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The generalized gradient approximation (GGA) corrects many of 
the shortcomings of the local spin-density (LSD) approximation. 
The accuracy of GGA for ground-state properties of molecules is 
comparable to or better than the accuracy of conventional quan­
tum chemical methods such as second-order Møller-Plesset pertur­
bation theory. By studying various decompositions of the exchange­
-correlation energy EXC, we show that the real-space decomposition 
of EXC facilitates the most detailed understanding of how the lo­
cal spin-density approximation and the Perdew-Wang 1991 GGA 
work. The real-space decomposition shows that the near universal­
ity of the on-top value for the exchange-correlation hole connects the 
homogeneous electron gas to inhomogeneous systems such as atoms 
and molecules. The coupling-constant decomposition shows that the 
exchange-correlation energy at full coupling strength EXC,λ=1 is ap­
proximated more accurately by local and semi-local functionals than 
is the coupling-constant average EXC. We use this insight both to 
critique popular hybrid functionals and to extract accurate energies 
from exact electron densities by using functionals for the exchange­
-correlation energy at full coupling strength. Finally, we show how 
a reinterpreted spin density functional theory can be applied to sys­
tems with static correlation. 

Density functionals in quantum chemistry 
The main goal of quantum chemistry is the reliable prediction of molecular proper­
ties [1]. The development of generalized gradient approximations ( G G A ' s ) [2-10] 
has made density functional theory [11-13] a serious competitor to conventional 
quantum chemistry methods for ground-state properties. The latter methods 
include Configuration Interaction techniques, Coupled-Cluster methods, and the 
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454 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

M0ller-Plesset perturbation expansion [14]. They account for electron correlation, 
but suffer in general from basis set problems. These basis set problems are much 
less severe in current density functional methods, since (as we show below) the 
pair density is not expanded in a basis of one-particle functions. 

The accuracy of the G G A is usually comparable to conventional quantum 
chemistry methods, at much lower computational cost. G G A ' s offer significant 
improvements in the calculation of molecular properties compared to their an­
cestor, the local spin-density (LSD) approximation [15]. The local spin-density 
approximation has not been popular amongst chemists, mainly because of its 
tendency to overestimate the binding energy of molecules. 

In practical electronic structure calculations based on density functional the­
ory [12], a set of independent-particle equations (the Kohn-Sham equations [15]) 
is solved. These equations require as input an approximation to the exchange-
correlation energy Exc as a functional of the electron density. The G G A approx­
imations to Exc depend on both the local spin-density ησ(τ) and the gradient 
of the local spin-density. Among the popular G G A ' s , the Perdew-Wang (PW91) 
[7-10] functional allows the most detailed understanding of how G G A ' s work and 
why they work, since this approximation contains no empirical parameter and is 
constructed from first principles. Results of calculations with this form [9] show 
that it typically reduces exchange energy errors from 10% in L S D to 1%, and 
correlation energy errors from 100% to about 10%. ΡW91 corrects the L S D over­
estimate of atomization energies for molecules and solids in almost al l cases, it 
enlarges equil ibrium bond lengths and lattice spacings, usually correctly, and re­
duces vibrational frequencies, again usually correctly [10]. P W 9 1 also generally 
improves activation barriers [16]. For recent results with P W 9 1 , see Refs. [17-27]. 

As indicated above, the exchange-correlation energy Exc as a functional of 
the electron density is the crucial quantity in Kohn-Sham calculations. In this 
article we discuss various decompositions of the exchange-correlation energy, and 
we show which of these decompositions is accurately approximated by L S D and by 
the P W 9 1 approximation. This analysis makes it possible to understand how and 
why local and semilocal functionals work even for highly inhomogeneous electron 
systems, such as atoms and molecules. 

