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Abstract:  Approximations to the exact density functional for the exchange-

correlation energy of a many-electron ground state can be constructed by satisfying 

constraints that are universal, i.e., valid for all electron densities. Gedanken 

densities are designed for the purpose of this construction, but need not be realistic. 

The uniform electron gas is an old gedanken density. Here, we propose a spherical 

two-electron gedanken density in which the dimensionless density gradient can be 

an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford 

lower bound on the exchange energy can be satisfied within a generalized gradient 

approximation (GGA) by bounding its enhancement factor or simplest GGA 

exchange-energy density. This enhancement-factor bound is well known to be 

sufficient, but our gedanken density shows that it is also necessary. The 

conventional exact exchange-energy density satisfies no such local bound, but 

energy densities are not unique, and the simplest GGA exchange-energy density is 

not an approximation to it. We further derive a strongly and optimally tightened 

bound on the exchange enhancement factor of a two-electron density, which is 

satisfied by the local density approximation but is violated by all published GGA’s 

or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling 

behavior for the asymptotics of the exchange enhancement factor of a GGA or 

meta-GGA are given.    
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     1.    Gedanken densities: What and why?  (Introduction and summary) 

       Kohn-Sham density functional theory [1,2] for the ground-state energy E  and 

density )(rn


of a many-electron system is widely used for atoms, molecules, and 

solids because of its balance between useful accuracy and computational 

efficiency. Only the exact density functional for the exchange-correlation energy 

needs to be approximated. The original local density (LDA) approximation [1,2] is
 

           )),(()(][ 3 rnrrndnE unif

xc

LDA

xc


                                                                 (1)                                    

where  )()()( nnn unif

c

unif

x

unif

xc    is the exchange-correlation energy per electron of 

jellium, an electron gas of uniform density n . In the absence of a magnetic field, 

only the total density is needed in the exact theory, but the approximations work  

better under a generalization to spin-density functional theory [2], where they 

benefit from more input information.  Here we will simplify the notation by 

displaying the approximations only for spin-unpolarized systems. For the exchange 

energy, which is our focus here, the generalization to arbitrary spin-polarization is 

trivial [3].   

        Jellium is not a real system, but it is one for which the LDA is exact. This is a 

gedanken density, in the same sense that an imagined experiment is a gedanken 

experiment. Jellium is also a quasi-realistic paradigm for the valence-electron 

density in a simple metal.  The electron gas of non-uniform but slowly-varying 

density, on which the density-gradient expansion is based, is another gedanken 

density. Semilocal approximations can greatly increase the accuracy without much 

reducing the computational efficiency in comparison to LDA, and here we 

introduce new gedanken densities which may be useful for their further 

development. Model densities can also be interesting in other contexts, e.g., to 

explore exchange and correlation in systems of reduced dimensionality [4]. 

         The simplest semilocal approximation is the generalized gradient 

approximation (GGA) [5-12]: 

        ),,()(][ 3 snFnrndnE GGA

xc

unif

x

GGA

xc                                                               (2) 

where 3/12 )3)(4/3()( nnunif

x   is the exchange energy per electron of jellium and 

0),( snF GGA

xc  is the enhancement factor over local exchange due to both correlation 

and the dimensionless density gradient 
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            ])3(2/[ 3/43/12 nns   .                                                                      (3) 

We can write 

            ),()(),( snFsFsnF GGA

c

GGA

x

GGA

xc  .                                                          (4) 

The high-density limit of ),( snF GGA

xc  is the exchange enhancement factor )(sF GGA

x , 

and 𝐹𝑥
𝐺𝐺𝐴(𝑠 = 0) = 𝐹𝑥

𝐿𝐷𝐴 = 1 is required to recover LDA in the uniform-density 

limit. 

         Unlike LDA, GGA is not unique. The nonempirical approach [2,6,9-12] to 

GGA construction requires the satisfaction of known exact constraints on the 

functional ][nExc  for all possible densities n .  One of these constraints 

(automatically satisfied by LDA) is the Lieb-Oxford lower bound [13]. The 

original bound was for the indirect part of the electron-electron interaction, 

][nUVee   where ][nU  is the Hartree electrostatic interaction of the density with 

itself , for any wavefunction (not necessarily a ground-state) of density ).(rn


 

