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Below we list the analytical expressions defining the Hubbard dimer bi-ensemble, and plot various weight-
dependent quantities of interest. In all plots we set t = 1/2.
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1. EXACT SOLUTION

We begin with the analytic solutions of the Hubbard
dimer that were used to create a bi-ensemble of the
ground and first-excited singlet states. Solving the dimer
Hamiltonian (Eq. 26), one obtains the energies:

Ei =
2U
3

+
2r
3

cos
[
θ +

2π(i + 1)
3

]
, i = 0, 1. (S.1)

Here we have defined

r =

√
3
(
4t2 + ∆v2) + U2, cos (3θ) =

9U
(
∆v2 − 2t2

)
− U3

r3 ,

where t represents the hopping parameter, U the on-site
electrostatic self-repulsion, and ∆v = v2 − v1 the on-site
potential difference. Furthermore, the wavefunction of each
state may be written as

|Ψi〉 = αi (|12〉 + |21〉) + β+
i |11〉 + β−i |22〉 , (S.2)

with coefficients:

αi =
2t (Ei − U)

ciEi
, β±i =

U − Ei ± ∆v
ci

,

ci =

√
2
[
∆v2 +

(
Ei − U

)2(
1 + 4t2/E2

i

)]
.

Here |i j〉 represents a state in which an electron is present
at sites i and j. These analytical expressions (both of
the energy and wavefunction) may also be found in the
appendices of References 1 and 2.

1.1. Densities

We use the same bi-ensemble as described in the main
text; the two lowest lying singlet states in the Hubbard
dimer. The density of each state is trivially ∆ni = 2

[(
β−i

)2
−(

β+
i
)2], meaning that the ensemble density is

∆nw = 2w
[(
β−0

)2
−

(
β+

0
)2
]

+ 2w
[(
β−1

)2
−

(
β+

1
)2
]
, (S.3)

where w = 1−w. Plots of this difference are included below
in Fig. S1 for three interaction strengths, U = 0, 1, & 5.

FIG. S1. Absolute value of the density of the Hubbard dimer bi-
ensemble, plotted for various weight values as a function of ∆v. Here
we set U = 0 (left), U = 1 (center), and U = 5 (right).

Analyzing this figure, it is clear that there are vast
differences in the behavior of ∆nw with respect to the
value of U, illustrating the importance of developing weight-
dependent approximations for electronic correlation. Two
characteristics are present in all plots of ∆nw, these being
an adherence to the symmetric limit (∆v = ∆nw = 0) and a
maximum value constraint imposed by the representability
condition |∆nw| ≤ 2w, which each curve approaches as
∆v→ ∞.

As predicted by EDFT (eq X), the density is linear in w.
For sufficiently large U, there exists a value of ∆v at which
the initial slope of the first excited state density difference
is negative, but it always becomes positive for sufficiently
large ∆v. Thus there is a specific value of ∆v at which the
first excited state density vanishes, and all curves meet at
that point, independent of w. This point tends to ∆v = U as
U becomes large.
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1.1 Densities Supp. Mat. for “Exact Conditions for EDFT”

FIG. S2. Total energy of the Hubbard dimer bi-ensemble plotted as
a function of ∆v for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

For finite values of U, a trend in curve steepness
with respect to the weight is evident for small ∆v; the
steepness of each curve is directly proportional to the
value of w, signifying that ensembles with larger w values
approach their maximum value more quickly. The severity
of steepness increases drastically as U is increased, as
shown by the behavior of the U = 5 curves as ∆v →
0. Here, the densities increase rapidly to |∆nw| ≈ 2w,
becoming nearly perfectly anti-symmetric around ∆v = U,
with a very sharp dive to 0 for very small ∆v.It also appears
that all ∆nw curves approach the same value at ∆v ≈ U
as U → ∞. As U → ∞ the density forms a step function,
flipping from 2w to 2w at ∆v = U (see Fig. S13).