Decompositions of E x c 

The basic formula which serves as the starting point for various decompositions 
of Exc is [11-13] 

Exc = y o d\ du 2πυ, J J d3r n(r) n x c , A ( r , r + u). (1) 

The exchange-correlation hole η Χ Ο ) λ(Γ , r -f u) at coupling strength A is given in 
terms of the pair density Ρ\(τσ, (r + ιι)σ ' ) by 

n(r) [n(r + u) + n x c , A ( r , r + u)] = £ Ρ λ ( Γ σ , (r + ιι)σ'). 
σ,σ' 

(2) 
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30. PERDEW ET AL. Local and Gradient-Corrected Density Functionals 455 

σ and σ ' are the spin variables of the electrons. Ρ\(γσ,γ'σ') (where r ' = r + u) 
gives the probability density to find an electron with spin σ at r and an electron 
with spin σ' at r ' . The pair density is related to the many-electron wave function 
Φ Λ ( Γ , σ , Γ / , σ / , . . . , Γ Ν , σ Λ τ ) by 

Ρχ(τσ, r V ) = N(N-l) £ /d3r3 ... / d3 

χ Φ Λ ( Γ , σ , Γ / , σ , , . . . , Γ Λ Γ , σ Λ Γ ) · (3) 

ΦΑ is the ground-state wave function of a system in which the electron-electron 
repulsion operator is multipl ied by λ and the external potential is varied with λ 
so that the electron density is equal to the physical ground-state density for all 
values of λ. ΨΑ=Ι is the interacting wavefunction found by traditional correlated 
methods, while ΨΑ=Ο is the exact exchange wavefunction (which is similar to that 
of Hartree-Fock [28]). Eqs. 1 and 2 suggest a number of possibilities to decompose 
^occ by simply permuting the sequence of integrations and summations. The 
decomposed approximate exchange-correlation energy can then be compared with 
the corresponding exact quantity. 

E n e r g y - d e n s i t y d e c o m p o s i t i o n o f E X C , A - We examine the integrand of the 
expression 

£ X C , A = / d3r n(r) e X C ,A(r), (4) 

where 

roo r 
Ε χ ο , λ ( Γ ) = J du 2πυ, J ΠΧΟ,Α(Γ, r + u ) . (5) 

(Exc is related to EXCt\ by Exc = f0
l d\Exc,\.) In the local spin-density approxi­

mation the energy per particle e X C >A(r) of an arbitrary inhomogeneous system is 
approximated by that of a homogeneous electron gas wi th spin density n a ( r ) , i.e., 
^xc ( r ) = e x^ i f(n|(r),n|(r)). The error in Exc resulting from this approximation 
is typically about 10%. The energy per particle close to a nucleus is usually over­
estimated, and that in the ta i l region of the electron density is underestimated 
[29]. However, the region close to the nuclei has a small volume and the contribu­
tion from the ta i l region is very small , since the energy per particle gets weighted 
by the electron density in E q . 4. In the valence region of atoms and molecules, 
€ χ ο * ' ( η ΐ ( Γ ) > η ΐ ( Γ ) ) shows a semiquantitative agreement wi th the exact energy per 
particle. However, the PW91 energy density is not so useful for understanding 
how the P W 9 1 functional works [30], since the energy density ηεζ^χ1 has been 
simplified by an integration by parts, which leaves Exc unchanged but leads to an 
ill-defined n ( r ) e ^ ( r ) . 

R e a l - s p a c e d e c o m p o s i t i o n o f E X C ) A « The real-space decomposition of the 
Exc,\, which is defined by 

roo 
Exc,\ = Ν / du 2KU (nXCtx(u)) 

Jo 
(6) 
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456 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

where the system- and spherically averaged hole is 

(nxcAu)) = J ^ J d3r n(r) n x c , A ( r , r + u), 

(?) 

