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Testing the kinetic energy functional: Kinetic energy density
as a density functional
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A new method for defining an energy density for the noninteracting kinetic energy of density
functional theory is given. The resulting energy density is a density functional determined
completely by the kinetic energy functional itself. Although this method is not constructive, it allows
for a direct comparison between exact and approximate functionals pointwise in space. For simple
systems, the new energy density is calculated exactly, and compared with traditional choices, on
both formal and physical grounds. Finally, the energy densities of both the gradient expansion and
the von Weizseker approximation are calculated, and compared with the exact quantity. The errors
in the von Weizseker approximation are identified. @003 American Institute of Physics.
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I. INTRODUCTION we N
_ 1 2

Density functional theory is a very popular method for ts () ? Z IVEi(r) @
finding the ground-state of electronic systehiis.most mod- and
ern density functional calculations, the Kohn—Sham
equation$ are solved for a set of orbitals, the sum of whose F” . N 5
densities equalén principle) the exact ground-state density (r=z Z [Vei(n]%, ©)
n(r), and from which the ground-state energy can be ex-
tracted. The only approximation in this scheme is to thewhere;(r) is theith Kohn—Sham orbital in ail-electron
exchange-correlation energy as a functional of the density. &stem. The label WF refers to wave function, because these
large part of the total energy, the kinetic energy of the Kohn-definitions explicitly employ the KS orbitals. Both these
Sham orbitals T, is treated exactly, but at the computa- definitions are valid and are useful in different contexts. For
tional cost of needing to solve the Kohn—Sham equations fofinite systems these forms integrate to the same global ki-
N orbitals, whereN is the number of electrons. However, if a Netic energy, but they differ locally and are related to each
sufficiently accurate approximation f as a functional of ~other vid
the den_sity were know.n, then one wquld only need to solye a t\SNFI(r) =t\SNF”(r) —1y2n(r). (4)
single integrodifferential equation directly for the density,
without recourse to constructing the orbitals. Such a method he kinetic energy densities based on these choices are plot-
would be, by design, an ordé method, meaning that the ted in Fig. 1 for a single particle in a finite rectangular po-
computational cost would scale with the number of electrongential well. The first choice has the advantage of being the
in the system, and be far faster than present Kohn-Sha#@rm of the kinetic energy that appears explicitly in the
calculations for large systems. The search for accurate afchralinger equation, while the latter enjoys the benefit of
proximations toTn] has a long history;* and remains an being positive everywhere. Plots of such densities often pro-
active area of researcht3 vide insight into solutions of the Kohn—Sham equations and

A useful tool in this search for an accurate approxima-the mechanisms by which chemical reactions procéeéd.
tion to T is the kinetic energy density. By a kinetic energy The nonuniqueness of the kinetic energy density has been

density, we mean any function over real space that mtegrat&uOlled extensively in the literature. For example, Yang
to Ty: et al!® thoroughly examined wave-function-based defini-

tions, showing that pointwise energy conservation and a spe-
cific asymptotic behavior uniquely constrain the choice of
TS:f d3rt(r). (1)  wave-function-based kinetic energy density.
However, the present paper tackles an entirely different

question: How does one define the kinetic energy density as
Such a definition does not determityér) uniquely. Addition  a densityfunctional? The traditional wave function choices
of any function whose integral vanishes, eg?n(r), to a  of Egs.(2) and(3) arenot explicit density functionals(They
valid tg(r) produces another valid kinetic energy density.are orbital functionals, and so only implicit density
Two popular choices are functionals®®) A fundamental difficulty in discussing ap-
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12 . ' infinite well, using Eq.(5) yields a constant kinetic energy
(@ density for any number of electrons, whereas either of the
wave function choices become uniform only in the interior
9r Ve when there are a large number of particles in the box. While
t2n](x), defined by Eq(5), is not constructivgbecause
we do not know the exacts as a functional of densijyit is
useful for being both extremely near-sighted and allowing a
pointwise comparison for different approximationstign],
independent of their various origins and any assumptions
oG made in their construction.
/\ The paper is divided as follows: In Sec. I, we describe
0 how kinetic energy densities that are density functionals can
-1 0 1 2 be designed with specific properties. In Sec. lll we illustrate
6 ' : several simple one-dimensional examples as well as the
(b) —oF three-dimensional hydrogen atom. Section IV discusses ex-
-~ WEI act conditions and the Thomas—Fermi kinetic energy density
—— WFI which is exact for a uniform electron gas. In Sec. V the
AR details of our calculations are explained and in Sec. VI we
= AN "‘x./ \ discuss convergence of the semiclassical gradient expansion
= / ,.-"’\\ FAVR for the kinetic energy density of the hydrogen atom. In Sec.
0 = N/ N VII the von Weizsaker approximation is thoroughly exam-
ined and its correction terms are derived. Finally, summary
and outlook appear in Sec. VIIl. We use atomic units
throughout this paperef=m,=%=1).

