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Correlation energy of the uniform electron gas determined by ground-state conditional
probability density functional theory
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Conditional-probability density functional theory (CP-DFT) is a formally exact method for finding correlation
energies from Kohn-Sham DFT without evaluating an explicit energy functional. We present details on how to
generate accurate exchange-correlation energies for the ground-state uniform gas. We also use the exchange hole
in a CP antiparallel spin calculation to extract the high-density limit. We give a highly accurate analytic solution
to the Thomas-Fermi model for this problem, showing its performance relative to Kohn-Sham and it may be
useful at high temperatures. We explore several approximations to the CP potential. Results are compared to
accurate parametrizations for both exchange-correlation energies and holes.
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I. INTRODUCTION

The uniform electron gas (UEG) plays an iconic role in
condensed matter physics [1]. It is the simplest example of an
interacting electronic system in the thermodynamic limit. It
has also been used as a simple model for metals, especially
simple metals like Na and Al [2]. Moreover, its exchange-
correlation (XC) energy is a vital input to the local density
approximation (LDA) for inhomogeneous systems, an ap-
proximation that dominated density functional theory (DFT)
calculations for a generation, and remains in wide use today
[3]. The ground-state energy was first calculated accurately by
Ceperley and Alder [4], and modern parametrizations largely
agree at the 1% level [5–7]. On the other hand, the finite tem-
perature case is still actively being calculated today [8–10].

Recently, it was pointed out that, for any electronic system,
one could extract the unknown XC energy by a sequence of
Kohn-Sham DFT (KS-DFT) calculations (one for each point
on a grid in the system) if a well-defined but unknown poten-
tial, the conditional probability potential, were known [11].
A simple LDA to this potential yields surprisingly accurate
results for systems as disparate as the binding energy curve
of H2 and the uniform gas. This approximation automatically
has no self-interaction error for one-electron systems [6], cor-
rectly dissociates the H2 singlet into two separate H atoms
[12], and its accuracy does not deteriorate as the temperature
is raised in a uniform gas [11]. Conditional-probability (CP)-
DFT relies on a typical KS calculation producing an accurate
density, but it is well-established that in most cases, such

*dperchak@icloud.com
†rmccarty@uci.edu
‡kieron@uci.edu

densities are very accurate [11]. Moreover, the XC energy
extracted from such CP densities involves a double-integral
that hides imperfections.

However, many questions were left unexplored in the orig-
inal publication. The formal underpinnings, for any quantum
system, are presented elsewhere [13]. In the present work,
we focus exclusively on the uniform gas at zero temperature.
We give details on how CP calculations are performed, which
differ substantially from a traditional DFT calculation, both
in the nature of the external potential and the boundary con-
ditions. We first perform the crudest possible CP calculation,
by adding a simple Coulomb repulsion at the reference point.
This is called a blue electron approximation, thinking of the
reference electron as distinguishable from all others (painted
blue). The CP is approximated as the ground-state density
of an N − 1-electron system with the blue electron treated
as an external potential generating a simple Coulomb repul-
sion. This scheme works remarkably well for densities with
Wigner-Seitz radii, rs > 2, with errors of less than 12% for
the XC energy. However, it fails badly at high densities where
exchange dominates, and so is poorly modeled by a classical
approximation. Essentially, the on-top exchange hole and its
environs is about minus half the density for an unpolarized
gas, while the blue electron potential digs almost no on-top
hole at all.

We next show how this difficulty was overcome in
Ref. [11]. First, the pure blue electron approximation was
shown to violate the electron-electron cusp condition by a
factor of 2. When this is restored, accurate results for highly
quantum systems were achieved, but it has little or no im-
pact on the high-density uniform gas. Then, a large repulsive
Gaussian was added to the CP potential, with parameters
chosen to reproduce the exchange hole, i.e., essentially an
accurate CP potential in this limit. A key principle of our
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method is to recover accurate XC energies by performing
only single-particle KS calculations, albeit at every point in
the system. As finding the exchange hole does not require
any many-body calculations, this is deemed acceptable. But
it was also necessary to smoothly turn this Gaussian off as a
function of increasing rs, a somewhat empirical procedure, but
one which yields the high accuracy presented in Ref. [11].

Here, we bypass this messy procedure, but still without
using any many-body results for the uniform gas. We present
a more sophisticated and satisfactory solution, by performing
a CP calculation for antiparallel spin only, fixing the parallel
CP density to that of exchange (which has long been known
analytically [14]). By construction, this recovers the correct
exchange in the high-density limit, and yields reasonable ac-
curacy for all other rs, but is less accurate in the low density
limit. Combining this procedure at high densities with the
original calculation at low densities yields an accurate curve
for all rs values.

Lastly, we consider the Thomas-Fermi (TF) solution to the
blue electron problem, and evaluate its accuracy relative to
a full KS calculation. We solve the TF equation analytically
using a high-density approximation, which turns out to be
remarkably accurate for all densities. For atoms, inaccurate
TF densities are the chief source of error in TF energies. But
here we are calculating a simple impurity in an otherwise
uniform background, thereby avoiding evanescent regions,
etc. Moreover, since the XC energy involves a double spatial
integral in general (and a single integral), it may be more
forgiving of errors than an explicit density functional might
be. We find that TF CP densities yield reasonably accurate
XC energies in CP theory, and their accuracy improves with
increasing rs. We expect TF-CP calculations to be particularly
useful at temperatures beyond which the KS equations fail to
converge, a regime which inspired many of these ideas (see
Ref. [15] and subsequent work).