1.2. Total Energies

In this section we depict plots of the total bi-ensemble
energy, Ew, defined as the weighted sum of Eq. 28. Here
we choose to depict two interaction strengths (U = 1 and
U = 5), plotting both as a function of ∆v and ∆nw below.
We make use of the derivation put forth by Deur et al. [1] to
define:

Ts,w = −2t
√

w2
− ∆n2

w/4 (S.4)

EHx,w =
U
2

(
1 + w −

(3w − 1)

w2

∆n2
w

4

)
. (S.5)

FIG. S3. Total energy of the Hubbard dimer bi-ensemble plotted as
a function of ∆nw for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

The correlation energies are then found by using the exact
expressions:

Tc,w = Tw − Ts,w, (S.6)

Uc,w = Vee,w − EHx,w, (S.7)

Ec,w = Tc,w + Uc,w. (S.8)

For fixed ∆v, Fig. S2 illustrates that Ew is correctly linear
in w. The curves are rather boring for U = 1, but develop
a pinch around ∆v = U as U grows larger (see Sec
X). However, Fig. S3 shows that, as a functional of ∆n,
the curves are no longer linear in w. They are not even
monotonic. Moreover as ∆nw → 2w, Ew → −∞, ensuring
the curves cross. There exists interesting behavior as U
is increased, with Ew becoming ever more slowly varying
with density for ∆nw < 2w. This behavior may be explained
through the relationship between ∆nw and ∆v shown in the
right panel of Fig. S1, where there is drastic change in ∆nw
for ∆v ≈ 0.

We also examine the properties of the Hubbard dimer
equivalent of the universal part of the density functional,
Fw = Ew − ∆v∆nw/2, plotting again as a function of ∆v and
∆nw in Figs. S4 and S5 respectively. In Fig. S4, one can
see that Fw is linear with respect to bi-ensemble weight
when plotted as a function of ∆v. This characteristic is
not present in Fig. S5, where monotonicity is broken as
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1.2 Total Energies Supp. Mat. for “Exact Conditions for EDFT”

FIG. S4. Fw/U of the Hubbard dimer bi-ensemble plotted as a
function of ∆v for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

∆nw → 2w. Furthermore, as U is increased, one can
see the appearance of regimes around ∆nw = 2w, with Fw
being nearly independent of ∆nw for ∆nw < 2w and linearly
increasing as ∆nw > 2w. Additionally, the curves depicting
Fw tend to flatten as w increases.

In contrast, we plot EHXC,w in Fig. S6 and see it is non-
monotonic in w. The curvature of EHXC,w changes from
convex to concave as the weight is increased and the EHXC,w
curves cross each other at various points; with the most
noticeable crossings happening at U = 1. However, the
curves cross at all the values of U plotted.

We conclude that curves become non-monotonic when
plotted as a functional of the density instead of the
potential, as the curves of Fig. S1 are definitely not
monotonic.

FIG. S5. Fw/U of the Hubbard dimer bi-ensemble plotted as a
function of ∆nw for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

FIG. S6. EHXC,w/U of the Hubbard dimer bi-ensemble plotted as a
function of ∆nw for various w values. Here we set U = 1 (top) and
U = 5 (bottom).
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1.2 Total Energies Supp. Mat. for “Exact Conditions for EDFT”

1.3. Correlation Inequalities

In this section we depict the correlation inequalities
(Eq. 21), showing more cases of Fig. 2 of the main text.
We highlight in Fig. S7 the definite signs of the correlation
energy and its components. This validates results initially
introduced by Pribram-Jones et al. [3]

FIG. S7. Variation of the potential (blue), kinetic (red), and total
(black) correlation energies in the Hubbard dimer bi-ensemble,
plotted as functions of site-occupation of the first site for various
weights. We set U = 1 in the left, U = 5 in the center, and U = 10 in
the right.