_3 1 1
-1 0 1 2

FIG. 1. Comparison of different choices of kinetic energy density for single“' CONSTRUCTION

particle in a one-dimensional finite box potential weé#) Rectangular po- . . . .
tential well (thin line) and the ground state densitthick line) and (b) The Euler equation for noninteracting eIeCtron?é IS

kinetic energy densitie@tomic unit3. ST
S
m+vs(f)—ﬂ, (6)

proximate density functional kinetic energy densities is t0 \here 4 is the chemical potential. Therefore the functional
know which of the infinitely many choices allowed by Eq. gerivative of the kinetic energy is just the negative of the
(1) that a given approximate kinetic energy density is tryingk ohn—Sham potential, up to a constant. As we restrict our-
to approximate?” This is particularly important if one is de- selves here to density changes that leave the total number of
veloping density functional approximations fai[n] that  glectronsN fixed, this constant is irrelevant.

are not based on approximations to a specific wave function  performing an integration by parts on the defining rela-
choice of energy density. A desirable feature of any densitytion for an energy density, Eq1), leads to

functional choice of kinetic energy density is a degree of
near-sightednesé:'® A choice that changes drastically as a T ZJ & t(r)= _J' drr-Vi(r)/D @
result of a perturbation far away is unlikely to provide useful S S S ’

physical insight. This paper demonstrates how one goegnerep s the dimensionality of the space. To satisfy the
about constructing kinetic energy densities that are expllClgca"ng relationT[n.](r) = ¥2T[n](r) wheren,=n(yr)
Y Y !

densityfunctionals,t"[n](r), determined by the kinetic en- o irial theorem  for noninteracting electrons with

ergy functional itself. For example, in one-dimension forv-representable densities is usually writteA'as
noninteractingv -representable densitieé":[n](x) can be

chosen to satisfy the relationship,

dtgTnlx) _ n() donl(x)
dx -7 dx ®)  The integrand of Eq(8) can be determined from the density
_ . _ and one may attempt to use it as a definition g¥(r).
where vy(x) is the Kohn—Sham potential. Sinces(x)  However, this integrand is origin-dependent and this is prob-
= — &Ts/én(x) modulo a constan, the chemical potential, |ematic for systems with more than one nucleus. On the other
this is an explicit density functional determined By n]. hand, sincen(r)Vug(r) is a well-defined vector field
Later, we will prove thatT{n]=/dx t'[n](x). Such @ throughout space, vanishing outside finite systems, it can be

choice is not only an explicit density functional, but also has,yritten as the gradient of a scalar plus the curl of a veor,
some useful features for physical interpretation. In Fig. 1, it

can be seen that our choice is extremely near-sightet,
most as near-sighted as the potential itself. For particles in an

2TS=J d3r n(r)r-Vogr). )

D DF
—En(r)Vvs(r)EVtS (r)+Vxagr) (9
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with the auxiliary condition that(r)—0 asr —o°. Inserting 4000 T T T T
Eq. (9) into Eqg.(8) and comparing with Eq(7), we see that

Eq. (9) does indeed define a kinetic energy density. The curl

term in Eq.(9) plays no role in the energy density. An easy 3000
way to see this is to take the divergence of both sides of Eq.