II. THEORY

A. Background

Standard KS-DFT calculations solve the KS equa-
tions within some approximation for the XC energy as a
functional of the density, EXC[n]:[− 1

2∇2 + vS[n](r)
]
φi(r) = εi φi(r), (1)

where φi are the KS orbitals and εi the eigenvalues. Hartree
atomic units are used throughout. The KS potential is given
by

vS[n](r) = v(r) + vHXC [n](r), (2)

where v(r) is the original one-body potential while vHXC(r) in-
cludes the Hartree potential and an XC contribution, vXC(r) =
δ EXC[n]/δ n(r). In practice, spin-DFT is used. Most calcula-
tions of total energies yield densities sufficiently close to the
exact density that the error in the total energy is dominated
by the error in EXC itself, rather than on its evaluation on the
approximate density [16]. While there have been many im-
provements and refinements in such approximations over the
last half century, there are many known systematic limitations
of present-day functionals, such as their inability to correctly

dissociate bonds (strong correlation effects) and electron self-
interaction errors [17].

Recently, CP-DFT, an alternative approach to electronic
structure calculation, was suggested [11]. This takes advan-
tage of the well-known expression for the XC energy in terms
of the (coupling-constant averaged) XC hole, which in turn
is simply related to the conditional probability density for
finding an electron at r′, given an electron at r. Knowledge
of this function (or in fact just some particular integrals over
it) determines EXC exactly. The aim in CP-DFT is to calculate
this CP probability density using a standard KS calculation
at every point r in the system. In principle, if it exists, there
is a unique correction to the one-body potential such that the
ground-state of N − 1 electrons yields the desired CP density
[18]. In practice, we find a simple LDA works very well most
of the time, as our results show.

Thus, writing

EXC = 1

2

∫ 1

0
dλ

∫
d3r

∫
d3r′ n(r)nλ

XC
(r, r′)

|r − r′| , (3)

where integrating over λ is the adiabatic connection between
the KS system at λ = 0 and interacting system at λ = 1 [19].
The XC hole density is determined via

nλ

XC
(r, r′) = ñλ

r (r′) − n(r′), (4)

where ñλ
r (r′) is the conditional probability density for finding

an electron at r′, given an electron at r, at coupling strength λ.
We define the CP potential as the potential that has ground
state density ñλ

r (r′) for N − 1 electrons. It can be written
as v[ñλ

r ](r′), where v[n](r) is the functional dependence of
the potential on the ground state density, first described by
Hohenberg and Kohn [18]. We then define

�ṽλ
r (r′) = v[ñλ

r ](r′) − vλ(r′) (5)

as the correction to the external potential needed to yield the
CP potential. This is a functional of the original (N-electron)
gas density n(r), by the Hohenberg-Kohn theorem [18].

This theory is formally exact if the potential exists, but
the exact CP potential is not known in general and must
be approximated. A simple approximation, �ṽλ

r = λ/|r − r′|,
accounts for the majority of the CP correlation, and becomes
exact as the distance between r and r′ increases. This can be
considered the correct potential in the classical limit, in which
particles can be distinguished from one another, and where
the missing electron provides a simple Coulomb repulsive
impurity potential.

But this cannot be exact for quantum systems in general.
For example, recovery of the electron-electron cusp condi-
tions at small |r − r′| distances requires instead λ/(2|r − r′|).
A simple interpolation between small and large distances,
depending locally on the density, yields

�ṽλ
r [n](r′) ≈ λ

2|r − r′|
(

1 + Erf

( |r − r′|
rs(n(r))

))
, (6)

where rs = (3/(4πn))1/3 is the Wigner-Seitz radius of the
gas density at the reference point, and provides a simple
approximation that is correct in both limits [11]. While
this mirrors the longstanding challenge of approximating
EXC with a density functional, DFT methods often produce
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highly accurate densities even when their energies are in-
correct [16], allowing CP-DFT to produce accurate solutions
for several systems that are challenging for standard DFT
methods.

For those familiar with classical DFT of distinguishable
particles, this procedure is very like the Percus-Yevick closure
[20] of the Ornstein-Zernike equation [21]. In the truly clas-
sical case, the blue electron approximation would be exact,
if the exact inhomogeneous XC functional were used when
solving the KS equations for the impurity. In practice, we
expect the use of approximate XC in such calculations to pro-
duce only very slight errors, much of which will be forgiven
by the multiple integrals in Eq. (3). Moreover, we anticipate
that errors will reduce as the density becomes lower, the elec-
trons become more spread out, and the behavior is dominated
by pure Coulomb repulsion. Likewise, in the high density
limit, we expect difficulties, where the entirely nonclassical
exchange effect dominates.

This paper reports only results for the uniform gas at zero
temperature. It gives the full details of the potentials and
computational methods that were used in Ref. [11], plus an ex-
tension of the method used there to extract spin-decomposed
holes, and better justify the smooth turn-off of the exchange
barrier needed to recover the high-density limit. We also
discuss the quasianalytic solution of the Thomas-Fermi equa-
tion (instead of the KS equations) for this case. This is of
interest, as clearly a TF solution is far less computationally
expensive than the KS approach. In cases where the additional
cost of solving KS equations at every point is prohibitive, use
of TF theory may provide a practical alternative, but only if
errors are not substantially increased.