Looking at Figs. S8 and S9, one can see that the
correlation inequalities of Eq. 13 are satisfied for all values
of ∆nw. As noted in the main text, there exists a clear
trend with respect to weight for the symmetric dimer,
with the ground-state having the maximum magnitude in
each plot, and decreasing in magnitude with w. This
trend no longer holds for any nonzero value of ∆nw.
Alternative approaches were implemented in which ∆v was
held fixed, again showing no clear trend for asymmetric
dimers. Furthermore, it is clear that the inequalities of
Eq. 13 become equalities as ∆nw → 2w, explaining the
flat behavior of the w = 0.5 curves for ∆nw = 1. It also
appears that increasing U morphs the shape of each curve,
breaking symmetry around λ = 0.5 for EC and UC.

FIG. S8. Correlation inequalities (Eq. 21) for the total (top), kinetic
(middle), and potential (bottom) correlation energies, depicted by
varying λ in the Hubbard dimer bi-ensemble with U = 1.

FIG. S9. Correlation inequalities (Eq. 21) for the total (top), kinetic
(middle), and potential (bottom) correlation energies, depicted by
varying λ in the Hubbard dimer bi-ensemble with U = 5.

1.4. Adiabatic Connection

FIG. S10. Ensemble adiabatic connection for U = 5 and various
∆nw; circles represent the weight-dependent HX energy, which the
HXC expression approaches as λ→ 0.

In this section we include plots depicting more adiabatic
connection curves than just that of Fig. 3 of the main text.

We first note that all curves of a given weight look
similar to ground-state DFT curves. They are monotonically
decreasing and are convex. Looking at Fig. S10 one can
observe an interesting change in ordering of the HX energy
values based on the weights. For ∆nw < 0.6 the HX energy
monotonicly decreases in value as the weights increase
and the spacing between the values shrinks. However,
after that point the ordering shifts and the w = 0.5 weight
has the maximum HX value. Additionally, as the ∆nw → 1
the asymptotic value of the HXC expression is same for all
weights.
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1.4 Adiabatic Connection Supp. Mat. for “Exact Conditions for EDFT”

2. STRONG CORRELATION LIMITS OF ENERGY
COMPONENTS

2.1. Large U Expansions

For fixed w, as U becomes large, one can either keep ∆v
fixed, or ∆v/U fixed. The former was explored by Deur et
al. [4], and produces the pale blue curves of Fig. 5 of the
main text. As is clear from the figure, the blue curves yield
the correct answer only for |∆nw| ≤ 2w, which shrinks to a
point as w→ 0.

The appropriate expansion to find EC,w(∆n) for large U
is a different one. We take U → ∞, but keep ∆v/U
fixed. This must be done to include values of ∆n away from
∆n ≈ 0, while including all allowed values of ∆n. A careful
expansion yields the total energy as a function of x = ∆v/U:

Ew(x)→ U
g(0)

w (x) +
g(2)

w (x)
U2 + . . .

 , (S.9)

where

g(0)
w (x) =

1
3

(
2 − (c −

√
3s)h

)
−

2shw
√

3
, (S.10)

and

g(2)
w (x) =

1
2h

(
(α − 3)s
√

3
− (α + 1)c

)
+

1
h

(
αc +

√
3s

)
w, (S.11)

where α = |4x/(x2 − 1)|, c = cos(φ), and s = sin(φ) with,

φ =
1
3

cos−1
(

3h2 − 4
h3

)
, h =

√
3x2 + 1. (S.12)

The angle φ is positive for all values of x, where it takes its
maximal value of π/3 as x → 0 and minimal value of 0 as
x → ±1, and in the limit φ(x → ±∞) = π/6. Because the
angle is constrained to 0 ≤ φ ≤ π/3, the sine and cosine
must always satisfy 0 ≤ c, s ≤

√
3/2.

From this we have the corresponding density via the
exact expression ∆nw = 2dEw/d(∆v),

∆nw(x) = 2
g(0)′

w (x) +
g(2)′

w (x)
U2 + . . .

