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Recent advances in the asymptotic analysis of energy levels of potentials produce relative errors in
eigenvalue sums of order 10−34, but few non-trivial potentials have been solved numerically to such
accuracy. We solve the general quartic potential (arbitrary linear combination of x2 and x4 ) beyond
this level of accuracy using a basis of several hundred oscillator states. We list the lowest 20 eigenvalues
for 9 such potentials. We confirm the known asymptotic expansion for the levels of the pure quartic
oscillator, and extract the next 2 terms in the asymptotic expansion. We give analytic formulas for
expansion in up to 3 even basis states. We confirm the virial theorem for the various energy components
to similar accuracy. The sextic oscillator levels are also given. These benchmark results should be useful
for extreme tests of approximations in several areas of chemical physics and beyond.

1. INTRODUCTION

Since the early days of quantum mechanics, potentials
with analytic solutions have played a crucial role in providing
both insight into more complex problems, and benchmarks
for more general quantum solution methods [1, 2]. The
quartic oscillator is iconic in being a simple potential without
a built-in length scale which does not have a simple analytic
solution [3–7]. The general quartic oscillator (adding both
quadratic and linear terms) is not scale-invariant, and has
been studied in many different contexts in physics [8–10].
In particular, the Mexican hat shape of symmetric double
wells is a paradigm of simple symmetry breaking [8, 11].

In chemical physics, the double well provides important
tests of theories of tunneling in quantum nuclear dynamics
of liquids [8, 11, 12]. In particle physics, it is a prototype of
symmetry breaking, such as occurs in simple field theories
[13, 14]. In mathematical physics, it is a simple case to test
and explore asymptotic approximations [15]. Asymptotic
analysis, especially hyperasymptotics, can yield exquisitely
accurate approximations [16–19]. In the past, many devel-
opments and tests of these methods have been applied to
scale invariant potentials [20–22], but the general quartic
oscillator provides opportunities to look at more complex
cases.

Recent work on one-dimensional potentials [20–22] has
established a deep explicit connection between the gradient
expansion of density functional theory and asymptotic ex-
pansions in powers of ~ [23]. In one case fractional errors
were below the picoyocto range, i.e., of order 10−33 [22].
To further develop and test methods in this area, there is
a need for benchmark calculations of this level of accuracy
for non-trivial potentials. This exceeds even quadruple pre-
cision on standard computers, rendering standard numer-
ical algorithms, even pushed to their convergence limits,
difficult to apply. There is also a new area of application:
The breaking of symmetry is a simple prototype of a bond
breaking, in which electrons localize in two separate wells
[24]. Such bond breaking is very difficult to model with
standard semilocal density functionals, and their failure has
been traced back to the change in asymptotic expansions in
going from one well to two[21]. In some simple situations,

benchmark electronic structure calculations have been per-
formed to this level of accuracy (or higher) for systems with
a few electrons [25]. But the purpose of the present study
(and many previous ones) is to explore the underlying princi-
ples behind asymptotic (and other) approximation schemes,
so as to improve the accuracy of less expensive quantum
solvers, such as density functional theory, which can then
be applied to much larger systems. The benchmark data
here provides a quick reference for those exploring basic
questions with analytic one-dimensional models.
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FIG. 1. Ground state densities (solid) and potentials
(dashed). Legend: λ = 0 (blue), λ = λc (magenta), λ = 4
(orange).

In order to generate such benchmarks and as a simple
example, we consider the generalized quartic oscillator po-
tential:

vλ(x) =
x4

4
− λx

2

2
, (1)

where λ is a real number, either positive or negative. For
λ = 0, this is a pure quartic oscillator, which has been
the subject of many investigations. In this paper we will
present the pure quartic oscillator energies for more states
and to more digits than previously computed in Refs. [3–
5]. We also numerically examine the WKB series for the
quartic oscillator closely following Bender & Orszag’s book
[3]. Previous investigations of the WKB approximation of
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the quartic oscillator can be found in Refs. [9, 26–29]. We
examine the variation of the energy with λ and the effect
of a linear term as in Ref. [9]. Our exact energies can be
used as inputs to test the semiclassical analysis of Ref. [30].
Other methods of estimating quartic oscillator energies are
described in Refs. [3, 4, 29, 31–33]. The exact solution
of the quartic oscillator was studied in Refs. [6, 7]. For
λ < 0, the minimum is always at x = 0, with vibrational
frequency