offers the most detailed insight into the L S D and PW91 functionals. In fact 
the P W 9 1 exchange-correlation functional is based on a model for the system-
averaged exchange-correlation hole / d3r n(r) n X C ,A ( r , r + u)/N. Detailed studies 
[31] of (nX C,A(w)) have shown that even the L S D approximation to this quantity 
is remarkably accurate. Many exact conditions on the exact (nxc,x(u)), such as 
the normalization condition /0°° du 4TU2 (nXCf\(u)) = —1, are satisfied by L S D , 
since the L S D exchange-correlation hole is the hole of a possible physical system. 
The normalization condition on the hole together with the on-top (u = 0) value 
for n X C ,A ( r , r + u) set the scale for the exchange-correlation hole and therefore the 
scale for (nXCi\(u)) and EXCi\. Thus the on-top value of n X C ,A ( r , r + u) plays a cru­
cial role in density functional theory. Investigations [32] on a number of systems 
show that the on-top value of the hole as a function of the local density is almost 
universal among Coulomb systems. Thus the L S D approximation to this quantity 
is very accurate, especially in the valence and tai l regions of the electron density 
[32]. As a consequence, any approximate density functional should reproduce the 
correct L S D on-top value of the exchange-correlation hole in the l imit of slowly 
varying electron densities. The PW91 functional has the L S D on-top value built 
in . It is based on a systematic expansion of the exchange-correlation hole in terms 
of the local density and the gradient of the local density. This gradient expansion 
approximation ( G E A ) to second order in V n improves the description of the hole 
at intermediate u values, but its spurious large-u behavior [33] violates a number 
of important constraints on the exact hole, such as the normalization condition. 
B y restoring these conditions v ia the real-space cutoff procedure [8], we obtain the 
P W 9 1 model for the exchange-correlation hole. Since the r integration in E q . 7 
involves an integration by parts which changes the local hole rcXC,A(r> r + u), only 
the system-averaged hole is a well-defined quantity in the P W 9 1 construction. 
Detailed studies [29,31] of the spherical- and system-averaged hole for molecules 
and atoms show that the PW91 approximation to this quantity significantly i m ­
proves the L S D model. Other popular G G A ' s [5,6] do not provide models of the 
exchange-correlation hole and thus do not allow a detailed analysis of correlation 
effects on molecular bond formation. 

S p i n d e c o m p o s i t i o n of E X C , A - Another decomposition of the exchange-
correlation hole and therefore of the exchange-correlation energy distinguishes 
between electrons with parallel and anti-parallel spins: 

EXc,x = Ellx + E ^ + Ellx, (8) 

where 
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The Paul i principle prevents two parallel-spin electrons from coming close to each 
other, i.e., P ( r a , τσ) = 0. Electron-electron repulsion cannot deepen the cor­
responding hole at u = 0, so the spatial extent of the hole is not significantly 
reduced. Note that the deeper the hole at u = 0, the shorter-ranged it must 
be to satisfy the normalization condition. O n the other hand, the on-top value 
of the exchange-correlation hole for two electrons with antiparallel-spin orienta­
tion is significantly lowered by electron-electron repulsion, and the normalization 
therefore assures that the spatial extent of the hole gets reduced by correlation. 
Local and semilocal approximations work best if the exchange-correlation hole is 
confined to a small region of space around the reference electron. In this case 
the information about the local density and the gradient of the density is suffi­
cient to capture the important features of the exchange-correlation hole. Thus it 
is not surprising that local and semilocal functionals work better for the corre­
lation energy between antiparallel-spin electron than they do for the correlation 
energy between parallel-spin electrons [29]. However, attempts to construct a hy­
brid scheme which uses a G G A for antiparallel-spin correlation and wave function 
methods for parallel-spin correlation are of l imited use [29], since the correlation 
effects between parallel-spin electrons are as difficult to describe within a finite 
basis set approach as are correlation effects between antiparallel-spin electrons. 

F ina l ly we note that the approximate G G A for antiparallel-spin [34] predicts 
E^ + E^ to be 20% of the total correlation energy of ATe, in good agreement with 
sophisticated wave function calculations which give a value [29] of 24%. 