(9), yielding

X 2000

VA1) =~ 2 V{n(r)Vus(r), (10

i.e., tOF(r) satisfies a Poisson equation whose source is the 1000
gradient of the KS force density. This methodology was
originally devised to produce an exchange-correlation energy
density from the corresponding potenfialt is important to 0 : : : :

note that the choice af(r) in Eg. (9) is not unique, e.g., : : '
one may addV?n to t27(r) and still have a density-
functional kinetic energy density. This is always true becausé&!G: 2. Same as Fig.(), but for ten spinless fermions in an infinite po-
the gradient of the density is always zero whereo and  e"tial well

the integral of the Laplacian is equivalent to the surface in-

tegral of the gradient,

d9;0;(1")

|r_rr| (16)

tsDF(r)=§f d®r’
The source of this ambiguity has been nicely identified by

In Eq. (9) t"(r) is determined from the density and the Rogers and Rapp&.Only if one allows unphysical distor-
Kohn—Sham potential, which allows one to compare differ-tions of spaceleading to nonflat metricéscan one unam-
ent functional approximations on the same ground and t®iguously determine a stress tensor. But physical systems
explain how functionals with poor potentials can still obtain have flat metrices, and the remaining formal ambiguity has
good energies. It is also devised in such a way that in theeen identified® On the other hand, one may resort to physi-
limit of a uniform gas, the exact Thomas—Fer(TiF) kinetic  cal arguments to choose a certain energy per particle ex-
energy density is recovered. tracted from the wave function, and discuss the remaining

The above derivation applies to the density functionalambiguity?’ All these effort$®?’ consider the energy density
for the kinetic energy. Spin-density results are easily exas a functional of the wave function, rather than akeasity

J d3rV2n(r)=JdS-Vn(r). (11

tracted from the exact spin-scaling relatfon, functional.
Tdn;.n 1=3Td2n,1+TL2n]), (12
where the right-hand terms are density functionals with“l' ILLUSTRATIONS
n;(n;) being spin-up(spin-down density. Since the virial To better understand the behavior of the ex8ttr), we

theorem applies to each density functional on the right-handeonsider several simple examples. The two traditional wave
side separately, the spin-density functional for the kineticfunction definitions oft?'"(x) are compared with2"(x). In

energy density is one dimension, Eq9) reduces to Eq5). Note thatt2(x) is
tOFn, . 1(r) = 2t°F 2n, 1(r) + 2 2n (). 13 constan_t _vvhene_vers_(x) is constant.v.vh|ch is not the.cas.e for
s [Ny =2(t"T2n (0 +t2n, J(r) (13 the traditional kinetic energy densities. In Fig. 1, kinetic en-
In particular, for a fully polarized system, ergy densities of a single particle in a finite potential well
illustrate this behavior due to the constant potential within
t0"Ptn,0](r) = 42T 2n](r). (14) b

the box. Note that our kinetic energy density is finite only
We conclude this section by relating the formalism toinside the box, making it more near-sightgad this examplg
other work. Our DF construction is closely related to analy-than the other two densities.
sis of the microscopic stress tenédf> The ambiguity in the An important feature of these energy densities is their
energy density mirrors the more general ambiguity in thebehavior as the number of particles grows. In particular, if
stress tensor at a point. To see the relationship, note that@ne wishes to treat both solids, including metals, and mol-
microscopic stress tensor must satisfy ecules, they should behave well in the thermodynamic limit
H(r)=—V.5(r) (15 of systems with dglogalized orbitals.. Figure 2 shovys the two
' WF and our DF kinetic energy densities for ten spinless fer-
wheref(r) is the force density;-n(r)Vou(r), and& is the  mions in an infinite well. All three definitions give the same
symmetric stress tensor. Clearly one can add any symmetrmonstant density in the thermodynamic limiN- oo, N/L
tensor with vanishing divergence to the right of Etp) and  —n), but the DF choice is uniform faall finite N, whereas
find a new stress tensor. The formal link to the specific caséhe WF definitions exhibit strong oscillations.
here can be seen by considering the KS stress tensor on the To demonstrate the effect of nonconstant potentials, in
right, whose divergence is the KS force density. Compared téig. 3 we present the results from one particle in a harmonic
Eq. (9) and taking divergence of both sides, we find potential well. While the ground state density atﬁf(x)
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0.75

tEF(r)=—gJ’rwdr’n(r’)dU;S ). (20)

As our final illustration in this section, we consider the

. simplest one-electron system in three dimensions: the hydro-
gen atom. The exact results can be found analytically with
the ground state density,