Perdew [9] used the inequality ][][ nUVnE eexc   to find a version that is more 

useful for density functional theory, 

           ),(][][ 3 nrndBnBEnE unif

x

LDA

xxc                                                               (5) 

where of course xcE  and xE  are negative. The optimal (smallest possible) constant 

is in the range 1.67 < B < 2.273. From the low-density limit for jellium, this range 

is narrowed [9] to 1.93 < B < 2.273. Levy and Perdew [14] and recently Räsänen et 

al. [15] have conjectured that the optimum B is close to 1.93, but the only rigorous 

form of the bound has B=2.273 (or the slightly tighter 2.215 derived by Chan and 

Handy [16]). The right-hand side of Eq. (5) is clearly also a lower bound on ][nEx  

within density functional theory, since 

               ][][][ nBEnEnE LDA

xxcx  .                                                                (6) 

Via the spin-scaling equality for exchange [3], spin-density GGA’s are guaranteed 

to satisfy this rigorous bound on the exchange energy if the spin-unpolarized 

enhancement factor satisfies 

              )(sF GGA

x < 2.273/21/3 = 1.804   (all s, spin-unpolarized).                      (7)                                                      

In this form, the bound was used to construct the Perdew-Wang 1991 (PW91) [9-

11] and the Perdew-Burke-Ernzerhof (PBE) [11,12] GGA’s.  In section 2, we will 
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discuss the relevance of this and related newer exact constaints to functional 

construction. 

         While Eq. (7) is clearly a sufficient condition [12,17] for a GGA to satisfy the 

Lieb-Oxford bound of Eq. (6) on the exchange energy for all possible densities, is 

it also a necessary condition [17,18]?  In other words, are GGA enhancement 

factors with )(sF GGA

x  > 1.804 over some range of s  strictly forbidden by the Lieb-

Oxford lower bound?  Refs. [17,19,20] (and the success of many functionals 

violating the bound) suggest that the answer is no. 

        Our answer to the last question is yes. To show this, in section 3 we construct 

a new gedanken two-electron spherical density in which the dimensionless density 

gradient s  takes the same arbitrary positive value over the entire density. The 

existence of such densities implies that GGA’s with enhancement factors that go 

above 1.804 will violate the Lieb-Oxford bound for those densities. 

        By far the most important gedanken densities are the uniform or slowly-

varying densities: an infinite set for which the computationally-efficient semilocal 

approximations can and should be exact, having some resemblance to real densities 

of interest (those of valence electrons in simple metals).  Our new gedanken 

density of section 3 is less realistic, and serves a more limited purpose: to establish 

that bounds like Eqs. (7) or (11) are necessary constraints on semilocal 

approximations.  We would like to find another gedanken density, in which   is 

everywhere infinite, but have not found one yet. 

        An early [20] and recent [19] objection to the inequality of Eq. (7) was that it 

is contradicted by the behavior of the conventional exact exchange energy density 

in the density tail of an atom or molecule. But this objection overlooks the fact that 

the exact exchange energy density is not unique, and that the simplest GGA 

exchange-energy density does not (and cannot) model the conventional choice. We 

discuss this issue further in section 4, where we also present non-conventional 

exact exchange energy densities with exact exchange enhancement factors that are 

(at least for a cuspless two-electron atom) everywhere bounded from above by 

1.804. 

        It is now well-known that the GGA form is too simple to be highly accurate, 

even for those densities for which semilocal approximations are well-suited. Much 

better dissociation energies, surface energies, and equilibrium geometries [21] can 

be found from the semilocal (hence still computationally efficient) meta-GGA [21-
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26], which uses three ingredients: the local density ),(rn


 its gradient ),(rn


  and the 

orbital kinetic energy density 

       2/)(2)(
2

 
occup

rr





  (spin-unpolarized),                                               (8) 

     where )(r


 is a Kohn-Sham orbital. Ref. [26] suggests that a meta-GGA                                                                                                                 

        ),,,()(][ 3  snFnnrdnE MGGA

xc

unif

x

MGGA

xc                                                         (9) 

with 

         unifW  /)(   ,                                                                                 (10)  

can recognize and assign a different appropriate GGA description to covalent 

single ( 0 ), metallic ( 1 ), and weak ( )1  bonds. Here the Weizsäcker 

expression nnW 8/
2

  is exact for a two-electron density ( )0  and 
3/53/22 )3)(10/3( nunif    is exact for a uniform density ( ,0s )1 .  is the sole 

ingredient of the Becke-Edgecombe [27] electron localization function (ELF), but 

here we think of it as a dimensionless deviation from single orbital shape 

(DDSOS). 

        The high-density limit of the meta-GGA enhancement factor 0),,( snF MGGA

xc  

is again the exchange enhancement factor ),( sF MGGA

x  with 

1)1,0(  LDA

x

MGGA

x FsF  , and again the sufficient and necessary condition to 

satisfy the global Lieb-Oxford bound on the exchange energy for all possible 

densities with 0  is )0,( sF MGGA

x < 1.804.  But, in section 5, we will derive the 

much tighter bound 

           )0,( sF MGGA

x  < 1.174      (all s, spin-unpolarized)                             (11)                  

and conjecture that this tight bound for meta-GGA exchange might remain true for 

all  .  