√
|λ|. For λ > 0, the most interesting case, two

distinct wells appear, with minima at ±
√
λ, and frequency√

2λ. Fig. 1 illustrates some results, showing the density
of the ground state and the well for three values of λ: 0,
λc (the critical value of λ at which the ground state energy
is zero), and 4. The first is similar in shape to a harmonic
oscillator, but with steeper walls, and the density decays
more rapidly. The second is particularly flat, as the energy
is exactly zero. The third is a typical double-well structure,
with two well-localized densities on each side, and a small
’overlap’ at x = 0. Thus there is a transition from one
well to two, and simple symmetry breaking. Following the
behavior of asymptotic expansions with the variation of λ is
a toy problem relevant to many fields [15].

In this paper, we show how to calculate extremely accu-
rate results for these potentials using a symbolic manipula-
tion code, such as Mathematica, where manipulations can
be performed with an arbitrary number of digits. We sum-
marize results in the main text, and provide some analysis
of various regimes. In the supplementary information, we
give many tables of results to many digits of accuracy.

2. MOTIVATION

How can energy calculations to 40 decimal places possibly
be of practical use? Modern density functional calculations
use approximations that have errors larger than 1 kcal/mol,
which is of order 10−5 of the total energy of a Ne atom, say.
So even 1000 heavy atoms need only 9 digits of accuracy.
However, the fundamental approximation behind almost all
modern density functional approximations is the gradient
expansion. Recent work [20–22] has shown a direct, ex-
plicit connection between that expansion and summations
of the WKB expansion, order-by-order. The simplest iden-
tification of such asymptotic expansions is to find many
terms explicitly, including the asymptotic behavior of the
coefficients, and test their accuracy order-by-order with ex-
act results. Because of the extreme accuracy of modern
asymptotic methods, these comparisons have involved 33
decimal places in similar cases (linear half-well).

To date, only simple analytic forms have been studied:
the harmonic oscillator, particle in a box, the Poschl-Teller
well, and the linear half-well [20], all of which have special
properties due to their analytic forms. There are many spe-
cial cases where quasi-analytic solutions are known, such as
Ref. [34], but one needs to be able to smoothly approach
the semiclassical limit, in which the number of levels di-
verges. Moreover, we seek techniques that ultimately will
be applied to arbitrary (possibly numerically defined) po-

tentials, so those with analytic solutions might always be
special cases. The quartic oscillator model studied here con-
tains simple single- and double-well structures that provide
numerous examples of parabolic minima (the most generic
case) that have no analytic solutions, making them ideal
for application of these new methods, but only if extremely
accurate results are easily available.

While it may appear that the results in this paper could
be easily generated using Mathematica with a single desk-
top in a short time, the usefulness of this work is in the
careful benchmarking of the results, the combined analysis
of many different aspects, and the inclusion of asymptotic
results, which are unfamiliar to many computational scien-
tists. But the greatest value is likely to be the ability of the
many disparate theorists in many fields to extract highly
accurate results instantly, without having to reperform the
calculations [31].

3. METHOD

Our Schrödinger equation is (in units where ~ = m = 1)

− 1

2

d2ψ

dx2
+ v(x)ψ(x) = εψ(x), (2)

so all energies are in Hartrees, all distances in Bohr radii. We
expand the eigenfunctions in a basis of harmonic oscillator
states, where ω can be freely chosen. The Hamiltonian is
pentadiagonal, with only a few non-zero matrix elements
no more than 2 double-steps off the diagonal. The nonzero
matrix elements of the Hamiltonian in the harmonic basis
are Hn,n+2k = hk

√
n2k/16ω2 where h2 = 1 and

h0 =4ω(ω2 − λ)(2n+ 1) + 3(2n2 + 2n+ 1),

h1 =2[2n+ 3− 2ω(λ+ ω2)],
(3)

and we use the shorthand

αp =

p∏
m=1

(α+m), α0 = 1. (4)

We closely follow Ref. 5 and use the Eigensystem func-
tion in Mathematica to diagonalize this matrix for various
values of λ and choices of ω [35]. We denote by NB the
number of basis functions included in the calculation (both
odd and even, since we did not take advantage of parity).
Our default choice of [ω/NB ] is [2/200] but we use [2/400]
as a baseline for ‘exact’ energies, and report errors relative
to those values.

