]− Ẽ[nHF]

∣∣∣ . (4)

This is easily computable in standard molecular codes at DFT
cost. LDA is likely to suffer more from delocalization than
any more modern functional, and so acts as a canary in a
coal mine for density-driven errors. If S̃ is significant, we
declare the calculation likely to be abnormal and only then do
we use the HF density in place of the self-consistent density.
We found that a cutoff of 2 kcal/mol worked well for most
small chemically bonded molecules, but of course this value
must be adjusted for the circumstances. It must become
larger for larger molecules,[56] and become smaller for smaller
energy differences, such as in non-covalent interactions[22] and
intramolecular torsional barriers[21]. DC-DFT is the formal
name of the analysis that leads to these conclusions,[20, 23]
and DC(HF)-DFT is the application of HF-DFT only to those
cases that are density sensitive. Thus, in the 100 reaction
energy set, HF-DFT may worsen the overall statistics, but
DC(HF)-DFT will improve them by a small amount, but will
produce significant quantitative improvement on the density-
sensitive set. The theory behind DC-DFT leads to many useful
concepts for understanding errors in functionals and differences
between approximate functionals.[44]

Importance of DC-DFT for non-covalent interactions: To illus-
trate the utility of density sensitivity, consider Figure 3. Along
the x-axis, we have listed 52 non-covalently bonded molecules
and complexes. The right-hand-side contains the members
of the well-established S22[12, 51] dataset, sorted into three
categories, depending on whether they are hydrogen-bonded,
weak dispersion bonds, or mixed. Within each category, they
are arranged in order of PBE density-sensitivity, with highest
on the left. The PBE sensitivity is the absolute difference
between the PBE energy on the HF and LDA densities, Eq. 4.
While it increases from right to left, it only barely reaches
2 kcal/mol for the most sensitive H bonds. Thus such weakly
bonded compounds are density insensitive, and DC(HF)-DFT
will not improve their energetics. But now look on the left-hand
side. The B30 set contains unusual weakly-bound molecules in
three distinct categories: Pnictogen, chalcogen, and halogen
bonds.[50] Overall, their density sensitivities grow from right
to left, and most of the chalcogens and all the halogen cases
are density sensitive. Thus those molecules should have better
energetics when HF densities are used. The red line shows
how much the energy error changes when going from the self-
consistent to the HF densities. It is the difference between the
absolute value of the SC error and the absolute value of the er-
ror with HF density. Where it is positive, the SC error is larger
than the HF error. Its magnitude tracks the blue line very well,
showing that large changes occur where the density sensitivity
is largest. On the left, the density sensitivity essentially tracks
this error difference, which is positive, and dominated by the
self-consistent error. On the right, the curves are almost anti-
correlated, and the error difference is usually negative, showing
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Figure 4: Rainbow plots (several functionals evaluated on each
other’s densities) for (a) HCl + CH3 � Cl + CH4 reaction
energy and (b) its forward barrier height. The x-axis denotes the
XC functional used for calculating energy on different densities
(color coded), with hollow circles marking self-consistency. All
calculations use cc-pVQZ basis, and the reference is W2-F12
from Ref. [12].

SC yields better energetics than HF densities. For chalcogens,
the mean absolute error of SC-DFT is 1.9 kcal/mol, while
DC(HF)-DFT is 0.5 kcal/mol.[22] Note that improvements
in energetics for halogen bonds hugely outweigh those due to
dispersion corrections, as shown in panel (c) of Figure 1. Thus
unwitting inclusion of such cases into databases for fitting
dispersion corrections, without DC(HF)-DFT, worsens such
corrections instead of improving them.[46]

Reducing the spread of DFT results for density-sensitive prob-
lems: Next consider Figure 4, which shows many different
functionals evaluated on each other’s densities for a simple
reaction. Each collection of bars is the energy of a given
functional, using all the different densities, color coded. The
leftmost bar is gray (LDA density) and the rightmost is purple
(HF density). The density sensitivity for that functional is the
difference between those two. In panel (a), the numbers are
plotted for the reaction energy. For any of the functionals
chosen, there is little difference between the gray and purple
bars. This reaction energy is density insensitive.