       Eq. (11) is strongly violated by existing GGA’s and meta-GGA’s. For the PBE 

GGA [12], )(sF GGA

x  varies from ...2195.01 2  s at small s  to 1.804 at large s .  For 

the revTPSS meta-GGA [24],  . . .1 2 3 5.01)1,( 2  ssF M G G A

x   and 

...015.1)0,( 2  ssF MGGA

x   at small s  while 804.1),( sF MGGA

x  at large s . These 

functionals were constructed to satisfy Eq. (7), not Eq. (11). 



6 
 

       In section 6, we discuss non-uniform density-scaling of the exchange energy to 

the true two-dimensional limit. We argue that, to satisfy the right scaling behavior, 

we must have 

        2/1)(lim 

  ssF GGA

xs ,                                                                          (12) 

and 

        2/1)0,(lim 

  ssF MGGA

xs  .                                                                     (13) 

 

 

2.  Relevance of these constraints to functional construction 

         It can be argued that many approximate exchange functionals  (e.g., B88 [7]) 

violate Eq. (7), that nearly all violate Eq. (13), and that so far all beyond LDA 

violate Eq. (11).  Many of these functionals are usefully accurate for real systems. 

So, are these constraints merely pedantic?  We will argue that the answer is no, 

from several different perspectives. 

         It is precisely because we want to refine the functionals, and especially the 

meta-GGA’s, that we now focus on exact constraints to which many properties of 

real systems are not so sensitive. The satisfaction of exact constraints can subtly 

improve a functional for a given system by controlling the way the functional 

approaches extreme limits, even when the system is not close to those extremes. 

Exact constraints that are satisfied by LDA, such as Eq. (11), are of special 

theoretical interest [28,29,30], and should be preserved in beyond-LDA 

functionals. 

        The exact density functional and its exact constraints are universal, for all 

allowable densities, and not just for the densities of real atoms, molecules, and 

solids. While the latter systems have great practical interest, their more familiar 

properties may not sensitively sample all the exact constraints. If the form of a 

functional (e.g., GGA or meta-GGA) permits the satisfaction of an exact constraint 

for all densities, then that constraint should  be taken seriously in the nonempirical 

construction of functionals of that form.  

       Even for the known properties of real systems, the existing functionals of any 

beyond-LDA form are far from optimal.  The GGA form can satisfy a certain set of 

constraints, but cannot satisfy them all simultaneously [31,32]. GGA’s that work 
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best for the atomization energies of molecules (like B88) tend to overestimate the 

lattice constants of solids, while those that predict accurate lattice constants (like 

PBEsol [32]) strongly overestimate atomization energies [32]. Meta-GGA’s often 

resolve these dilemmas [21,23,24], but can still fail when confronted with 

properties for which they were not previously tested, such as the critical pressures 

for structural phase transitions in solids [33]. Similar considerations may apply to 

small energy differences between different structures of a molecule. We doubt that 

an empirical approach to functional construction can deal with such problems.  

        The semilocal functionals such as meta-GGA are most appropriate to certain 

classes of densities: (1) uniform or slowly-varying densities, for which they can be 

exact by construction, and (2) compact densities, such as the densities of atoms, 

where the exact exchange and correlation holes are necessarily confined to a region 

close to the electron they surround. For such densities, the meta-GGA exchange 

and meta-GGA correlation energies can be separately accurate. For multi-center 

bonded systems, such as molecules and solids, the exact exchange hole and the 

exact correlation hole can be separately spread out over two or more centers. In 

many of those cases (e.g., near the equilibrium geometries of sp-bonded systems), 

the exact combined exchange-correlation hole is still localized around the electron 

it surrounds, and semilocal functionals can work via a cancellation of errors 

between exchange and correlation. (This error cancellation would be lost if we 

combined exact exchange with semilocal correlation.) Although an error 

cancellation is expected on the basis of strong qualitative arguments, the 

quantitative degree of cancellation is not something that can be predicted or 

controlled.  Thus even a meta-GGA that satisfies all possible exact constraints is 

still not guaranteed to work; testing and benchmarking are always needed. 