III. METHODS

A. CP-DFT

We now consider applying the CP concept to the spin unpo-
larized uniform electron gas. By symmetry, the CP potential is
spherical, and we perform calculations within a finite sphere
of radius R. Because the UEG is translationally invariant,
we choose r = 0 for the reference point. Further, we drop
the prime from r′, so that r now denotes the distance from
the reference point, as is conventional for UEG calculations.
In practice, we perform calculations in a finite sphere with
a large but finite number of electrons N . The boundary of
the sphere produces nonuniformities in the density, which
are minimized by a judicious choice of boundary condition,
Eq. (A12). Moreover, by calculating our XC hole density,
Eq. (A13), by subtracting densities with N and N − 1 elec-
trons, the effect of nonuniformity near the surface largely
cancels. Thus all our calculations are converged with respect
to the size of the sphere. The systems have a maximal radial
coordinate R, volume of V = 4πR3/3, and average electron
density of n̄ = N/V and (N − 1)/V . The KS equations are
solved in the LDA for both systems. The potential used in the
KS equations is

vS[n](r) = vn[n0](r) + �ṽ[n](r) + vH[n](r) + vXC[n](r),

(7)

FIG. 1. Normalized density vs r/rs for (a) rs = 2.5 and (b) rs =
10.0. Solid line is the N-electron system and the dashed line is the
blue electron, N − 1 system.

where vH[n](r) is a Hartree repulsion

vH (r) =
∫

d3r′ n(r′)
|r − r′| , (8)

and vn[n0](r) is a potential derived from a uniform, pos-
itive compensating background charge density, n0 = N/V .
The exchange-correlation potential, vXC[n](r) is from LDA
using the PW92 parametrization [7]. Lastly, we have the
CP or blue potential, which appears only in the N −
1 electron calculation for which we will consider two
forms,

�ṽ(r) =
⎧⎨
⎩

1
r

1
2r

(
1 + Erf

(
r
r̄s

))
.

(9a)

(9b)

Here, r̄s refers to the Wigner-Seitz radius of the sys-
tem as a whole. As was discussed in the introduction,
the simple approximation of 1/r for the CP potential is
not sufficient for quantum systems. However, it is still
instructive to see where it fails. Further details of the CP-
DFT and the numerical solution method are contained in
Appendix A.

B. CP-DFT results

We first show results for calculations at rs = 2.5 and rs =
10.0 using the simple 1/r potential, Eq. (9a), for the blue
electron. Figure 1 plots the density of the N electron system
and the N − 1 electron system as a function of the radial
coordinate for these two values of rs. The blue system density
in both cases is depressed near r = 0 by the repulsion as we
would expect. The density difference is the XC hole (at λ = 1)
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FIG. 2. Pair distribution function, g(r) plotted vs r/rs for (a) rs =
2.5 and (b) rs = 10.0. The dashed blue line is for the CP potential
equal to 1/r, the dotted red line is for the modified CP Potential and
the solid black line is the exact solution.

from which one deduces the pair distribution function (PDF),
with Eqs. (A13) and (A14). This is shown in Fig. 2 where we
have also included calculations for the modified CP potential
Eq. (9b).The advantage of calculating both the N and N − 1
electron systems is apparent in the cancellation of boundary
effects. The modified CP potential is significantly better than
the simple 1/r potential. We can use Eq. (A15) to evaluate
the XC energy. This energy is not averaged over the coupling
constant, i.e., it is the potential contribution only. This is
well-known to yield only that part of the XC energy due to
electron-electron repulsion, called the potential contribution,
while the kinetic contribution is folded in via the coupling-
constant integration [22]. Figure 3 shows rs times the potential
XC energy ε(λ=1)

xc plotted vs rs for the same blue potentials
as before, along with the exact values. The latter is calculated
using the PW92 expressions for g(r) along with Eq. (A14) and
Eq. (A15). For values of rs � 2.5, the modified blue potential
does much better than the simple Coulomb potential, with
relative errors less than 3% and 11%, respectively. However,
both do badly as the system density increases (rs → 0), as
shown for rs = 0.02 in Fig. 4. The model fails to adequately
depress the density near r = 0. This is due to the dominance
of exchange at high density, which is not included in our
approximate CP potential. In practical terms, the blue electron
is not “repulsive” enough. A more satisfactory solution can be
obtained by performing a CP calculation in one spin channel
only where the other spin CP density is fixed to that given by
exchange alone. We turn to the details of this approach in the
next section.

FIG. 3. rsε
(λ=1)
xc vs rs for the CP potential equal to 1/r (dashed

blue line), modified CP potential (dotted red line) and the exact
solution (solid black line). The inset shows an expanded view of the
region for rs � 2.0.

C. Spin CP-DFT

In this section, we perform a spin CP-DFT calculation in-
stead of a CP-DFT calculation, showing that the high-density
limit can be treated accurately by this method.

The spin conditional probability densities for a system are
defined as the probability density for finding an electron at r′,
given an electron of spin σ at r. Spin conditional probability
densities are total densities (not spin densities), but are con-
ditional on an electron having a given spin as well as given
position [13]. We can further decompose a spin CP density
into a sum of two spin densities. Choosing the blue electron
to have spin up (arbitrarily), we write

ñr↑(r′) = ñr↑(r′ ↑) + ñr↑(r′ ↓). (10)

The first is the parallel spin CP spin density, the latter being
the antiparallel. We perform a spin KS-DFT calculation in
which the former is fixed at its exchange form, which is

FIG. 4. Pair distribution function, g(r) plotted vs r/rs for rs =
0.02. The dashed blue line is for the CP potential equal to 1/r, the
dotted red line is for the modified CP Potential, and the solid black
line is the exact solution.

165143-4



CORRELATION ENERGY OF THE UNIFORM ELECTRON … PHYSICAL REVIEW B 105, 165143 (2022)

well-known for a uniform gas, given explicitly in Eq. (B2). In
principle [13], the CP potential should now be two different
potentials, one for each spin channel, and the functional de-
pendence could differ for parallel and antiparallel spins. Here
we simply use the same CP potential we have used for nonspin
CP-DFT, [Eq. (6)]. For finite systems, using spin densities in
CP-DFT is complicated, as in general they do not integrate up
to integer particle numbers [13]. Here, this is not a concern, as
the particle number is infinite. Moreover, in our calculation,
we use the exchange pair correlation function, which does
yield an integer particle number.