 , (S.13)

where primes denote derivatives with respect to x.
Retaining only zero-order terms yields,

g(0)′
w (x) =

1
h

(
(γ − 3x)s
√

3
− (γ + x)c

)
+

2
h

(
γc +

√
3xs

)
w,

(S.14)
with γ = sgn(x(1 − x2)). Because the expansion in U
is singular near x = 0 and x = ±1, g(2)

w (x) diverges at
|x| = 1, and even n(0)

w (x) = 2g(0)′
w (x) contains discontinuous

steps. While formally correct in the limit U → ∞, the exact

FIG. S11. The exact (black) correlation energy as a function of the
exact density and the leading-order expansion in large U (light red)
for the correlation energy, using S.10, plotted as a function of the
smooth approximation for the density, S.15.

density cannot have such steps, due to the Hohenberg-
Kohn theorems. We therefore smooth Eq. S.14 with
exponentials that become infinitely sharp as U → ∞:

∆nw ≈
x
|x|

( f (|x|)−1)
(
1 + (1 − 2w) tanh

(
β(|x| − 1)

2

))
, (S.15)

where f (x) =
(
exp(βx) + 1

)−1 is the Fermi-Dirac distribution
with β = 5U. This is plotted in Fig. S13 and is compared
with the exact density. As U → ∞, Eq. S.15 matches
Eq. S.14.

Finally we subtract the remaining components to find the
correlation energy:

EC,w(∆nw(x)) ≈ U
(
g(0)

w (x) −
x∆nw(x)

2
− eHx,w(∆nw(x))

)
− Ts,w(∆nw(x)) +

g(2)
w (x)
U

, (S.16)

where eHx,w(∆nw) = EHx,w(∆nw)/U. Including only lowest
order, and inserting the smooth density, Eq. S.15, yields
the plot in figure Fig. S11, and the curves in Fig. 5 of
the main text. We also plot the the next order contribution
to the correlation energy, Eq. S.16, in Fig. S12. To
avoid divergences from α at x = ±1 we use a smooth
approximation to the absolute values that appear in the
denominator of Eq. S.11.

2.2. Correlation Energy on the Adiabatic Connection

We produce an expression for Eλ
C,w(∆nw) where ∆nw

is kept fixed for each λ along the adiabatic connection.
For sufficiently large U we neglect all terms of O(1/U2)
and lower. In this limit, ∆nw(x) → ∆n(0)

w (x), and by the
adiabatic connection construction we have the requirement
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2.2 Correlation Energy on the Adiabatic ConnectionSupp. Mat. for “Exact Conditions for EDFT”

FIG. S12. The exact (black) correlation energy as a function of the
exact density and our higher-order expansion in large U (light purple)
for the correlation energy, S.16, plotted as a function of the smooth
approximation for the density, S.15.

FIG. S13. Smooth approximation for the density S.15 (light red) and
the exact density (black) S.3 plotted against ∆v.

that ∆v/U ≈ ∆vλ/(λU), where ∆vλ is the λ-dependent
potential that keeps ∆nw fixed along the connection. As
a consequence, to leading-order,

∆vλ(∆nw) ≈ λ∆v(0)(∆nw), (S.17)

and thus,

Eλ
w(∆nw) ≈ λUg(0)

w (x(0)(∆nw)) +
g(2)

w (x(0)(∆nw))
λU

, (S.18)

where x(0)(∆nw) = ∆v(0)(∆nw)/U is the inversion of the
leading-order density-potential map Eq. S.17. To produce
the correlation energy we subtract from Eq. S.18 the
external potential energy (along the connection curve), the
KS kinetic energy Eq. S.4, and the HX energy Eq. S.5,

Eλ
C,w(∆nw) ≈ λU

(
g(0)

w (x(0)(∆nw)) −
x(0)(∆nw)∆nw

2

− eHx,w(∆nw)
)
− Ts,w(∆nw) +

g(2)
w (x(0)(∆nw))

λU
, (S.19)

where ∆nw remains fixed for all λ.