         Going beyond the meta-GGA form is necessary for certain strongly-

correlated or stretched-bond situations. Some of the fully nonlocal approximations, 

such as local hybrid functionals [34] or self-interaction corrections [35,36], require 

a good meta-GGA as a starting point. The self-interaction correction in particular 

requires applying the meta-GGA to the densities of typically localized  orbitals, 

constructed by unitary transformation of the occupied Kohn-Sham orbitals. These 

one-electron ( 0 ) densities are somewhat more challenging to a meta-GGA than 

the ground-state density of the spin-polarized one-electron atom. We expect that 

satisfaction of Eqs. (11) and (13), along with more familiar constraints, could 

greatly improve the accuracy of self-interaction-corrected results.  
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         Finally, we note that a functional can easily satisfy a bound like Eq. (6) for 

all realistic densities, and still violate it for some allowable densities. The 

gedanken density of the next section suggests that, to satisfy such a bound for all 

allowable densities, requires a corresponding bound like BFx  on the enhancement 

factor. 

 

3. A gedanken two-electron spherical density with constant non-zero s 

       Here we will introduce a new gedanken density to show that the bound of Eqs. 

(7) or (11) is a necessary  condition for a GGA or meta-GGA to satisfy the 

corresponding lower bound on the integrated exchange energy for all possible 

electron densities.      

       Consider the density 

        3/)( rArn      )( 10 RrR                                                                 (14) 

0 (otherwise). 

Here A , 0R , and 1R > 0R  are positive constants, and the density is normalized to two 

electrons: 

                   ,2ln4/4 321

0
 yArArdr

R

R                                                             (15) 

which fixes A as a function of 
01 / RRy  . (Other electron numbers are also possible, 

but for N=2 it is easy to evaluate the exact exchange energy.) The reduced gradient 

is then 

                 3/1]ln})3/{2)[(2/3( ys  ,                                                                   (16) 

the same positive but arbitrary constant over the whole range where the density is 

non-zero. When y  varies from 1 to  , s  varies from 0 to   (Fig. 1). Clearly, when 

s is constant where the density is non-zero, the enhancement factor )(sF GGA

x  can be 

factored out of the integral for GGA

xE . Then that GGA will satisfy the global 

exchange-only Lieb-Oxford bound for this family of  densities only when  )(sF GGA

x  

<  1.804 for all s.  

        For this gedanken density, we can evaluate LDA

xE  and the exact xE (which for 

two-electron ground-state densities equals ])[)2/1( nU , finding 

          3/4

0

3/43/12 ]/[ln]/11/[}])2/{()3(3[ yyRE LDA

x   ,                                      (17) 
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           2

0 ]/[ln]/)ln1(1)[/2( yyyREx  ,                                                       (18) 

where 01 / RRy  . The ratio LDA

xx EE /  (Fig. 2) maximizes at 1.0875 for 3.5y  (

)06.1s , and tends slowly to zero in the 1y  ( )0s  and y  )( s  limits. 

This result is consistent with Eq. (11). The gedanken density of Eq.  (14) in the 

limit 1y becomes a thin spherical shell of high uniform two-electron density, for 

which no general-purpose semilocal approximation could be expected to work. 

        A possible objection is that this density is too sharply cut off to be allowable, 

i.e, to arise from a potential. However, we can make allowable densities by 

introducing regions 2/2/ 00  RrR  and 2/2/ 11  RrR over which the 

density is rounded to approach zero with zero slope at 2/0 R and .2/1 R    can 

be any positive length less than 02R . If a GGA violates Eq. (7), there will always 

be a range of s or y for which this GGA violates the global Lieb-Oxford bound for 

allowable rounded densities with small-enough  . This is true regardless of what 

happens in the rounding regions, from which the contributions to the GGA 

exchange energy must be negative. 

        As   approaches zero from above, the reduced gradient s  becomes very large 

over the small region where the rounding occurs.  But, for a GGA which satisfies 

Eq. (7), the contribution to GGA

xE from the rounding regions must vanish as fast as or 

faster than  .  For an even smoother rounding leading to the same conclusions, see 

Appendix A. 

        The orbital kinetic energy density W   diverges like 2s  as s , and 

 /1s in the rounding region as 0 . Thus the kinetic energy diverges like 

 /1)/1( 2  when .0  Eq. (14) is not a Lieb allowable [37] density. 

        In summary, our gedanken density of Eq. (14) is not an allowable density, but 

it is the limit of a sequence of allowable densities associated with a convergent 

sequence of approximate exchange energies and bounds. Our approximations 

should obey the Lieb-Oxford bound on the exchange energy for every allowable 

density in the sequence.   

       The Becke 1988 [7] GGA has an enhancement factor )(88 sF B

x  that grows 

without bound as s increases. It will violate the global Lieb-Oxford bound on ][nEx

for all 193

001 102)9/4exp(/ xsRRy    where 804.1)17.3( 0

88 sF B

x . While our 

gedanken density of Eq. (14) does not so far present a serious practical challenge 
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even to Becke 1988 exchange, it will present a much more serious challenge after 

the bound of Eq. (7) is tightened to that of Eq. (11) in section 5.  