We consider a UEG with spin densities n̄↑ and n̄↓. Placing
a blue ↑ electron at the origin, r = 0 and dropping the prime,
it will be surrounded by its hole of ↑ electrons given by

δn↑(r) = n̄↑[g↑↑(n̄↑, n̄↓; r) − 1]. (11)

Here, g↑↑(n̄↑, n̄↓; r) is the PDF for like-spin electrons sepa-
rated by a distance r in a uniform gas with given spin densities,
n̄↑ and n̄↓. The up-spin density is then given by

ñ↑(r ↑) = n̄↑ + δn↑(r) = n̄↑g↑↑(n̄↑, n̄↓; r). (12)

With a known ñ↑(r ↑), we can write down a KS equation for
ñ↑(r ↓) and solve for it within the local spin density approxi-
mation. Thus, given g↑↑, we can calculate g↑↓ via CP-DFT. As
g↑↓ contains no exchange, we can hope to be more accurate in
the high density limit.

The numerical solution for the fixed spin case is carried out
in a manner analogous to that for CP-DFT. Again, we consider
two systems. First, the N- electron system with numbers of up
and down spins, Nσ = N/2 and average spin densities, n̄σ =
Nσ /V and secondly, the N − 1 electron system with N↑ =
N/2 − 1 up spins and N↓ = N/2 down spins. The N-electron
system is initialized as n(r ↑) = n̄↑, n(r ↓) = n̄↓ and the N −
1 electron system is initialized as ñ↑(r ↑) = n̄↑gX(ζ , kF r) and
ñ↑(r ↓) = n̄↓. Here, n̄↑(↓) is understood as referencing the
N or N − 1 electron system accordingly. Further details are
contained in Appendix B. By using only gx, which can be
derived analytically, we avoid using any many-body results.
For high densities, this will be extremely accurate.

In general, there are complications when using KS spin-
DFT to find CP densities, because the individual components
need not, in general, integrate to integer particle numbers.
We explain this in a forthcoming paper on the formalism, in
general [13]. However, such issues do not apply for a uniform
gas, which is why we use spins here. But it is also why we
do not pursue this as a general strategy: It is too complicated
to use in inhomogeneous cases. See the discussion following
Eq. (10) of the current paper.

D. Computational details

Calculations can be carried out on personal computers,
typically lasting minutes or hours. Our model was written
in Python 3 utilizing NumPy [23], SciPy [24], Numba [25],
and an exchange-correlation module “excor.py” written by K.
Haule (Physics Dept. Rutgers University).

FIG. 5. Pair distribution function (a) and antiparallel PDF-1
(b) vs r/rs for the spin CP-DFT with rs = 0.02. Solid black line is
the exact result and the orange dotted line is the spin CP-DFT.

E. Spin CP-DFT results

The calculations for the spin CP-DFT use the modified
version of the CP potential Eq. (9b). Additionally we are set-
ting the correlation potential to zero. We had also performed
calculations using the correlation potential but found that for
densities rs � 7.5 the results were worse compared to setting
the correlation potential to zero. For lower densities, including
the correlation potential gave better results but since our goal
is to remedy the failure of CP-DFT in the high density regime,
we chose to set the correlation potential to zero. We first
consider an electron density of rs = 0.02. We plot the result
for the PDF in Fig. 5. The agreement is excellent as at such a
high density the interactions are dominated by exchange. We
also plot g↑↓(r) in Fig. 5 and these results are also quite good.

We next consider a lower density of rs = 2.5. We show
results for the total PDF in Fig. 6(a) and for the antiparallel
PDF in Fig. 6(b). Although there is some small difference with
the exact result for the antiparallel PDF, the overall PDF is
good and the error in potential XC energy is about 3%.

We see a more serious departure from the exact result at
rs = 10.0. Figures 7(a) and 7(b) plot the PDF and antiparallel
PDF for this low density. Here we can see more clearly the
departure from the exact result although the relative error for
the potential XC energy is on the same order as that for rs =
2.5 but with the sign reversed.

In Fig. 8 we plot the potential XC energy times rs as a
function of rs for both models. The agreement with the exact
result is quite good for the spin CP-DFT, being worst at low
density.

Since, as noted above, for values of rs � 2.5, the fractional
error for the CP-DFT is on the order of 3%, the question
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FIG. 6. Same as for Fig. 5 but for rs = 2.5.

arises as to whether an additional potential can be added to
the CP-DFT to correct for its deficiencies at high density. In
fact, such an additional potential was used in our previous
work [11], where we found that an added, external potential of

FIG. 7. Same as for Fig. 5 but for rs = 10.0.

FIG. 8. rsε
(λ=1)
XC

vs rs. The solid black line is the exact result, the
dotted orange line is the spin CP-DFT, and the dotted blue line is for
the CP-DFT.

Gaussian shape

vG(r) = A(rs)e−r2/2σ 2(rs ), (13)

where A(rs) and σ (rs) are rs-dependent strength and range
parameters provides the needed repulsive effect. The rs depen-
dence was chosen to replicate exchange in the high density
limit, and to slowly turn off as rs grows, vanishing beyond
rs = 2.5. This is described in Appendix C. The results of using
the Gaussian potential, Eq. (13) with the strength and range
parameters given by Eq. (C3) are shown in Fig. 9 where the
maximum difference with the exact result for the two-channel
model is now less than 3%. This was used in Ref. [11].