A special case is ε = 0 for the ground state (ma-
genta in Fig. 1). This happens at λ = λc
which we found using a golden section search to
be 1.3982585455298955302585947187218312604396, at
which the ground state energy is −3.955 × 10−41. For a
different way of finding energies of oscillators of order x2M

using exact quantization conditions see Refs. [32, 33]; for
an approach using lower bounds see Ref. [31].
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4. RESULTS

In this section, we report many different results that may
be of interest to different communities under different cir-
cumstances. In each case, we also provide a minimal anal-
ysis.

4.1. Energetics for different potentials

Here, we simply survey the behavior of the energies and
eigenfunctions for various values of λ. Our focus is primarily
on positive values of λ, which produce the Mexican hat
double-well potential.

n λ = −1 λ = 0 λ = 2 λ = 4
0 0.62092703 0.42080497 -0.29952137 -2.66144807
1 2.02596616 1.50790124 0.04637108 -2.65173172
2 3.69845032 2.95879569 1.22797281 -0.51029304
3 5.55757714 4.62122032 2.45984143 -0.18078943
4 7.56842287 6.45350993 3.93826197 1.16951434
5 9.70914788 8.42845388 5.58129195 2.36439189
6 11.96454362 10.52783077 7.36888889 3.83579483
7 14.32326520 12.73833694 9.28322263 5.44300452
8 16.77645279 15.04975293 11.31134968 7.18323497
9 19.31695430 17.45393416 13.44312537 9.03984811

TABLE I. The energies at various values of λ. See Table S1
for more values of λ, more states, and more digits.

Our first results are the energetics of the first several
eigenstates of the generalized quartic oscillator. These val-
ues are given to 8 digits in Table I for four values of λ. In
Table S1 in the supplementary information, we give 40 dig-
its for 9 values of λ for the first 20 eigenvalues. Here λ = 0
corresponds to the pure quartic oscillator. As λ grows, the
eigenvalues inside the double well come in pairs, with ever
smaller splitting.
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FIG. 2. First three eigenfunctions (orange, red, magenta)
with potentials (blue) at various values of λ.

We also show the first three stationary states and po-
tentials at various values of λ in Fig. 2. As λ grows, the

ground-state wavefunction develops a minumum at the ori-
gin, and the first excited state almost matches it in the bulk
of the minimum. By λ = 8, the wavefunctions are almost
indistinguishable, except for their sign.
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FIG. 3. Behavior of the coefficients of the ground-state wave
function for the pure quartic oscillator (blue) and double-well
potential (red, λ = 8) in the basis [2/200]. In the lower panel
stars and open circles denote c2m of opposite signs. See Table
S2 for more digits.

In Fig. 3 we show the overlap cm of the ground-state wave
function with even oscillator states in a basis of [2/200] for
two values of λ. The pure quartic oscillator is dominated
by the ground-state of the harmonic oscillator, with overlap
close to 1, but the magnitude of the double-well coefficients
grows before ultimately decaying. In the lower panel, we
show that the overlaps decay exponentially, but with vary-
ing signs. The broken symmetry well has overlaps that de-
cay significantly more slowly (about 5 orders of magnitude
larger).

Lastly, we plot the error in the ground-state density cal-
culated with the first 20 coefficients of [2/200] in Fig. 4
for the double well potential (λ = 8). This is not the error
of the basis set, but simply the error caused by truncation
after 20 levels. The error is very small, oscillates in space,
and is localized in the two different wells.

