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Testing the kinetic energy functional: Kinetic energy density
as a density functional
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A new method for defining an energy density for the noninteracting kinetic energy of density
functional theory is given. The resulting energy density is a density functional determined
completely by the kinetic energy functional itself. Although this method is not constructive, it allows
for a direct comparison between exact and approximate functionals pointwise in space. For simple
systems, the new energy density is calculated exactly, and compared with traditional choices, on
both formal and physical grounds. Finally, the energy densities of both the gradient expansion and
the von Weizsa¨cker approximation are calculated, and compared with the exact quantity. The errors
in the von Weizsa¨cker approximation are identified. ©2003 American Institute of Physics.
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I. INTRODUCTION

Density functional theory is a very popular method f
finding the ground-state of electronic systems.1 In most mod-
ern density functional calculations, the Kohn–Sha
equations2 are solved for a set of orbitals, the sum of who
densities equals~in principle! the exact ground-state densi
n(r ), and from which the ground-state energy can be
tracted. The only approximation in this scheme is to
exchange-correlation energy as a functional of the densit
large part of the total energy, the kinetic energy of the Koh
Sham orbitals,Ts , is treated exactly, but at the comput
tional cost of needing to solve the Kohn–Sham equations
N orbitals, whereN is the number of electrons. However, if
sufficiently accurate approximation toTs as a functional of
the density were known, then one would only need to solv
single integrodifferential equation directly for the densi
without recourse to constructing the orbitals. Such a met
would be, by design, an orderN method, meaning that th
computational cost would scale with the number of electr
in the system, and be far faster than present Kohn–S
calculations for large systems. The search for accurate
proximations toTs@n# has a long history,3,4 and remains an
active area of research.5–13

A useful tool in this search for an accurate approxim
tion to Ts is the kinetic energy density. By a kinetic energ
density, we mean any function over real space that integr
to Ts :

Ts5E d3rt s~r !. ~1!

Such a definition does not determinets(r ) uniquely. Addition
of any function whose integral vanishes, e.g.,¹2n(r ), to a
valid ts(r ) produces another valid kinetic energy densi
Two popular choices are
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ts
WFI~r !52 1

2 (
i 51

N

f i* ~r !¹2f i~r ! ~2!

and

ts
WFII~r !5 1

2 (
i 51

N

u¹f i~r !u2, ~3!

wheref i(r ) is the i th Kohn–Sham orbital in anN-electron
system. The label WF refers to wave function, because th
definitions explicitly employ the KS orbitals. Both thes
definitions are valid and are useful in different contexts. F
finite systems these forms integrate to the same global
netic energy, but they differ locally and are related to ea
other via3

ts
WFI~r !5ts

WFII~r !2 1
4¹

2n~r !. ~4!

The kinetic energy densities based on these choices are
ted in Fig. 1 for a single particle in a finite rectangular p
tential well. The first choice has the advantage of being
form of the kinetic energy that appears explicitly in th
Schrödinger equation, while the latter enjoys the benefit
being positive everywhere. Plots of such densities often p
vide insight into solutions of the Kohn–Sham equations a
the mechanisms by which chemical reactions proceed.16,17

The nonuniqueness of the kinetic energy density has b
studied extensively in the literature. For example, Ya
et al.18 thoroughly examined wave-function-based defi
tions, showing that pointwise energy conservation and a s
cific asymptotic behavior uniquely constrain the choice
wave-function-based kinetic energy density.

However, the present paper tackles an entirely differ
question: How does one define the kinetic energy density
a densityfunctional? The traditional wave function choice
of Eqs.~2! and~3! arenot explicit density functionals.~They
are orbital functionals, and so only implicit densi
functionals.20! A fundamental difficulty in discussing ap
0 © 2003 American Institute of Physics
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proximatedensity functional kinetic energy densities is t
know which of the infinitely many choices allowed by E
~1! that a given approximate kinetic energy density is tryi
to approximate.19 This is particularly important if one is de
veloping density functional approximations forTs@n# that
are not based on approximations to a specific wave func
choice of energy density. A desirable feature of any dens
functional choice of kinetic energy density is a degree
near-sightedness.14,15 A choice that changes drastically as
result of a perturbation far away is unlikely to provide use
physical insight. This paper demonstrates how one g
about constructing kinetic energy densities that are exp
densityfunctionals,ts

DF@n#(r ), determined by the kinetic en
ergy functional itself. For example, in one-dimension f
noninteractingv-representable densities,ts

DF@n#(x) can be
chosen to satisfy the relationship,

dts
DF@n#~x!

dx
52

n~x!