C o u p l i n g - c o n s t a n t d e c o m p o s i t i o n o f E x c . The kinetic correlation energy 
contribution Tc to the total energy need not be explicit ly approximated as a 
functional of the electron density. Tc is impl ic i t ly accounted for in Exc of E q . 1 
v ia the coupling-constant integration over the λ-dependent exchange-correlation 
hole [35]. This coupling-constant integration leads to another decomposition of 
the exchange-correlation energy: 

Exc = dX £ X C , A , (10) 
Jo 

where ^ 
Exc,x = Jq du 2τπζ J J d3r n(r) η Χ Α , Λ (Γ, r + u) . (11) 

This decomposition has become a popular tool in density functional theory [36-38]. 
For λ = 0, the electrons are not Coulomb-correlated, so Exc,\=o = Ex accounts 
for the self-interaction correction and for the Paul i exclusion principle. Compared 
to the hole at finite values of λ, the hole at λ = 0 is shallower and therefore more 
long-ranged. A t ful l coupling-strength (λ = 1), EXCf\-i = Exc — Tc. Electrons 
close to the reference electron get pushed away at small u-values and pile up at 
large u-values, making the hole deeper at u = 0 and more short-ranged. Local 
and semilocal approximations usually work best for small u. Thus they are least 
suitable for λ = 0 (the exchange-only l imi t ) . These expectations about the range 
of the hole are confirmed by a study [31] of the λ-dependent exchange-correlation 
hole, and are probably true for al l systems. 
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The popular hybrid schemes [36-38] can be viewed as attempts to exploit this 
observation. We consider only hybrid schemes which recover the slowly-varying 
electron gas l imi t . In such a scheme, the coupling-constant integral is replaced by 
the weighted sum of the integrands at the endpoints of the coupling-constant inte­
gration and the density functional approximation to the exchange energy Exc,x=o 
is replaced by the Hartree-Fock exchange energy [29,38]. In formulas, 

£xc = aE»F + (1 - a)EGGA + EGGA. (12) 

The parameter a is usually adjusted to minimize the root-mean-square errors of 
various molecular properties. However, it has been demonstrated [32,29] that the 
parameter a is far from universal for molecular systems. This can be seen by 
considering the stretched H2 molecule: The restricted Hartree-Fock hole is always 
distributed equally over both / / -atoms, whereas the exact hole and its G G A model 
are localized on the H atom at which the reference electron is located. Thus no 
finite amount of exact exchange should contribute to Exc in the l imit of infinite 
stretching. 

E x c h a n g e - c o r r e l a t i o n p o t e n t i a l . It has been shown [39,40] that the 
PW91 approximation to the exchange-correlation potential vxc = SExc[n]/6n , 
which appears in the Kohn-Sham Hamiltonian, deviates considerably from the 
exact potential, especially in the core and tai l regions of atoms. However, we 
have argued that approximate local and semilocal density functionals give good 
approximations only to system-averaged quantities such as the system-averaged 
exchange-correlation hole. It is therefore more appropriate to study quantities 
which involve system-averages of the exchange-correlation potential vxc and its 
components vx and v c , rather than the potential itself. The v i r ia l theorem shows 
that [41] 

Ex = - Jd3rn(r)vVvx(r) (13) 

and 

E c + Tc = - j d3r n(r) r · V u c ( r ) . (14) 

In this system average, the region close to the nuclei and the ta i l region of the 
electron density, where vxc is not well approximated by P W 9 1 , get l itt le weight. 
Due to error cancellation within the integral of Eqs. 14, the system-averaged 
quantities are far better approximated by PW91 than by L S D [31]. 

E x c h a n g e - c o r r e l a t i o n energ ies f r o m exac t d e n s i t i e s . A n approach which 
makes use of the improvement in accuracy of the L S D and G G A approximations 
at ful l coupling strength (λ = 1) relative to the coupling-constant average can 
be formulated based on knowledge of the exact density n(r) corresponding to a 
known external potential v(r) [42]. Several methods are known for calculating 
the exact Kohn-Sham potential vs(r) from a given electron density [43-47]. The 
exact exchange-correlation potential can then be obtained according to 

«xc(r) = « . ( r ) - v(r) - J dsr' (15) 
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The v i r ia l relations Eqs. 13 and 14 show that the v ir ia l of the exchange-correlation 
potential is given by the sum of Tc + Exc. Since EXCy\=\ = Exc — T c , we obtain 
the exact relation 

E x c = i [ £ x c , A = i - / d3r n(r) r · V t , x c ( r ) ] . (16) 

Exc,\=i on the right hand side of this equation wi l l now be replaced by its lo­
cal or semilocal approximation, a replacement typically involving less error than 
the functional approximation of Exc. As shown in Table 1, the resulting expres­
sions for Exc give a significant improvement compared to the local and semi-local 
approximations of Exc itself. 