4.2. Satisfaction of virial theorem

The virial theorem [36] is a useful check on the accuracy
of eigenstates in a basis. It is particularly simple here, as
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FIG. 4. The error in the ground state density for λ = 8
calculated with the first 20 coefficients c2m in Table S2.

the potential is a sum of two powers of x. For vλ(x), the
virial theorem requires, for any eigensolution〈

p2
〉

+ λ
〈
x2
〉

=
〈
x4
〉
, (5)

with nonzero matrix elements

x̄20 =p̄20 = 2n+ 1, x̄21 = −p̄21 =
√
n2,

x̄40 =3(2n2 + 2n+ 1), x̄41 = 2
√
n2(2n+ 3), x̄42 =

√
n4,

(6)

where x̄k = xn,n+2k

√
2ω and p̄k = pn,n+2k

√
2/ω. In par-

ticular, at λc, we find the simple formula:〈
p2
〉

〈x2〉
=
λc
3
. (7)

In Table II we show how closely our solutions satisfy Eq.
5. This confirms that with [2/200] we have a very good
approximation to the exact ground states. Eq. 7 is satisfied
to 39 decimal places.

λ
〈
p2
〉 〈

x2
〉 〈

x4
〉 〈

p2
〉

+ λ
〈
x2

〉
−

〈
x4

〉
-1 0.7096226227 0.3548402512 0.3547823715 −1.0× 10−69

0 0.5610732993 0.4561199557 0.5610732993 −3.8× 10−68

1
2

0.4859528308 0.5399767422 0.7559412019 −3.2× 10−66

1 0.4187530838 0.6673186910 1.0860717748 9.6× 10−67

λc 0.3828873103 0.8214946618 1.5315492412 0.0× 10−40

2 0.4053838252 1.2071184727 2.8196207705 1.2× 10−63

4 1.2230281089 3.5787191485 15.5379047030 9.7× 10−60

8 1.9338080508 7.7414002199 63.8650098103 −1.6× 10−51

TABLE II. Expectation values and their virial sum for differ-
ent wells with [2/200]. See Table S3 for more digits.

4.3. Tunneling between wells

In this section, we examine both the zero point energy
and the tunneling between the symmetric wells that occur
for positive λ. As mentioned before, the vibrational fre-
quency is

√
|λ| for negative λ, and

√
2λ for positive λ. Fig.

5 shows the exact zero-point energy and it’s harmonic ap-
proximation, which becomes accurate as |λ| grows.
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FIG. 5. Exact zero point energy and it’s harmonic approxi-
mation. See Table S4 for many digits.
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FIG. 6. The upper panel compares the exact ∆ε splitting with
its WKB approximation in Eq. 11. The lower panel shows
the error of the WKB approximation. See Table S4 for the
exact ∆ε values.

Less trivial is the tunneling between the broken-symmetry
wells. A simple WKB analysis[36] yields

ε± =
ω0

2
∓ ω0

2π
e−φ, (8)

for the lowest two levels, where ω0 is the vibrational fre-
quency, and φ is the decay rate for tunneling, evaluated on
the ground-state energy. The splitting is

∆ε =
ω0

π
e−φ(λ), (9)

and ω0 =
√

2λ in the harmonic approximation. Here φ is
the integral of the absolute value of the momentum p(x) =

4
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n Energy
0 0.43493087870825459239874279292555363392774
1 1.64831106336517093605783724089979389227058
2 3.44702671416130810318518311192928729955987
3 5.67413742993262212079377794412021425830389
4 8.24959888596347452014123953299512400416730
5 11.13145828009733275940992958109248369395669
6 14.28988270823523783646886992792593890944806
7 17.70235221954562079900780369145795203975459
8 21.35111714819949016424850927302262003053565
9 25.22171285703672981248414385975444098122878
10 29.30205319182515264341685743177538338413530
11 33.58184072441714447659452964789566752711547
12 38.05216382472115780004920306874727674910548
13 42.70521061321923679887306117322169371214762
14 47.53405945114494426110319556943507798525146
15 52.53252145969695924991153932257382502470230
16 57.69501952928699913809886057200837269497456
17 63.01649360693670075261996021857703983520713
18 68.49232534279718129547616418400704809075654
19 74.11827728288342368118468014333735452468298

TABLE III. First twenty energies of the sextic oscillator cal-
culated with [2/800]. The energies are accurate to all 41 digits
shown.