2.3. Contributions to the Energy

Equation 20 of the main text yields expressions for
the separate kinetic and potential contributions to the
correlation energy,

TC,w(∆nw) ≈
2g(2)

w (x(0)(∆nw))
U

− Ts,w(∆nw), (S.20)

UC,w(∆nw) ≈ U
(
g(0)

w (x(0)(∆nw)) −
x(0)(∆nw)∆nw

2

− eHx,w(∆nw)
)
−

g(2)
w (x(0)(∆nw))

U
. (S.21)

From the separate contributions of the correlation energy
we deduce that,

Tw(∆nw) ≈
2g(2)

w (x(0)(∆nw))
U

, (S.22)

Vee,w(∆nw) ≈ U
(
g(0)

w (x(0)(∆nw)) −
x(0)(∆nw)∆nw

2

)
−

g(2)
w (x(0)(∆nw))

U
. (S.23)

We plot Eqs. S.20-S.23 in Fig. S14 with the exact
expressions in black and the approximate expressions
evaluated with the smooth density in purple. In all plots we
use the same smooth approximation to the absolute values
in the denominators of g(2)

w (x), Eq. S.11. There are errors in
the plots of the correlation kinetic energy, but these vanish
as U → ∞.

We compare our result in Eq. S.16, for |∆nw| ≤ 2w,
with the symmetric limit expansion of Deur et al. [4]. To
properly compare our approximate correlation energy to
the previously reported expansion in the symmetric limit,
we produce the weight-dependent constant that vanishes
in the limit U → ∞,

EC,w(∆nw)
U

≈
w
U
−

1
2

(
w −

(3w − 1)

w2

∆n2
w

4

)
, (S.24)

which is derived following the procedure in Ref [4]. In Fig.
5 of the main text we plot our approximate leading-order
correlation energy Eq. S.16 evaluated with smooth density
along with Eq. S.24.
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2.3 Contributions to the Energy Supp. Mat. for “Exact Conditions for EDFT”

FIG. S14. Tc,w (S.20), Uc,w (S.21), Tw (S.22), and Vee,w (S.23) for
various values of w and U = 100. The exact values in the strongly
correlated limit are represented by the black curves, which are exact
as U → ∞.
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2.3 Contributions to the Energy Supp. Mat. for “Exact Conditions for EDFT”

3. ENSEMBLE HARTREE-FOCK APPROXIMATION

We now turn our attention to the ensemble generalization
of Hartree-Fock. We define the Hartree-Fock solution of
each state (analogous to Eq. S.2) to be

|Φi〉 = αHF
i (|12〉 + |21〉) + β+HF

i |11〉 + β−HF
i |22〉 , (S.25)

with coefficients determined to first order in U:

αHF
0 = 2t/cHF

0 αHF
1 = −∆v2

eff,w/2tcHF
1

β±HF
0 = 1/2 ± ∆veff,w/cHF

0 β±HF
1 = ±∆veff,w/cHF

1

cHF
0 = 2

√
4t2 + ∆v2

eff,w cHF
1 = ∆veff,w

√
2 + ∆v2

eff,w/2t2

Here the weight-dependent effective mean-field potential
∆veff,w takes the form [4]

∆veff,w = ∆v +
(1 − 3w)

w2

U∆nHF
w

2
(S.26)

where ∆nHF
w is found from (S.3) with coefficients as above.