But consider panel (b), where the results for forward barrier
heights are plotted. Most functionals give about the same an-
swer, except when the HF density is used. Now the differences
between gray and purple are huge. Moreover, the answer often
changes sign (i.e., goes from no barrier in SC-DFT to having
a small one in HF-DFT). Also, the spread in the different self-
consistent answers (shown by open circles) is now far greater
than the variation in the purple bars. This is a pattern we
often see: If a problem is density sensitive, often a standard
bag of functionals which usually agree with one another show

a wide disparity of results, when evaluated self-consistently.
But on the HF density, their spread is smaller than usual.

Improved calculations of spin gaps: The accurate calculation of
spin gaps in transition metal complexes is notoriously difficult.
Many methods have very different errors for high- and low-
spin states, so calculating their difference accurately is very
difficult.[57, 58, 59] It is well-known that many commonly used
density functionals produce a large spread of answers, much
more divergent than they usually give, especially when mixing
HF exchange.[60] Measures of how sensitive the results are
on the amount of HF exchange in a DFT functional has been
recently used by Kulik and co-workers to improve predictions
of properties of transition-metal compounds. [61, 62, 63].
In extreme cases, even knowing which state is the ground
state of a transition-metal complex is difficult. Ab initio
quantum chemistry also has difficulty in these cases. Standard
CCSD(T) methods can be converged with very large basis
sets, but the usual indicators suggest a strong multi-reference
character, making its reliability questionable. On the other
hand, multireference methods are difficult to converge with
respect to the size of the active space and the size of ones
computer budget. An alternative approach is to use quantum
Monte Carlo (QMC), a method available for both molecules
and solids[64], but using totally different technology to that
of ab initio quantum chemistry.
Several years ago, a study was performed on pseudo oc-

tahedral Fe(II) complexes with various ligands.[65] All were
wide spin gap cases, of order 1 eV (about 20 kcal/mol) but
even so, different functionals yielded wildly different gaps. The
spread in their results dropped by about a factor of 2 when
HF densities were used instead. The average results differed
significantly from those of CCSD or CCSD(T), but agreed
(within error bars) with some very expensive, state-of-the-art
QMC calculations. Since then, many authors have tackled
these systems with many variations on many methods, so the
jury is still out on whether or not DFT on HF densities yields
accurate spin gaps here.[59, 66, 67]

Figure 5 illustrates some results for the Fe[(NCH)6]2+ com-
plex. Panel (a) shows energy differences between high- and
low-spin states. A metaGGA called TPSS[68], when applied
self-consistently, incorrectly yields the low-spin state as lower
than the high-spin state, contradicting the QMC result. This
is true of many semi-local functionals. Inclusion of a moder-
ate fraction of exact exchange may bring the high-spin state
slightly lower, but not enough (see blue curve in (c)). On the
other hand, almost all functionals have the correct ordering
when evaluated on HF densities, and most yield quite accurate
spin gaps (red curve in (c)). Just as in the rainbow plot of
Figure 4, there is a characteristic reduction in the spread of
predictions when the HF density is used in a density-sensitive
system. Finally, panel (b) shows the localized orbital locator
(LOL)[69] for both calculations. One can see small differences
in the bonding regions using LOL, because it is specifically
designed to make such differences visible, but it is impossible
to tell by visual inspection of densities or their differences
which one is better and why.
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Figure 5: Self-consistent DFT vs. DC(HF)-DFT results for the spin gap of Fe[(NCH)6]
2+ complex. (a) TPSS and accurate(QMC)

ordering of low-spin (LS) and high-spin (HS) states and their relative energies. (b) Localized-orbital-locator of DFT and HF for the
high-spin state. (c) Energy difference between high- and low-spin state (∆EHL = EHS −ELS) for various functionals.[65] Basis set
cc-pVQZ.