2

dvs@n#~x!

dx
, ~5!

where vs(x) is the Kohn–Sham potential. Sincevs(x)
52dTs /dn(x) modulo a constantm, the chemical potential
this is an explicit density functional determined byTs@n#.
Later, we will prove thatTs@n#5*dx ts

DF@n#(x). Such a
choice is not only an explicit density functional, but also h
some useful features for physical interpretation. In Fig. 1
can be seen that our choice is extremely near-sighted,15 al-
most as near-sighted as the potential itself. For particles i

FIG. 1. Comparison of different choices of kinetic energy density for sin
particle in a one-dimensional finite box potential well:~a! Rectangular po-
tential well ~thin line! and the ground state density~thick line! and ~b!
kinetic energy densities~atomic units!.
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infinite well, using Eq.~5! yields a constant kinetic energ
density for any number of electrons, whereas either of
wave function choices become uniform only in the inter
when there are a large number of particles in the box. Wh
ts
DF@n#(x), defined by Eq.~5!, is not constructive~because

we do not know the exactvs as a functional of density! it is
useful for being both extremely near-sighted and allowin
pointwise comparison for different approximations toTs@n#,
independent of their various origins and any assumpti
made in their construction.

The paper is divided as follows: In Sec. II, we descri
how kinetic energy densities that are density functionals
be designed with specific properties. In Sec. III we illustra
several simple one-dimensional examples as well as
three-dimensional hydrogen atom. Section IV discusses
act conditions and the Thomas–Fermi kinetic energy den
which is exact for a uniform electron gas. In Sec. V t
details of our calculations are explained and in Sec. VI
discuss convergence of the semiclassical gradient expan
for the kinetic energy density of the hydrogen atom. In S
VII the von Weizsa¨cker approximation is thoroughly exam
ined and its correction terms are derived. Finally, summ
and outlook appear in Sec. VIII. We use atomic un
throughout this paper (e25me5\51).

II. CONSTRUCTION

The Euler equation for noninteracting electrons is21

dTs

dn~r !
1vs~r !5m, ~6!

wherem is the chemical potential. Therefore the function
derivative of the kinetic energy is just the negative of t
Kohn–Sham potential, up to a constant. As we restrict o
selves here to density changes that leave the total numb
electronsN fixed, this constant is irrelevant.

Performing an integration by parts on the defining re
tion for an energy density, Eq.~1!, leads to

Ts5E d3r t s~r !52E d3r r•¹ts~r !/D, ~7!

where D is the dimensionality of the space. To satisfy t
scaling relationTs@ng#(r )5g2Ts@n#(r ) where ng5n(gr ),
the virial theorem for noninteracting electrons wi
v-representable densities is usually written as21

2Ts5E d3r n~r !r•¹vs~r !. ~8!

The integrand of Eq.~8! can be determined from the densi
and one may attempt to use it as a definition forts

DF(r ).
However, this integrand is origin-dependent and this is pr
lematic for systems with more than one nucleus. On the o
hand, since n(r )¹vs(r ) is a well-defined vector field
throughout space, vanishing outside finite systems, it can
written as the gradient of a scalar plus the curl of a vecto22

2
D

2
n~r !¹vs~r ![¹ts

DF~r !1¹3as~r ! ~9!