0.5

1
0.25 : n(ry=—e 2, (21)
o
from which the wave function kinetic energy densities are
obtained
0
3 1
- [ ter(r)=5—e ™ (22)
(b) and
L — DF | |
e A W WFI 2 WFII
—— WFII tg (r)=<F—1 tg (r). (23
= As the hydrogen atom has only one electron, the Kohn—
-~ o1 | | Sham potential is-1/r, therefore, one can easily calculate
) the density-functional kinetic energy density,
t°F(r)==—e 2r—EEi(2r) (24)
s 2ar T '
~0.1 4 : where the exponential integral is defined as
-3 -1 1 3
X o e X
Ei(x)=f dx'——. (25)
FIG. 3. Same as Fig. 1, but for a single particle in harmonic oscillator X X

potential well ofk=1. ) . . )
In the Appendix we also show that in general for a particle in

a three-dimensional spherically symmetric potential well,

have Gaussian shapes, wave function definitions give nega- de\2

tive values or zero at the potential minimum where the den-  t2F(r)=_ [tWF'(r)+tWF“(r)] 3f dr’ —(—) _

sity has the maximum value. The DF curve is nicely peaked dr’

where the maximum of the density is peaked, but does not (26)

vanish anywhere. In one-dimension, for any number of electn Fig. 4a) we plotted the— 1/r potential and the ground

trons we find(see AppendixthattSF(x) is the average of the  state density of the hydrogen atom, while in Figb)4com-

two wave function kinetic energy densities, pared the three definitions of radial kinetic energy density.
DF, WFI WFII Once again we find the DF choice combines the virtues of
00 =T 00+ a9 the other two: it is peaked where the density is, yet never

In the Appendix it is shown that this result is valid for a goes negative.

particle in a one-dimensional potential well and, furthermore,

thatt>F(x) can be expressed as

1 (dn(x) 2

1
00 | ~ax ) +5[E-v(0In), (18
We may prove the analogous formulas for the behavior
which clearly shows thaty"(x) is positive in the classical of Coulombic systems as are done in the traditional case. Far
region. out in the tail of a neutral atom or molecule,
Although for some three-dimensional systems, e.g., a
particle in a harmonic oscillator potential welY"(r) is also vs(r)— =1 (27
the average of!'™'(r) andt?"(r), this is not always the gnq
case. But for any spherical system, the equation for our ki-

tDF( X)= IV. EXACT CONDITIONS

netic energy density is very simple, n(r)—| oM r—oo, (28
dtdF 3 dog(r) therefore,
ar (r)———n( ) ar (19 3| $HOMO(r 1) |2
to°(r)= f dr' —————, r—® (29)
yielding 2r'? ’ '

Downloaded 16 Jul 2003 to 128.6.71.63. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8144 J. Chem. Phys., Vol. 118, No. 18, 8 May 2003
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FIG. 4. Same as Fig. 1, but for the hydrogen atom.

For a neutral atom or molecule™MO(r)~Arfe ¢ «
=\2l, B=1/a—1 with | being the ionization energy, yield-
ing

—2ar

2a

-1
S0

Y - -
' 2ar | (2ar)?

3
tr(r) =5 A?

Y(y—1)(y—2)

(30

wherey=2(8—-1).

On the other hand, near a nucleus the KS potential
dominated by the external contribution;Z/r, while the
density becomes(r)=n(0)(1—2Zr+---) via Kato's cusp
condition?® This yields

t°(r)=3n(0)Z i+Z|o 0 31
s or g(r)+---|, r—0. (31

The singularity at the origin is shared by WFI; in Figb
this is damped by 4r2.

Sim et al.

3
ter=An’,  Ag=15(37%)% (32)

This ensures the near-sightedness demonstrated in Fig. 2.

V. TESTING APPROXIMATIONS

So far, we have discussed only exact properties of our
new DF definition for a kinetic energy density. For the rest of
the paper, we use it to analyze the performance of several
common approximations to the kinetic energy functional. To
do this, we use the output of any standard Kohn—Sham cal-
culation. For the particular cases studied here, namely atoms,
we use the fully numerical OEP code of Entjeb solve the
KS equations with exact exchange and no correlation, but we
could be equally solving within the loc#spin) density ap-
proximation. At the self-consistent solution, the KS potential
is the exact KS potential for the self-consistent den@tyen
though that isnot the exact density for the original physical
problem. Thus we can construct the exa@F(r) for that
density via Eq.(4).

To construct an approximat€ (r), we begin by func-
tionally differentiating the approximation farg n], to yield
the corresponding approximate[n](r). We then evaluate
this on the KS density mentioned above, and solve (BY.
for the correspondingSDF[n](r). This typically leads to an
energy density that differs from the traditional choice for the
given approximation.