When torsional barrier errors get large: We return now to the
torsional barriers in Figure 1(b). In Ref. [21], the density-
sensitivity cutoff was set to 2 kJ/mol instead of 2 kcal/mol,
for the obvious reason that all energetic differences were much
smaller than for stronger chemical interactions. Nonetheless,
the consequences of errors in self-consistent DFT torsional
barriers can be much larger. Consider Figure 6, which shows
the torsional barrier height of conjugated polymer chains at
different lengths using the ever-popular B3LYP functional. The
overestimate of the barrier height grows with the chain length,
reaching almost 2 kcal/mol when m ≈ 10, the number of
repeated units. On the other hand, DC(HF)-B3LYP becomes
almost perfect in this limit.
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Figure 6: Height of B3LYP torsional barrier of polyacetylene,
CH2(C2H2)mCH2, for self-consistent DFT (blue triangle) and
DC(HF)-DFT (red circle), with RI-MP2-F12 as reference (open
circle aug-cc-pVDZ basis).[21] S > 2 kJ/mol criterion is used.

Great success of DC-DFT for water clusters: To end this tour,
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Figure 7: Errors in PBE binding energies of small water clus-
ters, in self-consistent and DC(HF)-DFT, with (solid lines) and
without (dashed lines) D3 corrections. DFT calculations use def2-
QZVPPD basis set, while the reference, CCSD(T)-F12/CBS, and
geometries are from the WATER27 dataset.[12].

we consider binding energies of water clusters. DFT has been
very successful in describing properties of water,[70, 71] and
a recent paper has shown that DC-DFT can achieve near
CCSD(T) accuracy for describing a range of water properties,
using the SCAN functional on HF densities.[72] In Figure 7,
we show errors in PBE binding energies for small water clus-
ters from self-consistent DFT and DC(HF)-DFT, with and
without the D3 correction. In contrast to the earlier complex
shown in Figure 1(c) where D3 was not affecting the DFT
results, here it has a large effect on the DFT errors. When
added to self-consistent DFT, D3 substantially worsens the
results, suggesting an issue inherent to D3.[73] But in fact D3
greatly reduces the errors when added to DC(HF)-DFT (in
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Ref. [46], we discuss in more detail how large density errors can
contaminate and obscure D3 effects). BL1p, a double-hybrid
which was designed using principles of DC-DFT[46] (see next
section), is also highly accurate for water complexes.

III. Theoretical considerations

In principle, DC-DFT is a much more general concept than
those that appear in the literature: self-interaction, strong-
correlation, delocalization, straight-line behavior of the energy
as a functional of non-integer particle number, etc. It is based
on a two-line decomposition of the error in any DFT calculation.
Thus it can be applied to every functional approximation ever
suggested and every DFT calculation ever performed, including
the first ever Thomas-Fermi atomic calculations.[74, 75] Our
focus here has been on KS calculations based on semi-local
approximations, where the HF density typically works to cure
significant density-driven errors, but DC-DFT can be applied
much more broadly. DC-DFT analysis will usually provide
different insights to these traditional analysis tools and may be
less useful. But more importantly, DC-DFT can unite aspects
of these other characterization tools.
Using DC-DFT to quantify errors in densities: A recent ap-
plication of DC-DFT involves answering an apparently very
simple question: How do you measure the accuracy of a
density?[43] A popular publication claimed that some of the
most recent empirical density functionals were producing worse
densities than earlier functionals, suggesting that DFT de-
velopment was ‘straying from the path’ toward the exact
functional.[76, 77] However, closer examination of the method-
ology used showed that the results found were due to the
choices made by the authors. Many papers commented on the
original claims[78, 79, 80], some referring to DC-DFT.

With the tools provided by DC-DFT, it is straightforward to
address this question from a pragmatic viewpoint. The first and
foremost point is that, despite its name, the primary purpose
of (ground-state) DFT is to produce ground-state energies for
different molecular configurations, not densities. Few users
ever output or examine the density closely, precisely because it
is not what matters to their results. Thus the success of DFT
in predicting those energies does not depend on how accurately
approximations reproduce the density. Nevertheless, when the
density or a property computed from it (e.g., electrostatic
potential, partial atomic charges, etc.) is of interest to a user,
it is usually better to use HF densities than SC ones provided
that a calculation is density sensitive. This is illustrated later
in Figure 9, where we compare HF and DFT atomic charges
as we stretch NaCl.
Of course, the exact functional reproduces both the exact