3.1. Densities and Total Energy

The self-consistent EHF density is found numerically
throughout this work by solving (S.26). Plots of the
exact/EHF self-consistent site-occupation differences are
included below in Fig. S15 for various interaction strengths,
U = 0, 1, & 5. Here (and for the remainder of this section)
we denote the exact solution using solid curves, and the
EHF approximation using dashed curves. Looking at the
left panel (U = 0) of Fig. S15, the EHF approximation
matches the exact density exactly, as expected in the limit
of weak correlation. One can see that the exact/EHF
densities (regardless of weight) begin to differ as U is
increased, but must always match at the origin (where
∆v = ∆nw = 0) and as ∆v → ∞ (where |∆nw| = 2w). This
behavior would be expected to hold for larger U values,
although as noted previously in Ref. 4, there exists a critical
interaction strength Ucrit at which nonphysical behavior is
observed for symmetric dimers with bi-ensemble weight
w ≥ 1/3. This critical interaction strength is

Ucrit =
w

3w − 1
. (S.27)

For w → 1
2 , Ucrit → 1. At this point the energy expression

for dimers with U > Ucrit have multiple degenerate minima.
This explains the deviation from expected behavior for w =

0.4, 0.5 in the right panel of Fig. S15, where both curves
approach a finite value as ∆v→ 0.

We also plot the exact/EHF bi-ensemble total energy
below, using two interaction strengths (U = 1 and U = 5) to
examine the EHF approximation in more detail. We depict
this quantity as a function of ∆v below in Fig. S16 and
separate each w value in new plots to better illustrate the
weight-dependence of Ew and EHF

w .

Analyzing Fig. S16, one can see that the EHF
approximation obeys the variational principle for all viable
weight values (where w ≤ 0.5); as the weight of the
first-excited state is increased, both the exact/EHF energy
becomes more positive for all ∆v. We note that the EHF
approximation always approaches the exact energy as
∆v→ ∞, as shown previously for the ground state. [5]

FIG. S15. Absolute value of the density of the Hubbard dimer bi-
ensemble, plotted for various weight values as a function of ∆v. Here
we set U = 0 (left), U = 1 (center), and U = 5 (right). Dashed curves
represent the ensemble HF approximation, and the solid curves are
exact.

3.2. Correlation Energy

Below we provide plots of the total weight-dependent
correlation energy, as well as its kinetic/potential
contributions, in Figs. S17, S18, and S19. Note that
the definition of the EHF correlation energy is

EHF
C,w = Ew[nw] − EHF

w [nHF
w ], (S.28)

where each energy functional has been minimized by its
respective weight-dependent self-consistent density.

Looking at Fig. S17, it is evident that the behavior of the
correlation energy greatly depends upon the value of w.
We find that the inequality relating the exact/approximate
correlation energy holds for all ensembles (i.e. EHF

C ≥ EC

for all weights). We show that a different trend exists for the
kinetic/potential correlation components, as the inequalities
describing the ground state (T HF

C ≤ TC and UHF
C ≤ UC) no

longer apply for ensembles with w , 0.
Note that for each of these quantities, the EHF

approximate correlation energy matches the exact solution
at ∆v = 0, except for strongly correlated systems with
w ≥ 1/3 (due to the nonphysical behavior in this regime
discussed previously).
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3.2 Correlation Energy Supp. Mat. for “Exact Conditions for EDFT”

FIG. S16. Total energy of the Hubbard dimer bi-ensemble plotted
as a function of ∆v for various w values. Dashed lines are the HF
approximation and the solid lines are exact.

FIG. S17. Total correlation energy of the Hubbard dimer bi-ensemble
plotted as a function of ∆v for various w values. Dashed lines are the
HF approximation and the solid lines are exact.

FIG. S18. Kinetic correlation energy of the Hubbard dimer bi-
ensemble plotted as a function of ∆v for various w values. Dashed
lines are the HF approximation and the solid lines are exact.

FIG. S19. Potential correlation energy of the Hubbard dimer bi-
ensemble plotted as a function of ∆v for various w values. Dashed
lines are the HF approximation and the solid lines are exact.
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3.2 Correlation Energy Supp. Mat. for “Exact Conditions for EDFT”
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