        Here we briefly mention an earlier gedanken density [14] that gave us some 

limited guidance for the 1996 construction of the PBE GGA: Consider a one-

electron density that is lattice-periodic over a large crystal. As the volume   of the 

crystal tends to infinity, the reduced gradient s  tends to infinity everywhere like 
3/1 .  A GGA whose enhancement factor )(sF GGA

x
 exceeds 1.804 in the limit s  

will violate the general Lieb-Oxford bound for this density. 

 

4. Energy densities and GGA enhancement factors             

         In Eq. (2), ),()( snFnn GGA

xc

unif

x  is a function of position r


 that can be interpreted 

as a GGA exchange-correlation energy density, and )()( sFnn GGA

x

unif

x plays the same 

role for exchange. The best-known exact exchange energy density is the 

conventional one [38] 

                rrrrrdrrn conv

x


  '/)',(')4/1()()(

23

   (spin-unpolarized),               (19) 

where )'()(2)',( * rrrr
occup 





    is the Kohn-Sham one-particle density matrix. 

Then it may be tempting to equate 

                  unif

x

conv

x

GGA

xF  / ,                                                                                (20) 

as in Ref. [19] or in the earlier Ref. [20].  In these references, the right-hand side of 

Eq. (20) was evaluated numerically for atoms and molecules, and found to diverge 

in the tail of the electron density. That unbounded result, which contradicts Eq. (7), 

can also be found analytically, since in the tail )2/(1 rconv

x   [7] while unif

x  decays 

exponentially with  r.  The right-hand side of Eq. (20), plotted vs. s in molecules, 

presents a band of values [19] rather than a single value for each s. 

         Energy densities are not observables, and are not uniquely defined in density 

functional theory (with the electron gas of uniform density as the sole exception). 

One can add any function that integrates to zero to any choice of energy density, 

and the integral will not change; thus this produces another equally valid energy 

density. This fact is very well known in studies of the non-interacting kinetic 
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energy sT . There are two natural choices of kinetic energy density, which both 

integrate to sT : The first is the positive  of Eq. (8), and the second is 

             
occup

rr


  ).()2/1)((2~ 2* 
                                                                  (21) 

Each can be useful in its own context, but they differ substantially from each other. 

Weighted sums like  ~)1( cc  are also possible choices. It is precisely for this 

reason that the choice of kinetic energy density must be specified when meta-

GGA’s are being constructed. 

          The same reasoning applies to exchange or exchange-correlation energy 

densities. They are not uniquely defined. For example, conv

xn  and 3/22ncn conv

x   

integrate to the same exchange energy. There is no reason to equate the simplest 

GGA exchange energy density to conv

xn , as in Eq. (20). Indeed, they should not be 

equated, because the second-order gradient expansion of the conventional 

exchange energy density involves ill-behaved terms that cannot be expressed in 

terms of n and s alone [39,40]. An integration by parts, which changes the 

conventional exchange energy density to an unconventional one, must be 

performed to express the gradient expansion in terms of the latter two variables 

alone [41]. Several years ago, exchange energy densities were defined [42] in 

terms of the exchange potential. Such energy densities are unambiguously defined 

for any exchange energy functional, exact or approximate, but their interpretation 

and use is too demanding at present. 

         This situation is familiar in other areas of physics. The scalar and vector 

potentials of electromagnetic theory [43] are not measurable, and neither is the 

wavefunction of quantum mechanics [44], so these objects are gauge or unitarily 

variant, while measurable properties are gauge or unitarily invariant. 

         We have never asserted the existence of exact exchange energy densities 

satisfying a bound like that of Eq. (7), but we close this section by presenting 

suggestive but inconclusive evidence that such exact exchange energy densities 

might exist: 

         A family of exact exchange energy densities can be generated by coordinate 

transformation [38,45-47]: 

          uururudrrn x /),]1[()4/1()()(
23 

    .                                      (22) 
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When the parameter 1 , the conventional Eq. (19) is recovered, with 

)2/(11 rx   in the density tail for an atom or molecule. Any   between 0 and 1 

makes  x  decay exponentially for an atom or molecule, with the fastest decay for 

2/1 [38,45].  Note that any member of this family can be as easily constructed 

from a knowledge of the orbitals as can the conventional choice ( 1 ), and is an 

equally valid choice for an exact exchange energy density. Now let us define an 

effective,  -dependent exchange enhancement factor  

           unif

xxxF   /  .                                                                                     (23) 

We have evaluated Eq. (23) and plotted it vs. r  for a simple cuspless two-electron 

atom of density 

            )2exp()21()2/1()( 3 rrrn   ,                                                         (24) 

for which s is a function of r , increasing from zero at 0r  to   as r . 