energy and the exact density but, as we have seen, a functional
which yields usefully accurate energies need not yield accurate
densities. This leads directly to a second important point. No
matter how one might choose to measure density errors (and
there are infinitely many choices, including infinitely many
reasonable ones), there must be some sense of scale. If density
differences are miniscule, why should anybody care, as they

will have essentially no impact on predicted energies? Thus
DC-DFT is the perfect tool for answering this question, as it
measures the accuracy of densities directly in terms of their
impact on the energy.
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Figure 8: Density errors for a density-insensitive case (a, He
atom) and an extremely density-sensitive case (b, H−), for HF,
PBE, and M06. An aug-cc-pV5Z basis is used, QMC density
references from [47], and convergence method for H− given in
Ref. [43], with 0.33 electrons lost by PBE, 0.31 by M06.

Figure 8 shows density errors for two very different two
electron systems. The first is the He atom which is density-
insensitive. Errors in these densities have little effect on en-
ergies. Furthermore, given the error profiles, which approxi-
mation has the ‘best’ density? The ranking depends entirely
on one’s choice of measure. On the right, we have the same
errors for H−. This is a case of extreme density sensitivity,
and was used as the prototype[20] for understanding density
sensitivity. These are among the ‘largest’ density errors found
in self-consistent DFT calculations, yet they are comparable
in magnitude to those in He. But the observant will notice
that the approximate functionals (PBE and M06 here) have
errors that do not integrate to zero! How can this be? In
fact, a correct self-consistent calculation[20] has about 0.3
electrons escape entirely from the system (and a HOMO of
exactly zero).
There are two lessons here. First, in almost all interesting

cases and all those discussed in this article, the density errors
are small and subtle. We have never been able to understand
energetics from studying these small differences directly. The
relationship between densities and approximate XC is just far
too complicated. On the other hand, we never need to do this,
as our measures are all based on calculable energies, which
speak for themselves.
The second lesson concerns electron affinities, and is more

subtle. A popular method for calculating anions with self-
consistent semi-local functionals is to use a basis set similar
to that used for the neutral, and find electron affinities by
subtraction. This method works surprising well, often yielding
errors smaller than those of ionization potentials. But a sure
sign that the anionic calculation is unconverged is the existence
of a positive HOMO.[81, 82, 83] The basis-set is artificially
binding the last electron. The fully converged calculation is
like that of H− shown, with a fraction of the last electron
lost to the void. The beauty of the DC-DFT treatment is
that it produces a well-bound density for the anion without

8



a positive HOMO, and yields accuracies comparable to the
artificial methods in common practice. In fact, it was studies
of this issue[84, 85, 86], mostly couched in the language of self-
interaction, that ultimately led to the more general concepts
of DC-DFT[20].
Using DC-DFT to avoid altering the fraction of exact exchange:
Becke introduced the idea of a (global) hybrid functional,
replacing a fraction of GGA exchange with HF.[87, 88] It has
since become common to vary the fraction of HF exchange in
DFT calculations, both for molecules and materials.[89, 90, 91]
In the molecular case, different functionals are designed with
different amounts. The original global hybrids had about 20-
25 % exchange, for reasons that could at least be understood,
but more recent (and often more accurate) functionals might
have ’2X’, or about 50 % mixing,[92] and many double-hybrid
functionals have even more.[93, 94] But at least the amount is
fixed once and for all. In materials calculations, it has become
increasingly popular to vary the amount of mixing, in order to
position the single-particle levels at some desirable location,
such as putting defect levels correctly in a gap. Adjusting the
amount for each different system actually leaves the realm of
DFT, as your functional has picked up an illegal dependence
on the external potential. Of course, the adjustment may
well be describing good physics, but the road to (formal) hell
is paved with good (physical) intuition. DC-DFT is much
less sensitive to the exchange portion than its self-consistent
counterpart providing reliable energies without adjusting the
fraction of exact exchange. In Figure 4, the purple bars differ
by about 3 kcal/mol for different functionals, but the white
dots differ by twice that amount. This strongly suggest that
such adjustments are simply trading density-driven errors for
functional errors, obscuring the underlying physics. Practical
DC-DFT never suffers from this problem because it always uses
the same HF density. Very often, high accuracy is achieved
with the moderate exchange fraction used in popular hybrids
such as B3LYP and PBE0.
The ease of performing DC-DFT calculations: As a practical
matter, for molecular calculations, it is trivial to evaluate a
density functional on the HF density (and orbitals, if needed).
One simply converges a HF calculation and then use its solution
as the initial guess in a DFT calculation, while setting the
number of iterations to zero. The computer will evaluate
the DFT energy on those orbitals without updating them.
Scripts for performing this operation are available from the
website.[95]