e
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8142 J. Chem. Phys., Vol. 118, No. 18, 8 May 2003 Sim et al.
with the auxiliary condition thatts(r )→0 asr→`. Inserting
Eq. ~9! into Eq. ~8! and comparing with Eq.~7!, we see that
Eq. ~9! does indeed define a kinetic energy density. The c
term in Eq.~9! plays no role in the energy density. An ea
way to see this is to take the divergence of both sides of
~9!, yielding

¹2ts
DF~r !52

D

2
¹$n~r !¹vs~r !%, ~10!

i.e., ts
DF(r ) satisfies a Poisson equation whose source is

gradient of the KS force density. This methodology w
originally devised to produce an exchange-correlation ene
density from the corresponding potential.23 It is important to
note that the choice ofts

DF(r ) in Eq. ~9! is not unique, e.g.,
one may add¹2n to ts

DF(r ) and still have a density
functional kinetic energy density. This is always true beca
the gradient of the density is always zero wherer→` and
the integral of the Laplacian is equivalent to the surface
tegral of the gradient,

E d3r¹2n~r !5E dS•¹n~r !. ~11!

In Eq. ~9! ts
DF(r ) is determined from the density and th

Kohn–Sham potential, which allows one to compare diff
ent functional approximations on the same ground and
explain how functionals with poor potentials can still obta
good energies. It is also devised in such a way that in
limit of a uniform gas, the exact Thomas–Fermi~TF! kinetic
energy density is recovered.

The above derivation applies to the density functio
for the kinetic energy. Spin-density results are easily
tracted from the exact spin-scaling relation,21

Ts@n↑ ,n↓#5 1
2~Ts@2n↑#1Ts@2n↓# !, ~12!

where the right-hand terms are density functionals w
n↑(n↓) being spin-up~spin-down! density. Since the virial
theorem applies to each density functional on the right-ha
side separately, the spin-density functional for the kine
energy density is

ts
DF@n↑ ,n↓#~r !5 1

2~ ts
DF@2n↑#~r !1ts

DF@2n↓#~r !!. ~13!

In particular, for a fully polarized system,

ts
DF,pol@n,0#~r !5 1

2ts
DF@2n#~r !. ~14!

We conclude this section by relating the formalism
other work. Our DF construction is closely related to ana
sis of the microscopic stress tensor.24,25The ambiguity in the
energy density mirrors the more general ambiguity in
stress tensor at a point. To see the relationship, note th
microscopic stress tensor must satisfy

f~r !52¹•sJ~r !, ~15!

where f~r ! is the force density,2n(r )¹v(r ), and sJ is the
symmetric stress tensor. Clearly one can add any symm
tensor with vanishing divergence to the right of Eq.~15! and
find a new stress tensor. The formal link to the specific c
here can be seen by considering the KS stress tensor o
right, whose divergence is the KS force density. Compare
Eq. ~9! and taking divergence of both sides, we find
Downloaded 16 Jul 2003 to 128.6.71.63. Redistribution subject to AIP
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DF~r !5

2

D E d3r 8
] i] js i j ~r 8!

ur2r 8u
. ~16!

The source of this ambiguity has been nicely identified
Rogers and Rappe.26 Only if one allows unphysical distor
tions of space~leading to nonflat metrices! can one unam-
biguously determine a stress tensor. But physical systemdo
have flat metrices, and the remaining formal ambiguity h
been identified.26 On the other hand, one may resort to phy
cal arguments to choose a certain energy per particle
tracted from the wave function, and discuss the remain
ambiguity.27 All these efforts26,27consider the energy densit
as a functional of the wave function, rather than as adensity
functional.

III. ILLUSTRATIONS

To better understand the behavior of the exactts
DF(r ), we

consider several simple examples. The two traditional w
function definitions ofts

WF(x) are compared withts
DF(x). In

one dimension, Eq.~9! reduces to Eq.~5!. Note thatts
DF(x) is

constant whenevervs(x) is constant which is not the case fo
the traditional kinetic energy densities. In Fig. 1, kinetic e
ergy densities of a single particle in a finite potential w
illustrate this behavior due to the constant potential with
the box. Note that our kinetic energy density is finite on
inside the box, making it more near-sighted~in this example!
than the other two densities.