The coupling-constant averaged values of the XC energy,
εxc, can be obtained by calculating the potential XC energy,
ε(λ)

xc , Eq. (A15), with λ = 1 for a series of rs values and
integrating over rs [19]

εXC (rs) = 1

r2
s

∫ rs

0
r′

sε
λ=1
XC

(r′
s)dr′

s. (14)

The comparison with PW92 for the XC energy is shown in
Fig. 10 where the relative difference is below 4% for the single

FIG. 9. Same as for Fig. 8 but where the CP-DFT has the added
Gaussian potential.
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FIG. 10. Coupling-constant averaged exchange-correlation ener-
gies plotted as rsεxc vs rs. The solid black line is the exact result, the
dashed orange line is for the spin CP-DFT, and the dotted blue line
is for the CP-DFT with the added Gaussian potential.

channel model and for the two-channel model with Gaussian
repulsion is below 3%.

IV. THOMAS-FERMI SOLUTION FOR THE BLUE
ELECTRON PROBLEM

The Thomas-Fermi functional [26,27] for the blue electron
system is

F T F [n] =
∫

d3r

[
Asn

5/3(r) + vn(r)n(r)

+ 1

2
vH(r)n(r) + �ṽ(r)n(r)

]
(15)

with As = (3/10)(3π2)2/3. The potentials, vn, Eq. (A2) and
vH, Eq. (8) are as before and we use �ṽ(r) = 1/r. The
charge densities are normalized such that

∫
d3r n0 = N and∫

d3r n(r) = N − 1.
Defining the total electrostatic potential as V (r) = vn(r) +

vH(r) + �ṽ(r) minimizing the functional, Eq. (15) with
respect to the density, n(r) subject to the normalization condi-
tion, and formally solving for the density, we have (just as for
bare atoms or ions):

n(r) = (
5
3 As

)−3/2
[μ − V (r)]3/2

+ , (16)

where x+ = 0 if x < 0 and μ is the chemical potential.
As r → ∞, n(r) → n0, and thus V (r) → 0. The latter can

be determined from a Taylor expansion of the denominator in
V (r). From Eq. (16), we find

μ = 5
3 Asn

2/3
0 . (17)

But as r → 0, V ∼ 1/r, so μ − V → −∞. Thus, μ = V at
some r0, so n = 0 for r � r0 in Eq. (16).

We relate the Laplacian of the electrostatic potential to the
charge densities using Poisson’s equation

∇2V ((r)) = −4π [n(r) − n0 + δ(r)]. (18)

Defining

φ(r)

r
= μ − V (r) (19)

and δφ(r) = φ(r) − μr = −rV (r) and substituting from
Eq. (16) we have

∇2

(
δφ

r

)
= 4π

[
−n0 +

(
5

3
As

)−3/2(
δφ

r

)3/2


(r − r0)

]
,

(20)

where 
(x) is a step function in x, and the δ function at r = 0
implies:

δφ(0) = −1, δφ(r0) = −μr0. (21)

Introducing dimensionless variables z = r/rs and y = δφ/μrs

we can write Eq. (20) as

d2y

dz2
= xsz

(
−1 +

(
1 + y

z

)3/2

+

)
, (22)

with xs = rs/a, and a = (3π2/16)1/3/2 ≈ 0.61. The bound-
ary conditions are

y(0) = − xs

3
, y(z0) = −z0, y → 0 as z → ∞, (23)

where z0 = r0/rs. For z < z0,

y(z) = −
(xs

2

)
z3 + Az + B, (24)

where

A =
( xs

3z0

)[
1 + z3

0

2

]
− 1, B = −xs

3
. (25)

For z > z0, we have, for large z, to first order

d2y

dz2
≈ 3xs

y

2
, (26)

yielding y(z) ∝ e−kz where k = (3xs/2)1/2. By matching the
log derivatives at z = z0 between Eq. (24) and the large z
solution, at z = z0, we find

z3
0 + 3k

xs
z2

0 + 3

xs
z0 − 1 = 0. (27)

The solution to Eq. (27) depends on the value of rs. For
rs < a/

3
√

2 ≈ 0.4872, there are three real roots but only 1 is
positive and for larger rs there is only 1 real root. Thus,

z0 =
{

Q1/2
[

2cos
(

θ+π
3

) + √
3

]
rs < a/

3
√

2
A + Q/A − √

3Q rs > a/
3
√

2,
(28)

where θ = cos−1(
√

2x3
s ), Q = 1/2xs, and A = [1/2 + (1/4 −

Q3)1/2]1/3. The numerical solution to the TF blue electron
model is detailed in Appendix D.

We performed calculations for rs values ranging from rs =
0.02 to rs = 100. Plots of the normalized hole densities for
these rs values are shown in Fig. 11. As can be seen in
this figure, the normalized hole density tends toward a step
function at r = rs in the low density limit and the location of
z0 moves farther out. In Fig. 12 we plot the value of z0 as a
function of rs as determined from the numerical calculations,
as well as the analytic approximation of Eq. (28). The analytic
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FIG. 11. Normalized hole density vs r/rs for a range of densities.
Solid lines are the numerical solutions and the dashed lines are for
the analytic solutions.

solution for z0 is surprisingly accurate with a maximum error
of 2.3% around rs = 5.0. A table of values for the numerical
and analytical results for z0 can be found in Table I.

We can calculate the potential XC energy from the CP
hole density, nXC (r) = n(r) − n0 using Eq. (A15). In Fig. 13
we plot potential energy rsε

(λ=1)
XC

and compare with the exact
result as well as the KS blue electron result using CP-DFT
with �ṽ(r) = 1/r. We also plot the fractional error in Fig. 14.
For mid- to low densities (rs � 1.0) the results are surprisingly
good, with errors less than 10%. It is instructive at this point
to plot the PDF vs r/rs for different values of rs and compare
with the exact result. This comparison is shown in Fig. 15
for rs = 0.02, 1.0, 5.0, 10.0. The results are poor at rs = 0.02
but improve with decreasing density. Interestingly enough,
although the shape of the hole is inaccurate at rs = 1.0, the
integrated value of the hole energy is quite good when com-
pared to the exact result.