In fact, this is not quite the same as evaluating on the HF
density, as the HF kinetic energy is not quite the same as the
KS kinetic energy.[96] However, this difference has been found
to be much smaller than the improvement typically provided
by using HF densities in cases where density-driven errors are
large.[45] (See also Figure 11 below). In other words, HF
densities do far more good than harm for density-sensitive
calculations. Moreover, to the extent practical with finite basis
sets, the differences with using the exact density have been
found to also be very small, i.e., use of HF-DFT yields almost
all the benefits that the exact density would confer.

DC-DFT fixes problems with heteronuclear stretched bonds:
A major problem with semi-local DFT is failures in binding
energy curves. Typically, as bonds are stretched substantially
beyond equilibrium values, some qualitatively incorrect behav-
ior appears. For stretched heteronuclear diatomics, because
semi-local functionals are smooth, they allow an incorrect
fractional charge to be transferred, while the exact functional
localizes integer numbers of electrons on each sight. The
classic prototype is NaCl(gas), which dissociated into neutral
atoms, unlike NaCl(aq) which dissociates into ions. In the
stretched limit, semi-local DFT tends to unphysically transfer
0.4 electrons to the Cl ion. This additional fraction of an
electron (and missing fraction from Na) causes the SC-DFT
binding energy curve to be almost 1 eV too low at large bond
distances, as shown in Figure 9. Because HF localizes charges
(more or less correctly, see inset), HF-DFT yields a much more
accurate curve. This correct localization in DC(HF)-DFT can
be seen clearly on the right, where the LOL has been plotted
in a plane including the bond axis.
DC-DFT and functional development: One way to illustrate
the relevance of DC-DFT is to study the evolution of non-
empirical functionals and their global hybrids on the total
energy (or ionization energy) of the simplest possible system,
a single H atom.[16, 44, 97] In Figure 10, we consider LDA
(SVWN), PBE, and SCAN, and study their behavior under
interpolation toward the exact functional, in this case HF, i.e.,
EDFA

XC + α(EHF
X −EDFA

XC ). For α = 0, we have the original
functional, but for α = 1, we have pure HF. For α = 0.25, we
have (almost) PBE0 (except correlation has been reduced by
25 %).

The functional error of LDA is enormous on this scale, but
the density-driven contribution is very small, illustrating the
normalcy of this system and the high typical accuracy of even
LDA densities. But note the accuracy of the total energy of
PBE, i.e., at α = 0. That this is accidental can be seen both
by the increased deviation as α grows, but more relevant is
that the total error is small because the functional and density-
driven errors are both much larger in magnitude, but mostly
cancel. In fact, this cancellation is greatest at α = 0 and is
less effective as more of the exact answer is added. Technically,
this makes the H atom density sensitive for PBE, but this is
entirely due to the accidental accuracy at self-consistency.
Finally, we see that SC-SCAN has a larger energy error

than SC-PBE for the H atom, but in fact this is all density-
driven. The SCAN functional error is zero for the H atom, by
construction, but its error is non-zero when performed self-
consistently. It can be perfectly possible for an approximate
functional to be designed to be self-interaction error free for
exponential densities, and yet produce a finite density-driven
error for the H atom, because it’s XC potential will be incorrect.
Ironically, SCAN is less accurate for the H atom than PBE is,
despite SCAN using the H atom as an appropriate norm.