An important feature of these energy densities is th
behavior as the number of particles grows. In particular
one wishes to treat both solids, including metals, and m
ecules, they should behave well in the thermodynamic li
of systems with delocalized orbitals. Figure 2 shows the t
WF and our DF kinetic energy densities for ten spinless f
mions in an infinite well. All three definitions give the sam
constant density in the thermodynamic limit (N→`,N/L
→n), but the DF choice is uniform forall finite N, whereas
the WF definitions exhibit strong oscillations.

To demonstrate the effect of nonconstant potentials
Fig. 3 we present the results from one particle in a harmo
potential well. While the ground state density andts

DF(x)

FIG. 2. Same as Fig. 1~b!, but for ten spinless fermions in an infinite po
tential well.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8143J. Chem. Phys., Vol. 118, No. 18, 8 May 2003 Testing the kinetic energy functional
have Gaussian shapes, wave function definitions give n
tive values or zero at the potential minimum where the d
sity has the maximum value. The DF curve is nicely peak
where the maximum of the density is peaked, but does
vanish anywhere. In one-dimension, for any number of e
trons we find~see Appendix! that ts

DF(x) is the average of the
two wave function kinetic energy densities,

ts
DF~x!5 1

2@ ts
WFI~x!1ts

WFII~x!#. ~17!

In the Appendix it is shown that this result is valid for
particle in a one-dimensional potential well and, furthermo
that ts

DF(x) can be expressed as

ts
DF~x!5

1

16n~x! S dn~x!

dx D 2

1
1

2
@E2v~x!#n~x!, ~18!

which clearly shows thatts
DF(x) is positive in the classica

region.
Although for some three-dimensional systems, e.g

particle in a harmonic oscillator potential well,ts
DF(r ) is also

the average ofts
WFI(r ) and ts

WFII(r ), this is not always the
case. But for any spherical system, the equation for our
netic energy density is very simple,

dts
DF

dr
~r !52

3

2
n~r !

dvs~r !

dr
~19!

yielding

FIG. 3. Same as Fig. 1, but for a single particle in harmonic oscilla
potential well ofk51.
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DF~r !52

3

2 Er

`

dr8n~r 8!
dvs~r 8!

dr8
. ~20!

As our final illustration in this section, we consider th
simplest one-electron system in three dimensions: the hy
gen atom. The exact results can be found analytically w
the ground state density,

n~r !5
1

p
e22r , ~21!

from which the wave function kinetic energy densities a
obtained

ts
WFII~r !5

1

2p
e22r ~22!

and

ts
WFI~r !5S 2

r
21D ts

WFII~r !. ~23!

As the hydrogen atom has only one electron, the Koh
Sham potential is21/r , therefore, one can easily calcula
the density-functional kinetic energy density,

ts
DF~r !5

3

2pr
e22r2

3

p
Ei~2r !, ~24!

where the exponential integral is defined as

Ei~x!5E
x

`

dx8
e2x8

x8
. ~25!

In the Appendix we also show that in general for a particle
a three-dimensional spherically symmetric potential well,

ts
DF~r !5

3

2
@ ts

WFI~r !1ts
WFII~r !#23E

r

`

dr8
1

r 8 S df

dr8D
2

.

~26!

In Fig. 4~a! we plotted the21/r potential and the ground
state density of the hydrogen atom, while in Fig. 4~b! com-
pared the three definitions of radial kinetic energy dens
Once again we find the DF choice combines the virtues
the other two: it is peaked where the density is, yet ne
goes negative.

IV. EXACT CONDITIONS

We may prove the analogous formulas for the behav
of Coulombic systems as are done in the traditional case.
out in the tail of a neutral atom or molecule,

vs~r !→21/r ~27!

and

n~r !→ufHOMO~r !u2, r→`, ~28!

therefore,

ts
DF~r !5E

r

`

dr8
3ufHOMO~r 8!u2

2r 82 , r→`. ~29!

r
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For a neutral atom or molecule,fHOMO(r )'Arbe2ar , a
5A2I , b51/a21 with I being the ionization energy, yield
ing

ts
DF~r !5

3

2
A2

e22ar

2a
r gH 11

g

2ar
1

g~g21!