V. CONCLUSIONS

We have shown how to implement the blue-electron con-
cept for a uniform gas at low temperature. The simple classical

FIG. 12. Value of z0 vs rs. The solid line is derived from Eq. (27)
and the dotted line is from the numerical calculations.

TABLE I. Values of z0 as a function of rs analytic and exact
calculations along with the relative error between them.

rs zA
0 z0 (zA

0 − z0)/|z0|
0.02 0.0108 0.0108 −0.0000
0.1 0.0529 0.0529 −0.0004
0.5 0.2168 0.2186 −0.0081
1.0 0.3404 0.3460 −0.0161
5.0 0.6322 0.6472 −0.0233
10.0 0.7272 0.7425 −0.0205
50.0 0.8704 0.8809 −0.0119
100. 0.9071 0.9153 −0.0089

idea of an impurity captures the basic physics for moderate
to low densities, and its accuracy is improved by a local
density approximation for the CP potential that respects the
electron-electron cusp condition at short distances.

The blue-electron idea naturally fails at high densities,
where exchange effects dominate. We have shown how this
failure can be overcome by applying the idea for anti-parallel
spin alone, while using just the exchange hole for parallel
spin. Our procedure still avoids any many-body or QMC in-
put, and provides useful accuracy for all densities, including
the high-density limit. Moreover, it provides formal justifica-
tion for the large Gaussian repulsion used when the entire
hole is simulated for high-densities, and its smooth turning
off. Errors no greater than 5% in the XC energy density are
then available.

As the method is based on classical DFT ideas, we expect
errors to lessen with increasing temperature, and overall, they
do [11]. But we have also given results for TF blue electron
calculations, as higher-temperature simulations often must use
TF in place of KS because of convergence issues with the
KS scheme. Here we present our analysis of the TF equa-
tion just at zero temperature.A simple analytic approximation
is remarkably accurate relative to a fully converged numerical
solution. We use the numerical solution to compare with KS
blue electron calculations at zero temperature. Again, we ex-
pect the error introduced by the TF approximation to reduce
with increasing temperature.

FIG. 13. rsε
(λ=1)
XC

vs rs for the TF blue electron model, the KS
blue electron model, and the exact result.

165143-8



CORRELATION ENERGY OF THE UNIFORM ELECTRON … PHYSICAL REVIEW B 105, 165143 (2022)

FIG. 14. Fractional error for the TF model), KS model, and the
exact result. The comparisons are with the noncoupling-constant
averaged energies.

Even at low temperature, where convergence of KS is
not an issue, the TF blue electron might prove a pragmatic
alternative to full CP-DFT calculations, as these require a KS
calculation at every point in the system.

Regardless of the accuracy of these specific calculations,
the principle that one could calculate XC holes and their
energies exactly via the densities of many KS calculations
remains valid. Moreover, the CP approach provides a useful
bypass of the need to find more accurate XC functionals, albeit
at higher computational cost. It remains to be seen whether

FIG. 15. PDF vs r/rs for (a) rs = 0.02, (b) rs = 1.0, (c) rs = 5.0,
(d) rs = 10.0 The solid black line is the exact result, the solid blue
line is the CP-DFT with �ṽ = 1/r, and the dashed orange line is the
Thomas-Fermi model.

CP-DFT can evolve into a practical alternative to existing
DFT calculations, especially in situations where standard DFT
fails.
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APPENDIX A: CP-DFT DETAILS

Here we provide further details of the CP-DFT and our
method of numerical solution. In addition to the Hartree,
Eq. (8) and CP potentials Eq. (9) used in the KS equations,
Eq. (7), we have the exchange interaction in the LDA,

vLDA
X [n](r) =

(
3

2π

)2/3 1

rs[n(r)]
, (A1)

and, when used, the correlation potential, vC[n](r) is from
PW92. The positive, compensating background potential is

vn(r) = −
∫

d3r′ n0

|r − r′| = −4π n̄

(
R2

2
− r2

6

)
. (A2)

Our system is spherically symmetric, hence we can write
the wave functions in terms of spherical harmonics and a
radial wave function,

φi(r) = Rnl (r)Ylm(θ, φ) = unl (r)

r
Ylm(θ, φ), (A3)

with quantum numbers n, l, m and we have expressed the
radial wave function as u(r)/r. The radial KS equation is[

−1

2

d2

dr2
+ vS(r) + l (l + 1)

2r2

]
unl (r) = εnlunl (r). (A4)

The density is

n(r) = 2
∑
n,l

2l + 1

4π

u2
nl (r)

r2
f ((εnl − μ)/kBT ), (A5)

where the factor of 2 accounts for spin and f ((εnl − μ)/kBT )
is the Fermi-Dirac distribution function used for Fermi smear-
ing of the energy states,

f (x) = (1 + ex )−1. (A6)

Here, μ is the chemical potential chosen so that

N = 2
∑
n,l

(2l + 1) f ((εnl − μ)/kBT ), (A7)

where N is the number electrons and kBT is Boltzmann’s con-
stant times the temperature. Smearing reduces convergence
issues. All calculations use φ = 0.05 defined as

φ = kbT

εni
F

, (A8)
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where εni
F is the Fermi energy for the noninteracting electron

gas

εni
F = 1

2

(
9π

4

)2/3

r−2
s . (A9)