Table 1: Exchange-correlation energies in Hartrees for several atoms [42] We com­
pare exact values with those of L S D and P W 9 1 , and with improvements thereof 
(marked by a prime) using E q . (16). Unless otherwise indicated, the exact val­
ues are from Ref. [48], while the approximate f u n c t i o n a l are evaluated on the 
Hartree-Fock densities of Ref. [49]. 

atom exact L S D L S D ' PW91 P W 9 1 ' 
H a -0.312 -0.290 -0.307 -0.314 -0.316 

H " a>6 -0.423 -0.409 -0.420 -0.425 -0.422 
He -1.068 -0.997 -1.048 -1.063 -1.066 
L i -1.827 -1.689 -1.786 -1.821 -1.829 

Be++ 6 -2.321 -2.107 -2.243 -2.298 -2.312 
Ne 8 + 6 -6.073 -5.376 -5.776 -5.989 -6.036 

Be -2.772 -2.536 -2.686 -2.739 -2.755 
B e a -2.772 -2.545 -2.691 -2.748 -2.760 
Ν -6.78 -6.32 -6.61 -6.77 -6.78 

N e c -12.48 -11.78 -12.20 -12.50 -12.47 

α A p p r o x i m a t e f u n c t i o n a l e v a l u a t e d o n exact 
dens i t ies . 

b E x a c t resu l ts f r o m Ref . [39]. 
c E x a c t resu l ts f r o m Ref . [43]. 

S t a t i c c o r r e l a t i o n i n d e n s i t y f u n c t i o n a l t h e o r y . In the context of den­
sity functional theory, systems which show only dynamical correlation effects are 
called normal systems [50,51]. For small values of the coupling-constant λ, normal 
systems are well described by a single Slater determinant, and the on-top value 
of the hole is well reproduced by L S D and P W 9 1 . Systems with static correla­
t ion, such as H2 stretched beyond the Coulson-Fisher point, are called abnormal 
systems. The exact wavefunction of stretched H2 (with bond length R —• 0 0 ) 
does not reduce to a single determinant as λ —• 0. Instead, it remains a Heitler-
London type wavefunction, keeping one electron localized on each atom. But in 
a restricted single-determinant approximation, the electrons cannot localize on 
individual atoms. As a consequence, the on-top value of the exchange-correlation 
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460 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

hole that results from a restricted calculation (Hartree-Fock, L S D , or G G A ) is 
quite incorrect. To see this, note first that for a single Slater determinant, the 
on-top pair density is simply P ( r , r) = 2nj(r)ra | (r). In a restricted calculation, in 
which n T ( r ) = n x ( r ) = n ( r ) /2 , we find ΡΑ=Ι(Γ,Γ) = P j ^ / ( n ( r ) / 2 , n ( r ) /2 ; u = 0), 
instead of the correct result, ΡΑ=Ι(Γ, r) = 0 for al l r. A cure for this problem is 
provided by an alternative interpretation of spin-density functional theory [50,51]. 
In this alternative interpretation, the quantities predicted are not the individual 
spin-densities n j ( r ) and nj ( r ) , but the total density n(r) = n j + rij and the full 
coupling strength on-top pair density ΡΑ=Ι(Γ, r) = Ρχ^ί{η],nj;u = 0). In ab­
normal systems, the spin symmetry can then be broken with impunity. In the 
stretched Hi molecule, an electron with up-spin localizes on one hydrogen atom 
and an electron with down-spin localizes on the other. The spin-density in such an 
unrestricted calculation is obviously no longer accurately reproduced, but the total 
density is. Furthermore, ΡΑ=Ι(Γ, r) = ΡΑ=Ο(Γ, Γ) correctly vanishes for al l values of 
r, since either nj ( r ) or nj ( r ) is zero everywhere. This behavior of the on-top value 
of the pair density ensures that the unrestricted Kohn-Sham calculation gives an 
accurate dissociation energy. 
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