VI. CONVERGENCE OF GRADIENT EXPANSION
FOR ATOMS

In the extreme of a uniform or slowly-varying electron
gas, the gradient expansion for the first-order density matrix
has been calculated in a semiclassical expansion up to
sixth-order>*® The traditional energy density in terms of the
first-order density matrix is given up to sixth-order. The low-
est order is the Thomas—Fermi functioAaf® which be-
comes exact as the number of electrohs:~ in any fixed
potential. The next order yieldsof the von Weizseker cor-
rection; the fourth-ordéf and the sixth-order term$have
also been determined explicitly. Unfortunately for atoms and
molecules, finding better accuracy for the kinetic energy
ifunctional through gradient corrections ends at the fourth-
Brder because the sixth-order gradient correction for atoms is
known to diverge.

Because our construction was designed to recover the
usual energy density for a uniform gas, the density-
functional kinetic energy density for the TF approximation is
simply the conventional one, i.eAn®3(r) with no addi-
tional terms integrating to zero. However, this is not true for
any higher-order terms. In Fig. 5, one can easily see the poor
behavior of the gradient expansion as higher-order correction
terms are included. The addition of the second-order correc-

At the other extreme is the uniform gas, the paradigm fortion generally improved the energy density. But the fourth-
solid state systems. Our specific choice of density-functionabrder correction does little, except to add an unphysical sin-

DF
tS

form gag®%°

(r) was made to recover the usual formula for the uni-gularity near the nucleus and make the energy density

diverge at large.
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FIG. 5. Gradient expansion and exact density-functional kinetic energy denf!C. 6. Radial kinetic energy densities of the Be atom: solid line is the exact
sities (radia) for the hydrogen atom. The vertical line at the origin repre- DF kinetic energy density, dashed line is the von Weikea approximation
sents as-function contribution from the fourth-order correction term. to that energy density.

We conclude that our new methodology clearly demon- o ) ) .
strates that, for real finite systems, the second-order gradieRfgy densities in terms of the orbitals. Consider the Schro

correction improves the energy density of the zeroth-orderdinger equation for the Bose orbita?® ¢(r) of anN particle

but that even fourth-order terms worsen it. system by definingp(r)=yn(r)/N such thatfd%|¢(r)|?
=1,

VII. ANALYSIS OF THE VON WEIZSA CKER P

APPROXIMATION {=2Vo+ow(Nte(r)=eve(r), (36)
For two unpolarized electrons, there is only one relevanivherev,,(r) is the von Weizseker potential andy is the

orbital, ¢(r)=+/n(r)/2, yielding in Eq.(3), eigenvalue of the HOMO. Rewrite the Kohn—Sham orbitals

2 using the Bose orbital by introducing the orbital fractions

ts(r)= Aillh 33 (N
s ~8n(r) e

whose integral is the von Weizsiker functionaP* This func- $i(r)=ni(r)e(r), (37)

tional is well-known to be exact in the tail of any Coulombic . . .

system, because the density matrix is dominated by th§/here the orbital fractions satisfy the sum  rule
HOMO, whose decay is least rapid. In the traditional ap->i-1l7(")|°=N and|z;(r)|” represents the fraction of den-
proach, the von Weizsier approximation also becomes ex- sity in theith orbital. If | %;(r)| is close to unity for a single

act asr—0, because by inserting the nuclear cusp conditior]: 't 1S @n isoorbital region. In Fig. 7 we show the Kohn-
n(r—0)=n(0)(1—2Zr+0(r?) into the von Weizseker Sham orbitals and their corresponding orbital fractions for

the Be atom. Only near=1 is there much change in any

functional, it is readily verified that!"V(r) satisfies the exact

cusp conditior?, n(m. . .
- Substituting Eq(37) into the Kohn—Sham orbital equa-

ts(r—0)=3Z°n(0). (34 tion leads to

Applying our methodology, the DF energy density Tqr" is
PRy ¥ ¥ v —H{mV2e+2VnVe+oVinl+uyr) nie=enie.
defined by (39)
VWDE D [Vn(n)|> 2v2n(r) N _ _
Vi (r)=——=n(r)V 7 . (39  Applying ={L ;% on both sides and using the sum rule, one
16 n(r) n(r) i
can rewrite Eq(38) as