Figure 1(d) showed the PES of self-consistent and DC PBE
calculations of OH·Cl−. Figure 11 shows what is happening
as OH·Cl− dissociates, breaking down the PBE errors into
their density-driven and functional-driven components, i.e., it
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Figure 9: (a) Binding energy of NaCl molecule from self-consistent DFT (blue triangles) and DC(HF)-DFT (red circles) compared
to reference CCSD(T) calculations(white circles), using B3LYP in the def2-QZVPPD basis.[41] The inset shows the intrinsic atomic
orbital charge of Na atom. (b) Localized orbital locator of HF (left) and PBE (right) for NaCl at 5.0 Å.

is like Figure 10, but looking here at differences. The shaded
regions indicate uncertainties due to the limitations of KS
inversion methods with atomic basis sets, which we use to
reverse-engineer the ’exact’ density and KS orbitals from a
correlated wavefunction.[45] The density-driven component is
sufficiently large as to be off-scale beyond about 2.5 Å. Also
plotted are the errors of HF-PBE and the small error due to
using the HF kinetic energy instead of the KS kinetic energy.

How DC-DFT can improve density-insensitive calculations:
Our last point in the theoretical section concerns functional
development. Double-hybrid functionals, those including frac-
tions of both HF exchange and MP2 (or other) correlation
energy, have been developed and yield extremely high accu-
racy, albeit at computational costs greater than traditional
DFT calculations. In many cases, their densities are so good
that one cannot imagine them suffering from a significant
density-driven error.
But, you might be surprised. The parameters in such

functionals are chosen by minimizing errors on large cu-
rated databases, such as the GMTKN55 collection of 55
databases.[12] This process matches the calculated energetic
errors relative the exact energies, not the functional errors.
Moreover, the densities used in the calculation are typically
not quite self-consistent, as it is more involved[99, 100] to
optimize a functional involving MP2 (which depends on orbital
energies). Thus the finding of the best parameters has (very
small) inefficiencies. Because these functionals are so accurate,
it only requires a very little density-driven error to make them
suboptimal.
We recently used this insight to demonstrate such issues,

creating our own 1-parameter double-hybrid, BL1p, but opti-
mized to minimize functional errors rather than total energy
errors.[46] For standard semilocal density functionals, DC-DFT
tells us to use HF densities in density-sensitive cases. But
because of the inclusion of approximate ab initio correlation

in double-hybrids, the fraction of exact exchange is typically
much higher, and it is fine to always use HF density as long
as training is done with that density. The crucial step is
to train on the functional error alone, i.e., subtracting the
density-driven contribution from energy errors. Thus BL1p
fixes the failures of standard double-hybrids for typical density
sensitive calculations (e.g., dissociation of NaCl)[46, 52], but
also provides improvements for density insensitive cases as will
be illustrated below.
In Figure 12, we show results for the DARC database of

Diels-Alder reactions. These reactions are long known as cases
where standard functionals like B3LYP fail badly, and even
double-hybrids. The figure shows B2PLYP, perhaps the most
popular current double-hybrid, along with the more recent DSD-
PBEP86.[101] On the other hand, BL1p uses the exact same
ingredients, contains only one empirically determined parame-
ter and uses the HF density. Furthermore, BL1p is trained on
atomization energies of ony 6 molecules, while DSD-PBEP86
is trained on many more datapoints. The improvement of
BL1p over B2PLYP is remarkable, further reinforcing the need
to account for DC-DFT even with the latest, greatest ap-
proximations. We have recently shown that DFT calculations
for DARC reactions are density insensitive making their er-
rors almost entirely functional-driven.[46] Nevertheless, our
BL1p still gives improvement for the DARC dataset because
it is designed by the minimization of functional errors, while
density-driven errors are taken care already by its construction.