(Our numerical tests confirm that the integrated exact exchange energy 492.0  is 

independent of  .)  Our results (independent of the scale parameter  ) are plotted 

in Fig. 3. While 

xF diverges in the density tail for 1 , it everywhere satisfies the 

bound of  Eq. (7) for 0.75 >  > 0.50. At 75.0 , it tends to a positive constant as 

r . 

         Finally, note that it is the integrated exchange and correlation energies that 

are to be approximated to satisfy exact constraints.  The associated energy densities 

are not relevant to experiment, and not relevant to theory except for example in the 

construction of local hybrid functionals [34].  While there are many possible 

exchange energy densities for a given GGA, some more bounded than others, there 

is only one of the simple form )()( nnsF unif

x

GGA

x  , and that one should satisfy the 

bound of Eq. (6). 

 

5. Tight bound on the exchange-enhancement factor for a two-electron density 

        The Lieb-Oxford bound of Eq. (6) is valid for any density, but Lieb and 

Oxford [13] also derived tighter bounds for one- and two-electron densities. Their 

derivation of  Eq. (25) below was presented as a more rigorous version of an 

earlier one by Gadre, Bartolotti, and Handy [48]. Because the GGA form cannot 

distinguish between a two-electron density and one with more electrons, 

enforcement of a tight Lieb-Oxford bound within GGA would lead to little 
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improvement over LDA for most systems. Thus this is an exact constraint that 

cannot be usefully imposed on GGA construction, but can be very useful for meta-

GGA’s.  

        For an arbitrary spin-polarized one-electron density )(1 rn


, where 

xxcee EEnUV  ][  is a pure self-interaction correction, the optimal bound is 

known [13,48]: 

               3/4

1

3

1 092.1][ rndnEx  .                                                                       (25) 

For a spin-unpolarized two-electron ground state of density 2n , we can take 

2/21 nn   and ][2][ 12 nEnE xx  . Then Eq. (25) implies 

                ][174.1][}])3(3/{4)[2/092.1(][ 22

3/123/1

2 nEnEnE LDA

x

LDA

xx   .                    (26) 

Two-electron ground states have 0 . Thus our two-electron gedanken density of 

section 3 tells us that a sufficient and necessary condition for a meta-GGA to 

satisfy Eq. (26) for all two-electron densities is Eq. (11), 

             174.1)0,( sF MGGA

x   (all s, spin-unpolarized).                                    (27) 

Eq. (27) remains optimally tight, as it would not be if it were derived from the 

Lieb-Oxford bound  on ][. nUVee   for a two-electron density. We have no proof 

of  the analog of Eq. (27) for 0 , but we suspect that it may be true, because we 

suspect that )0,(),(   sFsF MGGA

x

MGGA

x  as in the Meta-GGA Made Simple of Ref. 

[25] (which works rather well with PBE GGA correlation and satisfies 

29.1),( sF MGGA

x ). We know of no two-electron spin-unpolarized density with 

174.1/ LDA

xx EE . 

         Capelle and Odashima [49] have suggested the possibility of a tightened 

Lieb-Oxford bound for the exchange-correlation energy, and we suspect that they 

were right to do so. However, the possibilities for tightening this bound are limited, 

reducing B of Eq. (5) from 2.273 to a value 1.93 or higher (and thus the bound on 

the spin-unpolarized xF  from 1.804 to 1.53), as mentioned after Eq. (5). In 

contrast, our suspected bound 174.1),( sF MGGA

x is dramatically tightened over Eq. 

(7). We will explore the consequences of this assumption in future work.   

         While LDA satisfies Eq. (27), published GGA’s and meta-GGA’s violate it. 

So why do GGA’s work even for the exchange energy of the He atom and similar 
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two-electron densities? The answer must be that, for these two-electron densities, 

GGA’s make an error cancellation between regions of small s (where their 

exchange enhancement is too low, around 1, as it must be to recover the uniform-

density limit) and larger s (where their exchange enhancement is too high, 

violating Eq. (27)).  The Meta-GGA Made Simple [25], and to a lesser extent other 

meta-GGA’s, have )0,0(  sF MGGA

x  considerably higher than 1 but less than 1.174 

(see Fig. 1 of Ref. [25]).  The bound of Eq. (27) cannot be applied at the GGA 

level, even for the He atom, because it would destroy this error cancellation, but it 

can hopefully be applied at the meta-GGA level. Many-electron densities on the 

other hand  are energetically dominated by regions with  1s , where standard 

functionals are not seriously challenged even by our tightened lower bound. 