~2ar !2

1
g~g21!~g22!

~2ar !3 1¯J , r→` and b<1,

~30!

whereg52(b21).
On the other hand, near a nucleus the KS potentia

dominated by the external contribution,2Z/r , while the
density becomesn(r )5n(0)(122Zr1¯) via Kato’s cusp
condition.28 This yields

ts
DF~r !53n~0!ZS 1

2r
1Z log~r !1¯ D , r→0. ~31!

The singularity at the origin is shared by WFI; in Fig. 4~b!
this is damped by 4pr 2.

At the other extreme is the uniform gas, the paradigm
solid state systems. Our specific choice of density-functio
ts
DF(r ) was made to recover the usual formula for the u

form gas29,30

FIG. 4. Same as Fig. 1, but for the hydrogen atom.
Downloaded 16 Jul 2003 to 128.6.71.63. Redistribution subject to AIP
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ts
DF5Asn

5/3, As5
3

10
~3p2!2/3. ~32!

This ensures the near-sightedness demonstrated in Fig.

V. TESTING APPROXIMATIONS

So far, we have discussed only exact properties of
new DF definition for a kinetic energy density. For the rest
the paper, we use it to analyze the performance of sev
common approximations to the kinetic energy functional.
do this, we use the output of any standard Kohn–Sham
culation. For the particular cases studied here, namely ato
we use the fully numerical OEP code of Engel31 to solve the
KS equations with exact exchange and no correlation, but
could be equally solving within the local~spin! density ap-
proximation. At the self-consistent solution, the KS potent
is the exact KS potential for the self-consistent density~even
though that isnot the exact density for the original physica
problem!. Thus we can construct the exactts

DF(r ) for that
density via Eq.~4!.

To construct an approximatets
DF(r ), we begin by func-

tionally differentiating the approximation forTs@n#, to yield
the corresponding approximatevs@n#(r ). We then evaluate
this on the KS density mentioned above, and solve Eq.~9!
for the correspondingts

DF@n#(r ). This typically leads to an
energy density that differs from the traditional choice for t
given approximation.

VI. CONVERGENCE OF GRADIENT EXPANSION
FOR ATOMS

In the extreme of a uniform or slowly-varying electro
gas, the gradient expansion for the first-order density ma
has been calculated in a semiclassical expansion up
sixth-order.3,19 The traditional energy density in terms of th
first-order density matrix is given up to sixth-order. The low
est order is the Thomas–Fermi functional,29,30 which be-
comes exact as the number of electronsN→` in any fixed
potential. The next order yields19 of the von Weizsa¨cker cor-
rection; the fourth-order32 and the sixth-order terms33 have
also been determined explicitly. Unfortunately for atoms a
molecules, finding better accuracy for the kinetic ene
functional through gradient corrections ends at the four
order because the sixth-order gradient correction for atom
known to diverge.

Because our construction was designed to recover
usual energy density for a uniform gas, the densi
functional kinetic energy density for the TF approximation
simply the conventional one, i.e.,Asn

5/3(r ) with no addi-
tional terms integrating to zero. However, this is not true
any higher-order terms. In Fig. 5, one can easily see the p
behavior of the gradient expansion as higher-order correc
terms are included. The addition of the second-order cor
tion generally improved the energy density. But the four
order correction does little, except to add an unphysical s
gularity near the nucleus and make the energy den
diverge at larger.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We conclude that our new methodology clearly demo
strates that, for real finite systems, the second-order grad
correction improves the energy density of the zeroth-ord
but that even fourth-order terms worsen it.