The set of equations describing the CP-DFT are coupled
and thus have to be solved self-consistently. We do this using
an iterative scheme wherein first, an initial guess is made for
the density, n(r). Then, the KS equations are solved using that
initial guess and a new density, n∗(r) evaluated from Eq. (A5).
This density is then mixed in with the previous density via
linear mixing:

nk+1(r) = αn∗(r) + (1 − α)nk (r), (A10)

where k represents the kth iteration and α < 1. This process
is repeated until a suitable convergence to be described below
is obtained. We use a shooting method to solve for the wave
function that satisfies Eq. (A4) for a given energy, εnl . A
4th order Runge-Kutta scheme is used to integrate Eq. (A4)
forward from r = r0 to r = R with typical values r0 = 0.05rs

and R = 8rs, respectively. Following Ref. [28] the boundary
condition used at r = r0 is

unl (r = r0) = Arl+1
0

du

dr

∣∣∣∣
r=r0

= A(l + 1)rl
0, (A11)

where A is some constant. For the boundary condition at r =
R, we require ∂n(r)/∂r|r=R = 0. To ensure this we require(

∂u(r)

∂r
− u(r)

r

)∣∣∣∣
r=R

= 0. (A12)

Solving the KS equations for a specific l involves varying the
energy ε in small increments, integrating Eq. (A4) for each
value of the energy and looking for regions where Eq. (A12)
changes sign. A root-finding scheme is then used to precisely
locate the energy eigenvalue.

We use two criteria for convergence of the iterative solution
scheme. The first is that the difference of the sum over all
states of the energy eigenvalues between the new state before
mixing and the previous iteration relative to the new state must
be less than 5 × 10−7. The second is that the 2-norm of the
density difference between successive iterations normalized
by the 2-norm of the density is less than 10−5. Both criteria
must be satisfied for convergence.

The procedure for a blue electron calculation is then to
solve both the N electron system with �ṽ = 0 and the N − 1
electron system with �ṽ as in Eq. (9) for a given system den-
sity. With the densities obtained from these two calculations,
n(r) and ñ(r), we calculate the XC hole density as

nλ=1
XC (r) = ñ(r) − n(r) (A13)

and from the hole density obtain the PDF

g(r) = nλ=1
XC (r)

n̄
+ 1. (A14)

The XC energy can be calculated as

ε(λ)
XC = 2π

∫ R

0
r n(λ)

XC (r)dr. (A15)

APPENDIX B: SPIN CP-DFT DETAILS

The spin CP-DFT considers the up-spin density fixed by
Eq. (12) and solves for the down spin density, n↑(r ↓). Thus
we need an expression for the like-spin PDF. An analytic fit to
the like-spin PDF can be obtained from Eq. (48) of PW92

g↑↑(rs, ζ , kF r) = g[rs, 1, (1 + ζ )1/3kF r/21/3], (B1)

where rs = (3/4π n̄)1/3 is the Wigner-Seitz radius, n̄ = n̄↑ +
n̄↓, kF = (3π2n̄)1/3 is the Fermi wave vector, ζ = (n̄↑ −
n̄↓)/(n̄↑ + n̄↓) is the spin polarization. In our calculations, we
include only the exchange part of the like-spin PDF

gX(ζ , kF r) = 1 + 1

2

+1∑
σ=−1

(1 + σζ )2J[(1 + σζ )1/3kF r],

(B2)

where

J (y) = −9

2

j1(y)

y
(B3)

and j1 is the spherical Bessel function of the first kind. Similar
to the neutral spin case, we can write the KS orbitals for
n↓(r) in terms of spherical harmonics and a radial function.
This leads to a KS equation for n↓(r) similar to Eq. (A4) but
without the 2 for spin degeneracy.

The KS potential is as before but now the exchange
potential is

vLDA
X,σ

[n, ζ ](r) = 4
3εx(n, ζ ) − 2

3 (ζ − sgn(σ ))εunpol
X (n)

×{(1 + ζ )1/3 − (1 − ζ )1/3}. (B4)

Here, sign(σ ) = ±1 as σ =↑ or σ =↓. The unpolarized ex-
change energy is

εunpol
X (n) = −3

4

(
3

π

)1/3

n1/3, (B5)

and the polarized exchange energy is

εX(n, ζ ) = εunpol
X (n)

{
(1 + ζ )4/3 + (1 − ζ )4/3

2

}
. (B6)

Note that in the above equations, ζ = ζ (r) is the local spin
polarization. The correlation potential, when used, is from
PW92 and the CP potential is as before.

The n↑(r) is kept fixed and the KS equations are solved for
the down spin density in a manner analogous to that of the CP-
DFT case. Once the down spin densities are obtained, the PDF
can be calculated as before using Eq. (A13) and Eq. (A14).
Additionally we can calculate the antiparallel PDF from

g↑↓(r) = nXC,↓(r)

n̄↓
+ 1, (B7)

with

n(λ=1)
XC,↓ (r) = ñ↑(r ↓) − n(r ↓). (B8)

APPENDIX C: DETERMINATION OF PARAMETERS
FOR THE GAUSSIAN POTENTIAL

The parameters for this added potential were obtained by
varying values of A and σ in a grid search and evaluating two
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FIG. 16. Pair distribution function, g(r) plotted vs r/rs for rs =
0.02. The solid black line is the exact PDF and the dashed orange line
is for the modified CP potential plus the added Gaussian of Eq. (13).

metrics. The first is the relative difference with PW92 for the
on-top hole density at r = 0, i.e.,

MA = (nxc(r → 0) − nPW
xc (r → 0))∣∣nPW

xc (r → 0)
∣∣ (C1)

and the second is the relative difference with the PW92
exchange-correlation energy,

MB =
(
εxc − εPW

xc

)∣∣εPW
xc

∣∣ . (C2)

The zero contours from the grid search of each of these
metrics was calculated and the values for A and σ determined
from the intersection of these zero contours. The results at
rs = 0.02 were A = 2322.2065 and σ = 0.01145. Using these
values in Eq. (13) matches the PW92 PDF for rs = 0.02 very
well as can be seen in Fig. 16.