         A meta-GGA for exchange that satisfies the conjectured general bound 

][174.1][ nEnE LDA

x

MGGA

x   might work with semilocal (sl) functionals for correlation, 

which typically satisfy ][94.0][ nEnE LDA

x

sl

c  , making ][14.2][ nEnE LDA

x

sl

xc  . 

 

6. Non-uniform density scaling: Implications for the asymptotics of the 

exchange enhancement factor  

         In this section, we will explore the implications of non-uniform density 

scaling [50] for the large-s and large-  behaviors of the exchange enhancement 

factor xF . We start from a density ),,( zyxn  having a finite ][nEx , then define the 

scaled density ).,,(),,()1( zyxnzyxn    The scaled density has the same electron 

number as the unscaled one, but is more compressed ( 1 ) or expanded ( 1 ) 

along the x direction. When  , the density collapses from three dimensions to 

two, in which the exchange energy is still finite and negative. Levy [50] proved 

that 

                  .][lim )1(   nEx                                                                          (28) 

The LDA and most existing GGA’s and meta-GGA’s violate Eq. (28) [51-53]. The 

PW91 GGA [9-11] and the VT(8,4) GGA [54] and its related meta-GGA [55] 

satisfy Eq. (28), but they incorrectly [52,53] make the left-hand side vanish. A 

finite limit is achieved by the GGA of Chiodo et al. [56]. 

         Starting from the definitions of s (Eq. (3)) and  (Eq. (10), we easily find 

that, under non-uniform scaling to the true two-dimensional limit ( ) , 
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                  ),,(),,( 3/2 zyxfzyxs  ,                                                                    (29) 

                 0),,( zyx .                                                                                 (30) 

If the unscaled s is nonzero over some region in which the unscaled density is non-

zero, then the meta-GGA exchange energy (Eq. (9)) has a finite non-zero limit for 

Eq. (28) when Eq. (13) is satisfied. This determines how the exchange 

enhancement factor vanishes as s . 

            Levy [50] also defined a two-dimensional scaling of ),,( zyxn  to 

               ),,(),,( 2)2( zyxnzyxn   .                                                                     (31) 

Clearly this is the product of two one-dimensional scalings along different axes 

with the same scale parameter. Applying a third yields the three-dimensional or 

uniform scaling 

               ),,(),,( 3)3( zyxnzyxn   .                                                                   (32) 

Our exchange functionals and essentially all other sensible exchange functionals 

are designed to behave correctly [57] under uniform scaling:  

              ][][ )3(1 nEnE xx 

 .                                                                               (33) 

Moreover, the exchange component of a sensible approximate exchange-

correlation energy functional is found when the density is scaled uniformly by  , 

the functional is divided by  , and   is taken to  , because this is a known 

property of the exact exchange-correlation functional [58]. 

           Functionals that satisfy both Eq. (28) and Eq. (33) will of course also scale 

correctly [59] under two-dimensional scaling to the one-dimensional limit: 

              

 ][lim )2(1

  nEx .                                                                       (34) 

          In the low-density limit under non-uniform three-dimensional scaling, 

correlation scales like exchange.  We can define 

             ][lim][ )3(1

0   nEnB xcxc



 ,                                                                   (35) 

which itself  has one-dimensional and two-dimensional scaling limits that will be 

satisfied by a GGA (or in generalization by a meta-GGA) if [14] 

               ),(lim 2/1 snFs GGA

xcs .                                                                     (36) 
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When the exchange part of GGA

xcF  satisfies Eq. (13), it is very easy to satisfy Eq. 

(36).        
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Appendix: Well-behaved densities tending to the gedanken density of Eq. (14)               

         In this appendix, we check that the density of Eq. (14) can be achieved as a 

limit of densities that satisfy physically reasonable physical conditions: 

                                                      ∞ > 𝑛(𝐫) > 0                                                (A1) 

everywhere in real-space, 𝑛(𝐫) is normalizable, and 𝑛(𝐫) has finite non-interacting 

kinetic energy [25]. We will also require that its second derivative be finite 

everywhere, so as to be able to find the corresponding Kohn-Sham potential (i.e., 

the density is non-interacting 𝑣 -representable.) 