VII. ANALYSIS OF THE VON WEIZSÄ CKER
APPROXIMATION

For two unpolarized electrons, there is only one relev
orbital, f(r )5An(r )/2, yielding in Eq.~3!,

ts
VW~r !5

u¹n~r !u2

8n~r !
~33!

whose integral is the von Weizsa¨cker functional.34 This func-
tional is well-known to be exact in the tail of any Coulomb
system, because the density matrix is dominated by
HOMO, whose decay is least rapid. In the traditional a
proach, the von Weizsa¨cker approximation also becomes e
act asr→0, because by inserting the nuclear cusp condit
n(r→0)5n(0)(122Zr)1O(r 2) into the von Weizsa¨cker
functional, it is readily verified thatts

VW(r ) satisfies the exac
cusp condition,3

ts~r→0!5 1
2Z

2n~0!. ~34!

Applying our methodology, the DF energy density forTs
VW is

defined by

¹ts
VW,DF~r !52

D

16
n~r !¹F u¹n~r !u2

n~r !2 2
2¹2n~r !

n~r ! G . ~35!

Note how it depends on much higher gradients than the
ditional choices. Equation~29! shows thatts

VW,DF(r ) is also
exact in the von Weizsa¨cker approximation at larger. Since
the derivation of Eq.~31! does not depend on the number
electrons, the von Weizsa¨cker approximation becomes exa
near a nucleus as well. This behavior is clearly illustrated
Fig. 6 for the Be atom. As r→0 and as r→`,
ts
VW,DF(r )/ts

DF(r )→1, with deviations only occurring in the
intershell region nearr 51.

We can go further and explore the differences betw
the exact and von Weizsa¨cker density-functional kinetic en

FIG. 5. Gradient expansion and exact density-functional kinetic energy
sities ~radial! for the hydrogen atom. The vertical line at the origin repr
sents ad-function contribution from the fourth-order correction term.
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ergy densities in terms of the orbitals. Consider the Sch¨-
dinger equation for the Bose orbital35,36w~r ! of anN particle
system by definingw(r )5An(r )/N such that*d3r uw(r )u2

51,

$2 1
2¹

21vVW~r !%w~r !5eNw~r !, ~36!

wherevVW(r ) is the von Weizsa¨cker potential andeN is the
eigenvalue of the HOMO. Rewrite the Kohn–Sham orbit
using the Bose orbital by introducing the orbital fractio
h i(r ),

f i~r !5h i~r !w~r !, ~37!

where the orbital fractions satisfy the sum ru
( i 51

N uh i(r )u25N anduh i(r )u2 represents the fraction of den
sity in the i th orbital. If uh i(r )u is close to unity for a single
i, it is an isoorbital region. In Fig. 7 we show the Kohn
Sham orbitals and their corresponding orbital fractions
the Be atom. Only nearr 51 is there much change in an
h i(r ).

Substituting Eq.~37! into the Kohn–Sham orbital equa
tion leads to

2 1
2$h i¹

2w12¹h i¹w1w¹2h i%1vs~r !h iw5e ih iw.
~38!

Applying ( i 51
N h i on both sides and using the sum rule, o

can rewrite Eq.~38! as

2
1

2
¹2w1

1

2N
w(

i 51

N

u¹h i u21vs~r !w5
1

N (
i 51

N

e i uh i u2w. ~39!

Comparing Eq.~36! and Eq.~39! gives the difference be
tween the exact and von Weizsa¨cker potential in terms of the
orbital fractions and their gradients,

vs~r !5vVW~r !1vGRAD~r !1vEIGEN~r !, ~40!

where

n-FIG. 6. Radial kinetic energy densities of the Be atom: solid line is the ex
DF kinetic energy density, dashed line is the von Weizsa¨cker approximation
to that energy density.
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vGRAD~r !52
1

2 (
i 51

N

u¹h i u2 ~41!

and

vEIGEN~r !52
1

N (
i 51

N21

~eN2e i !uh i u2. ~42!

The gradient correction term is due to the gradient of
orbital fractions. This term is small in iso-orbital regions, b
produces a strong dip in intershell regions. The eigenva
correction term is more steplike when moving from one
bital to the next. Both are always negative, so thatvVW(r )
.vs(r ),36 but this is not true for the corresponding cont
bution to ts

DF(r ) which are found by inserting Eq.~40! into
Eq. ~9!.