IV. Challenges

As we have seen, the concept of density-driven errors is becom-
ing widespread in the chemical literature and to a lesser extent,
in the materials world.[102, 103, 104] Moreover, increasing
numbers of authors are finding that the selective use of HF
densities does indeed significantly reduce density-driven errors.
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Figure 10: Total errors (squares) and their components of three approximate functionals on the H atom, as a function of interpolation
to HF (exact here), in the def2-QZVPPD basis. At α = 0, PBE is almost exact self-consistently, but only due to a cancellation of
functional (triangles) and density-driven errors (circles), while SCAN is noticeably worse self-consistently, because only its functional
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Figure 11: Various energy error components of a PBE OH·Cl−
curve. Inset shows atomic charge on Cl atom. Reproduced from
Ref. [45] Copyright 2020 American Chemical Society.

In this section, we list some of the more obvious limitations of
the current theory and also where it might be expanded.
Stretched H2 and H+

2 : Our first stop is the iconic prototypes of
self-interaction error and strong correlation in chemistry. These
are the binding energy curves of H+

2 and H2, respectively. The
H+

2 curve is a pure example of unbalanced self-interaction error.
Because it is a one-electron system, HF densities and energies
are exact. But essentially any semi-local approximation has
an unbalanced error in going from the equilibrium situation to
the stretched bond, where half an electron localizes on each
proton. The self-interaction error changes greatly, leading to
a very unfortunate binding energy curve. The other example
is stretched H2, where the problem is 1/2 an electron of each
spin being localized on each proton.[32, 105] A restricted KS
calculation with a semi-local approximation will dissociate to
incorrect fragments with the wrong energetics (namely, spin-
unpolarized H atoms).

In its current form, DC-DFT has nothing to say about how
semi-local DFT can be improved for these systems, as they do
not appear to be density sensitive. The errors made by the
semi-local approximations on the stretched bonds are not much
different if one uses exact densities or approximate restricted
densities. And evaluation of the approximate functionals on
the exact densities still produces the large errors. Thus these
are functional errors by our current classification scheme.

But did we not say that a success of DC-DFT was to improve
the dissociation limit of many molecules? Yes we did, but
these are heteronuclear molecules whose stretched limit is not
symmetric, and whose HF density is much more accurate in
that limit, because of charge localization. We suspect that
some generalization of DC-DFT ought to be able to include
both stretched H+

2 and H2 but we have not yet found it.
Energy-density consistency: A second challenge is to restore
self-consistency. While there are firm theoretical justifica-
tions for building DFT approximations to be applied to HF
densities,[106, 107, 108, 109] we have already mentioned the
many practical advantages of using self-consistent densities. In
fact, in principle, restoring self-consistency is always straight-
forward with any approximation for the energy. If we consider
EN [v] as the DC(HF)-DFT energy for any given problem,
characterized by external potential v(r) and N electrons, then
the corresponding density is just its functional derivative with
respect to v(r), which can always be calculated by making
small changes, v(r) + δv(r) pointwise in space. Thus one can
imagine performing such a calculation on the DC(HF)-DFT
energy. This would produce a density that differs from both the
HF and the self-consistent (of the original XC approximation)
densities. While easy in principle, in practice it may not be,
and one could use a basis set to represent this density to avoid
doing the calculation pointwise. It would be very interesting
to see in what way such a density differed from its progenitors,
and if it looked more like the exact density.
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Figure 12: Parity plots for Diels-Alder reaction energies pertaining to the DARC dataset, with double-hybrids compared against
high-level W1-F12 reference. BL1p and B2PLYP calculated using def2-QZVPPD basis, while DSD-PBEP86 is from Ref. [94] and
reference energies and geometric information on the DARC[98] dataset are from Ref. [12].

Of course, a much more satisfactory approach is to con-
struct functionals that yield both good energetics and good
densities when performed self-consistently.[110] Perhaps the
foremost approach is that of Yang and co-workers in this
direction.[33] Their approach is designed to reduce delocaliza-
tion errors (both functional- and density-driven components)
by explicitly imposing the well-known linearity condition with
respect to particle number.[111] Many failures in DFT are at-
tributed to deviations from this condition.[112] Cohen and co-
workers have recently constructed DeepMind 21, a functional
where machine learning has been used to address deviations
from linearity condition.[113] This and other machine-learning
approaches[114, 115] are also very promising when it comes
to building functionals that give both good energetics and
self-consistent densities.