The behavior of A and σ as determined by additional grid
searches appeared to have power-law dependences, at least in
the region of high densities (low rs). However, this held true
only for a very narrow range of rs values and quickly departed
from this behavior as rs increased. We decided that the pa-
rameters of the Gaussian potential would have this power-law
behavior but would be multiplied by a switching function such
that by the time rs = 2.5 was reached, the Gaussian potential
parameters vanished. Thus, we used the following:

A(rs) =A0 fs(rs, rR, bA)/r2
s ,

γ (rs) =γ0 fs(rs, rR, bG)/rs,
(C3)

where

σ (rs) = 1

γ (rs)
(C4)

and the switching function, fs is given by [29]

fs(r, rR, b) =
{

1
1−e−b

(
e−b( r

rR
) − e−b

)
0 � r � rR

0 rR � r.
(C5)

Here, rR denotes the range over which the switching function
goes from one to zero and b is a parameter controlling the
shape of the switch. In the limit of b → 0, the switch is a

linear function. The utility of this function is the wide range
of switching behaviors that it can display, from rapid de-
crease and subsequent slower decline to slow decline followed
by rapid decrease and as mentioned above, a simple linear
decline.

The procedure we applied to determine the parameters was
as follows. We would choose a set of parameters for the
switching functions, i.e., bA, bγ (Note that we use the same
rR parameter for both A and γ but allow for different bA(γ )

values.) The value for rR was set to rs = 2.5. The parameters
A0 and γ0 are determined from the values obtained from the
grid search at rs = 0.02,

A0 = A(rs = 0.02)(0.02)2

fs(0.02, rR, bA)
,

γ0 = γ (rs = 0.02)(0.02)

fs(0.02, rR, bγ )
. (C6)

Then, bA and bγ are varied until there is a smooth to the eye
transition from the rs = 0.02 value to the rs = 2.5 value when
plotting rsεxc vs rs. The values of rR = 2.5, bA = 3.0, bγ =
−3.0 appeared to work best.

APPENDIX D: NUMERICAL METHOD FOR THE
THOMAS-FERMI BLUE ELECTRON MODEL

As discussed above, we only expect Eq. (27) to be
valid at high densities. Nonetheless, it can used to get
an initial approximation for z0 at all densities. Using the solu-
tion to Eq. (27) as an initial guess for z0, we can numerically
integrate Eq. (22) starting from z = 0 with the boundary con-
ditions Eq. (23). We continue the numerical integration until
certain criteria are reached. First, it may occur that y(z) > 0.
In this case, our initial guess for z0 is too low and needs to
be increased. Second, it may occur that dy(z)/dz < 0. In this
case, the solution is tending away from zero which is where
the solution must go as z → ∞. Here, z0 must be decreased.
Lastly, we may find that d ln(y)/dz = −k to within some
designated tolerance. This means that we have effectively
reached the large z region of Eq. (22) for the particular value
of rs being used and we can now switch to the analytic result
to obtain the solution for larger z values. Once Eq. (22) has
been integrated to a point, z = zldm where the log-derivative
matches −k to the specified tolerance, the value of the con-
stant, A0 can be determined from

A0 = y(zldm)ekzldm . (D1)

We used a fourth-order Runge-Kutta scheme with a step size
of 10−5 to integrate Eq. (22). Initial work showed that the
value of z0 obtained from Eq. (27) is slightly below that of the
actual value and so we created a bracket with the lower guess,
zL

0 from Eq. (27) and the upper guess being zR
0 = z0 + 0.1.

We then solve Eq. (22) using z0 = (zL
0 + zR

0 )/2 until one of
the above stopping criteria are reached. If the log-derivative
matches to that of −k with a tolerance of 1.0x10−8, then we
have found z0. If, one of the other criteria is reached, we
adjust either the lower or upper guess and repeat the process
until the log-derivative is matched. This iterative process re-
quired some 10–50 iterations depending on the density. The
numerical solution to Eq. (22) for rs = 1.0 with the value

165143-11



PERCHAK, MCCARTY, AND BURKE PHYSICAL REVIEW B 105, 165143 (2022)

FIG. 17. The solution to Eq. (22) for rs = 1.0. The solid line is
the numerical solution and the dashed line is the large z solution with
the value of A0 given by Eq. (D1).

of z0 = 0.3460 found by the iterative process is shown in
Fig. 17 along with the exponential solution with A0 obtained
from Eq. (D1) The normalized hole density, (n(r) − n0)/n0

for the case of rs = 1.0 is shown in Fig. 18 along with the
exponential solution with A0 obtained from Eq. (D1) and an
analytic solution where A0 is obtained from the boundary
conditions, Eq. (23) using the z0 value obtained from Eq. (27).
A closer look at the region for r/rs < 0.5 is shown in the
inset where we can see the differences between the numerical
solution and the exponential and purely analytic solutions. As
a last check on the calculation, we can calculate the integral

FIG. 18. Normalized hole density vs r/rs for rs = 1.0 Solid line
is the result from the numerical calculation whereas the orange
dashed line is from the exponential solution with A0 determined from
Eq. (D1) while the dashed green line is the analytic solution with A0

determined by the boundary conditions. The inset shows the region
for rs � 0.5.

of the hole density for the different solutions and it should
integrate to −1. The numerical and exponential solutions sat-
isfies this condition to about 0.04% and 0.40%, respectively,
whereas the purely analytic solution is off by approximately
5%. We note that for matching the log derivatives, a tolerance
of 10−8 is necessary to have the hole density integrate to
−1. At lower densities, a lower tolerance of 10−6 works just
fine.
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