In Fig. 8 the exact Kohn–Sham calculation and the v
Weizsäcker approximation results are compared. It is int
esting to see that in Fig. 8~a! the von Weizsa¨cker potential
has more features than the Kohn–Sham potential. It is
noteworthy that, near the nucleus, there is a constant co
bution fromvEIGEN(r ) due to the 1s orbital, which decrease
as the dominating orbital shifts from 1s to 2s. Meanwhile,
vGRAD(r ) has most of the contribution at the intershell regi
nearr 51. Although the potential correction terms appear

FIG. 7. Kohn–Sham orbitals of the Be atom and their corresponding or
fractions@see Eq.~37!#.
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have simple valley- and steplike features, Fig. 8~b! shows
that the corresponding corrections ints

DF(r ) are not necessar
ily as predictable. For atoms with complicated shell stru
tures, more than three or four orbital fractions may contr
ute to the corrections as shown in the Ar atom case in Fig
which makes it difficult to estimate the shape of the corr
tion terms.

VIII. SUMMARY AND OUTLOOK

In this paper, we have provided a novel route to defin
the energy density of the noninteracting kinetic energy d
sity functional. Our method is not directly constructive. W
have not suggested in this work any new kinetic energy d
sity functional, and our method does not provide a syste
atic route toward one. It simply provides a method for stud
ing and understanding the success and limitations
suggested approximations forTs@n#.

We have compared our method to the traditional a
proach, on both formal and physical grounds. Since
method produces a density functional determined comple
by the kinetic energy functional itself, we have been able
assess the performance of the traditional approximation
the kinetic energy pointwise in real space. We directly s
the failure of the gradient expansion to converge for fin

al

FIG. 8. ~a! Kohn–Sham potential and~b! radial DF kinetic energy density
contributions in the Be atom: solid line is the result of the exact Koh
Sham calculation, dashed line is the von Weizsa¨cker approximation, dotted
and dot–dashed lines corresponds to the gradient and eigencorrection t
respectively, in Eq.~40!.
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8147J. Chem. Phys., Vol. 118, No. 18, 8 May 2003 Testing the kinetic energy functional
systems, and the breakdown of the von Weizsa¨cker approxi-
mation in regions dominated by more than one orbital.
recommend that the many recent suggestions in the litera
be subjected to this test. For spherical systems, the only
trivial requirement is calculation of the functional derivativ
i.e., the Kohn–Sham potential.

We note also that one cannot simply suggest functio
approximations for the density functional kinetic energy
self. One can only suggest approximations for the total
netic energy, then functionally differentiate, and so constr
the corresponding approximatets

DF@n#(r ). This can look
very different from the original energy density, and it is th
that one is trying to make more accurate. A successful u
versal approximation toTs@n# will surely have an accurate
ts
DF@n#(r ).
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FIG. 9. Kohn–Sham orbitals of the Ar atom and their corresponding orb
fractions.
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APPENDIX: RELATIONSHIP BETWEEN DEFINITIONS
OF KINETIC ENERGY DENSITY

In this Appendix, we construct an explicit relationsh
between the density functional and wave function definitio
of kinetic energy. The density functional kinetic energy de
sity ts

DF(x), for a particle in a one-dimensional potential we
is defined by

dts
DF

dx
52

1

2
n~x!

dvs

dx
52

1

2
f2

dvs

dx
. ~A1!

The inverted Schro¨dinger equation is

vs~x!5E1
1

2f

d2f

dx2 . ~A2!

Differentiating and multiplying byufu2, yields Eq.~17! and
also can be written as Eq.~18!. More generally, for spheri-
cally symmetric systems, we find

ts
DF~r !5

D

2
@ ts

WFI~r !1ts
WFII~r !#

2a(
i 51

N E
r

`

dr8
1

r 8 S df i

dr8 D
2

, ~A3!

whereD is dimensionality anda50,1,3 for the one-, two-,
and three-dimensional cases.
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