√
2[ε− vλ(x)] over the classically forbidden region between

the two wells

φ = 2

∫ x1

0

dx
√

2[vλ(x) + λ2/4− ω0/2], (10)

where x1 =
√
λ− 23/4λ1/4 is the inner turning point and

−λ2/4+ω0/2 is the harmonic approximation to the ground
state energy. For the approximation to be meaningful, the
inner turning point must be positive, so that λ > 2. The
appendix shows how to find the asymptotic behavior of the
splitting for large λ:

∆ε =
211/4

√
e

π
λ5/4 exp

(
− (2λ)3/2

3

)
. (11)

Fig. 6 shows just how accurate this approximation is. We
have confirmed this expansion numerically.

4.4. Sextic oscillator

In this section, we apply exactly the same technology to
finding the energies of the sextic oscillator:

v(x) =
x6

6
. (12)

The quartic and sextic oscillators both belong to the class of
potentials whose exact solutions are given by Heun’s special
function [37]. In our harmonic basis, the nonzero Hamilto-

nian matrix elements are Hn,n+2k =
√
n2kh

(6)
k /48ω3 where

h
(6)
3 = 1 and

h
(6)
0 =(2n+ 1)[10n(n+ 1) + 3

(
4ω4 + 5

)
],

h
(6)
1 =3[5n(n+ 3)− 4ω4 + 15],

h
(6)
2 =3(2n+ 5),

(13)

i.e., they go one more step away from the diagonal. The
energies of the first twenty sextic oscillator states are given
in Table III.

4.5. Analytic results for a few states

It can often be useful to find an approximate solution us-
ing just a few basis functions, instead of hundreds. Here
we give analytic formulas for the lowest lying even energies
as functions of ω and λ when only 1, 2, and 3 even oscil-
lator states are used. These expressions can be useful for
quick estimates of low-lying eigenvalues. The approximate
ground-state energy with one even basis function is

ε0 =
3

16ω2
+
ω

4
− λ

4ω
, (NB = 1). (14)

The approximate ground- and second-excited states with
two even basis functions are:

ε± =
3
(
ω2 − λ

)
4ω

+
21± 2

√
D

16ω2
, (NB = 3),

D = 8ω[3ω
(
λ2 + ω4 + 2ω

)
− 2λ

(
ω3 + 6

)
] + 99.

(15)

With three even basis functions the first three approximate
even state energies are (n = 0, 2, 4):

εn =
1

48ω2

[
15(11− 4λω + 4ω3)

− (−1)δn,28
√

6D cos

(
φ

3
+

(n+ 1)π

6

)]
, (NB = 5),

D = 15[ω2
(
λ2 + ω4 + ω

)
− 7λω + 13]− 2λω4,

sinφ =
9B

8
√

6DD
,

B = 20λω
(
λω[51− 4ω(λ+ ω2)] + 2[2ω6 + 7(ω3 − 15)]

)
+ 4ω6

(
20ω3 − 57

)
+ 5575.

(16)

At λc (Fig. 7), the least error in the ground state energy
is 5.467 × 10−2 at ω = 0.7595 with Eq. 14, 4.320 × 10−3

at ω = 1.383 with Eq. 15, and 4.563× 10−4 at ω = 1.854
with Eq. 16.