Note how it depends on much higher gradients than the tra-
ditional choices. Equatiof29) shows that?""°"(r) is also 1, N , 1 N ,
exact in the von Weizsker approximation at large Since ~ 5V ¢+ m@izl Vil ?+og(r)e= Nizl &l 7il%¢. (39

the derivation of Eq(31) does not depend on the number of
electrons, the von Weizeker approximation becomes exact Comparing Eq.(36) and Eq.(39) gives the difference be-

near a nucleus as well. This behavior is clearly illustrated inyeen the exact and von Weizsar potential in terms of the

F\}%DFG foDrF the Be atom. Asr—0 and asr—=,  qpjtal fractions and their gradients,

tg o (r)/tg (r)—1, with deviations only occurring in the

intershell region near=1. vs(r) =vyw(r) +veran(r) +vecenr), (40
We can go further and explore the differences between

the exact and von Weizsker density-functional kinetic en- where
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[ FIG. 8. (8) Kohn—Sham potential an@) radial DF kinetic energy density
contributions in the Be atom: solid line is the result of the exact Kohn—

FIG. 7. Kohn—Sham orbitals of the Be atom and their corresponding orbitaSham calculation, dashed line is the von Weikea approximation, dotted
and dot—dashed lines corresponds to the gradient and eigencorrection terms,

fractions[see Eq.(37)].
respectively, in Eq(40).

have simple valley- and steplike features, Figb)8shows
(41)  that the corresponding correctionstﬁf(r) are not necessar-
ily as predictable. For atoms with complicated shell struc-
and tures, more than three or four orbital fractions may contrib-
N—1 ute to the corrections as shown in the Ar atom case in Fig. 9,
which makes it difficult to estimate the shape of the correc-

1
veicen(l) = — N izl (en—ei)] ”i|2' (42) tion terms.

N

1
verap(f)=— 521 |V77i|2

The gradient correction term is due to the gradient of the\/lll SUMMARY AND OUTLOOK

orbital fractions. This term is small in iso-orbital regions, but
produces a strong dip in intershell regions. The eigenvalue In this paper, we have provided a novel route to defining
correction term is more steplike when moving from one or-the energy density of the noninteracting kinetic energy den-

bital to the next. Both are always negative, so tha/(r) sity functional. Our method is not directly constructive. We
>v4(r),% but this is not true for the corresponding contri- have not suggested in this work any new kinetic energy den-
bution totg":(r) which are found by inserting Eq40) into  sity functional, and our method does not provide a system-
Eq. (9). atic route toward one. It simply provides a method for study-
In Fig. 8 the exact Kohn—Sham calculation and the voning and understanding the success and limitations of
Weizszker approximation results are compared. It is inter-suggested approximations o n].

esting to see that in Fig.(& the von Weizseker potential We have compared our method to the traditional ap-
has more features than the Kohn—Sham potential. It is alsproach, on both formal and physical grounds. Since our
noteworthy that, near the nucleus, there is a constant contrinethod produces a density functional determined completely
bution fromvg,cen(r) due to the % orbital, which decreases by the kinetic energy functional itself, we have been able to
as the dominating orbital shifts fromslto 2s. Meanwhile, assess the performance of the traditional approximations to
vgrap(r) has most of the contribution at the intershell regionthe kinetic energy pointwise in real space. We directly see
nearr =1. Although the potential correction terms appear tothe failure of the gradient expansion to converge for finite
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T T APPENDIX: RELATIONSHIP BETWEEN DEFINITIONS
OF KINETIC ENERGY DENSITY
In this Appendix, we construct an explicit relationship
1 between the density functional and wave function definitions
of kinetic energy. The density functional kinetic energy den-
= sity t2F(x), for a particle in a one-dimensional potential well
= is defined by
5
~ DF
05 I dtg 1 duvg 1 2dvs
ax - 2"Wax T 2% (A1)
The inverted Schidinger equation is
0 =E+ ¢ A2
US(X)_ 2¢ dX2 . ( )
' ' Differentiating and multiplying by ¢|?, yields Eq.(17) and
(b) also can be written as E¢18). More generally, for spheri-
1 cally symmetric systems, we find
DF D WFI WEFII
ts7 () = 5 [N+ (r)]
S N 2
£ = 1 /(dée;
_aigl ; dr I’_/(W) , (A3)
whereD is dimensionality andv=0,1,3 for the one-, two-,
and three-dimensional cases.
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