        To construct such a density from that of Eq. (14), we begin by extending the 

density to be finite in all regions of space. We write 

𝑛𝑒(𝐫) =
𝐴

𝑅0
3 [10 − 15

𝑟

𝑅0
+ 6 (

𝑟

𝑅0
)

2

] , 𝑟 ≤ 𝑅0 

                                                        = 𝐴/𝑟3, 𝑟 ≥ 𝑅0,                                              (A2) 

where the form for 𝑟 < 𝑅 is a quadratic chosen to match the gedanken density and 

its first two derivatives at 𝑅0. Note that 𝑛𝑒(𝐫) coincides with the gedanken density 

exactly between 𝑅0 and  𝑅1, but remains finite everywhere. 

        Next, we multiply by a damping factor to ensure that the density drops rapidly 

outside the shell. We define the damping function 

𝑓𝑚(x) =
(∑

𝑥𝑗

𝑗!
𝑚
𝑗=0 ) exp(−𝑥)

√1 + (
𝑥𝑚

𝑚!
)

2
,    𝑥 ≥ 0 
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                                                                      = 1, 𝑥 ≤ 0    ,                                          (A3) 

which switches from a constant (1) to a decaying exponential at 𝑥 = 0. Here 𝑚 

determines the number of derivatives that remain continuous at 𝑥 = 0, while the 

denominator ensures that a simple exponential decay is recovered at large 𝑥. We 

choose 𝑚 = 2 to ensure that second-derivatives are well-behaved at the transition. 

       Our well-behaved density can now be defined as 

                                               𝑛𝛾(𝐫) = 𝑛𝑒(𝐫)𝑓2 (
𝑅0−𝑟

𝛾
+

1

2
) 𝑓2 (

𝑟−𝑅1

𝛾
+

1

2
)                 (A4) 

and as 𝛾 → 0, it approaches the gedanken density of the text. To ensure 

normalization, 𝐴 must become a function of 𝛾 whose 𝛾 → 0 limit is that of Eq. (15) 

of the text. For any finite 𝛾, this is a Lieb-allowed density, and for sufficiently 

small 𝛾, its exchange energy can be made arbitrarily close to the gedanken density 

of the main text. 

       In Fig 4, we plot densities for  𝑅0 = 1, and 𝑅1 = 2 with 𝛾 =0.1, as well as the 

gedanken density. Clearly our density is well-behaved, and matches (up to the 

normalization constant) the gedanken density for 𝑅0 +
𝛾

2
< 𝑟 < 𝑅1 −

𝛾

2
.  

  In Fig 5, we plot 𝑠(r) for our density, noting its constant value in the interior 

of the shell, although it becomes very large outside in the exponentially decaying 

regions. In fact, 𝑠 diverges as  𝑟 → ∞, just as in real atoms, but the density decays 

exponentially. 

         In Fig 6, we plot 𝑣𝑠(r) for this two-electron density, with the constant chosen 

to make 𝑣𝑠 vanish as  𝑟 → ∞. The eigenvalue   is −1/(8𝛾2), which is -12.5 for 𝛾 

=0.1. The KS potential is continuous everywhere by construction. For the 

gedanken density, 𝑣𝑠(r) =  3/(8𝑟2) inside the shell. 
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Fig. 1: Plot of the reduced density gradient s (Eq. (16)) vs. 01 / RRy  for the two-

electron gedanken density of Eq. (14). 
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Fig. 2: Plot of the exchange-energy ratio LDA

xx EE / (Eqs. (17)  and (18)) vs. 01 / RRy 

for the two-electron gedanken density of Eq. (14). 
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Fig. 3: Plot of the effective  -dependent exchange enhancement factor of Eq. (23) 

vs. r  for the cuspless two-electron ( )0  density of Eq. (24). Different values of 

  correspond to different choices for the exact exchange energy density under a 

coordinate transformation. The curve for 75.0 tends to a nonzero constant as

r . All curves in 0.75 >  > 0.5 satisfy the bound of Eq. (7). Note that s = 

0.00, 0.54, 1.06, 1.98, and 3.67 at r  = 0, 1, 2, 3, and 4, respectively. 
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Fig. 4: Plot of the smoothed two-electron gedanken density n  of Eq. (A4) vs. 

distance r  from the origin. The 𝛾 = 0.001 curve already converges to the 

gedanken density of Eq. (14). 
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Fig. 5: Plot of the reduced density gradient s for the smoothed two-electron 

gedanken density of Eq. (A4) vs. distance r from the origin. 
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Fig. 6: Plot of the Kohn-Sham potential 2/12/12 /)2/1( nnvs    for the smoothed 

two-electron gedanken density of Eq. (A4) vs. distance r from the origin. For the 

gedanken density of  Eq, (14), this reduces to )8/(3 2rvs   in the range 10 RrR 

.  Here )8/(1 2  is evaluated only for 1.0  , to make the two curves plottable 

on the same scale. 

 

 

 