Using DC-DFT to analyse orbital-free DFT errors: A major use
would be to apply it to orbital-free DFT (OF-DFT). The few
cases we have considered suggest that many orbital-free approx-
imations yield errors that are dominated by their density-driven
component. When the KS kinetic energy is approximated, even
if very accurately, even small imperfections in the derivative
will yield large errors in the density.[44] Thus DC-DFT allows
one to balance improvements in the approximate potential
(and therefore the density) relative to those of the KS kinetic
energy functional itself, such as whether exact conditions on
the potential are relevant to the energies.[116] This is an area

with great potential applications. In the light of DC-DFT, an-
other way to view the genius of KS is that it (usually) reduces
density-driven errors to negligible amounts.
Complications with transition metal chemistry: There are many
more applications of DC-DFT in main group than in transi-
tion metal chemistry. But transition metal applications are
slowly catching up. We illustrated Fe(II) spin gaps earlier.
Also, Martín-Fernández and Harvey applied their normalized
sensitivity metrics to classify Fe and FeMo clusters by their
density sensitivity.[56] In general, more tests are needed to see
whether HF densities improve density-sensitive calculations of
transition metal compounds to the extent they do for main
group molecules. In these cases, it is less clear that the HF
density is sufficiently close to the exact density to guarantee
improvement of energetics.
Applications to bulk materials and their surfaces: Another ne-
glected area of application is in materials and surface science.
Almost all our own work has involved molecular calculations.
In molecular cases, the HF density is easy to calculate, and is
often a good proxy for the exact density in density-sensitive
cases. The need for DC-DFT analysis may well be even greater
in materials calculations than in molecular calculations. Do we
really know if and when calculations in materials and surface
science suffer from substantial density-driven errors? There
are a few cases described in the literature, where the results
of semi-local calculations have been analyzed by DC-DFT.
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In some instances (e.g., the adsorption of CO on metallic
surfaces), better results were obtained by the use of presum-
ably more accurate densities.[102] In other cases, such as the
challenging barrier height for attaching O2 to the Al(111) sur-
face, semi-local calculations appear to benefit little from more
accurate densities.[103] Nevertheless, there are still too few
cases of applying DC-DFT in materials and surface science to
draw general conclusions about when and how these fields can
benefit from DC-DFT. Furthermore, HF calculations can be
formally and computationally problematic in periodic systems.
Janesko overcomes this difficulty by applying DC-DFT without
HF exchange.[16]
Forces and geometry optimization with DC-DFT: From Fig-
ure 1(d), we saw that DC-DFT also improves standard DFT
forces and geometries in density-sensitive calculations. While
there are a few codes that can be used to run geometry op-
timizations by using DC-DFT[34], these are not yet widely
available. A more widespread implementation of DC-DFT
forces and reactive potentials would facilitate molecular dy-
namics based on DC-DFT (to be used in e.g., atmospheric
chemistry for odd-electron radical complexes).[23] Such im-
plementations would make it possible to study DC-DFT’s
performance for geometries as well as energies.[37]
Excited states in DC-DFT: We are often asked about apply-
ing the concepts of DC-DFT to excited states, such as from
the predictions of TDDFT in linear response.[117, 118] How-
ever, excited-states do not have their own Hohenberg-Kohn
theorem[119] and so the variational principle upon which so
much of DC-DFT is built does not apply here. On the other
hand, there has been a resurgence of interest in ensemble DFT
to extract excited-state energies.[120, 121, 122] Ensemble DFT
is based on a variational principle using the density, and so the
analysis methods of DC-DFT can be applied.[122, 123]
We conclude by simply noting that DC-DFT is based

on a simple one-line decomposition of DFT errors, based
on the variational principle. In the past, many aspects of
this decomposition had been noticed and mused over in
understanding DFT results, but DC-DFT is a formal analysis
that puts all these disparate pieces (and disparate sources of
error) together. The concepts of DC-DFT are appearing more
and more frequently in the chemistry and materials literature,
and calculations using DC-DFT are being reported. As long
as researchers continue to use KS-DFT as a standard tool for
scientific discovery, DC-DFT will play an ever-expanding role
in analyzing the inevitable errors.
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