4.6. Error dependence on ω

In this paper we have usually set the basis set angular
frequency ω to 2. Now we analyze what happens to the
error of the ground and a highly excited state of the pure
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FIG. 7. The errors of the analytic expressions for the approx-
imate ground state with 1, 2, and 3 even basis functions and
λ = λc.
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×
10

2

19th Excited State

FIG. 8. The errors of the ground state and 19th excited state
(i.e. 10th odd state) as a function of ω. See Table S5 for more
digits.

quartic oscillator as ω is varied. The error as a function of
ω for a fixed number of basis states is complicated and has
several local minima, as we found in the previous section.
Nevertheless there is a clear trend for the pure quartic os-
cillator as seen in Fig. 8: the error tends to level off to a
very low value as ω increases, though it must increase if ω
becomes too large. The error for the 19th excited state is
orders of magnitude greater than that of the ground state

with e.g., NB = 40. For our purposes, the value of ω = 2
yielded sufficient accuracy for the basis sets we could afford.

At each minimum as a function of ω, the virial theorem is
exactly satisfied. We could have performed such a search for
any of our calculations. But as we could achieve sufficient
accuracy with fixed basis sets, we chose the simpler and
less computationally intensive route. This preserves any
cancellation of errors in energy differences, and retains the
virial as a test of accuracy, as in Sec. 4.2.

-10 -8 -6 -4 -2 0
-8

-6

-4

-2

0

2

λ

ln
|E
rr
o
r|

FIG. 9. The error in the ground state energy from zeroth
(blue) and first order (red) perturbation theory. See Table S6
for accurate numbers.

4.7. Quartic potential as perturbation

Consider the case where λ is large and negative, and treat
the quartic potential as a perturbation. This problem and
it’s analytic structure was studied in Refs. [27, 28, 38]. The
zeroth, first, and second order contributions to the energies
are

ε(0)n =

(
n+

1

2

)√
|λ|,

ε(1)n =
3(2n2 + 2n+ 1)

16|λ|
,

ε(2)n =− (1 + 2n)[17n(n+ 1) + 21]

128|λ|5/2
.

(17)

Fig. 9 shows the resulting error in the ground state energy.

4.8. Asymmetric wells

We now examine the effect of breaking the symmetry of
vλ(x) by adding a linear term

vλ,α(x) =
x4

4
− λx

2

2
+ αx. (18)

We only examine the case λ = 4. In Table IV, we show
both the energies for the case α = 0.1 and their difference
from the unperturbed case α = 0. As one side of the well is
depressed and the other elevated, for the low-lying states,
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4.8 Asymmetric wells Uncommonly accurate energies for the general quartic oscillator

n Energy difference
0 −2.84178633947585932025083089644391799927051 −0.1803382726
1 −2.47315425631802332765380889849256442811375 0.1785774606
2 −0.55873199537080776530382207755703245716816 −0.0484389572
3 −0.13874405574419168918357404272418272068978 0.0420453773
4 1.16447030692387601517830930663899021569773 −0.0050440297
5 2.36573532391604302707250344355822369758964 0.0013434316
6 3.83568104437914171468097998090919165511556 −0.0001137882
7 5.44302728549612071643675096706241920608503 0.0000227623
8 7.18320046060050124539642226054074137331752 −0.0000345135
9 9.03979350957144560421088106446755353161811 −0.0000546026
10 11.00244857292039554353678211539683848606553 −0.0000702608
11 13.06271608472508976557198671004627390279753 −0.0000808253
12 15.21369451941728871017509326975221513855338 −0.0000881381
13 17.44958477274837116578655941806092145442188 −0.0000931621
14 19.76542796609356112334994801927133021018867 −0.0000965616
15 22.15692272774436386892142052150687339550426 −0.0000987886
16 24.62029451810540168163027589352125330801114 −0.0001001588
17 27.15219883683433104396784761809263032892086 −0.0001008965
18 29.74964765111306868111782309284631425560723 −0.0001011638
19 32.40995226660074725753866259978103913402690 −0.0001010795

TABLE IV. The first twenty energies when λ = 4 and α =
0.1 calculated with [3/200]. The difference from α = 0 is
reported. All energies are accurate to the 41 digits given.
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0.8

x

D
en
si
ty

FIG. 10. The ground state density with λ = 4 and various
values of α: 0 (blue), 0.001 (magenta), 0.005 (orange), 0.01
(cyan).

the differences alternate in sign. As one goes further up the
well, eventually all states are lower than their symmetric
counterparts.

In Fig. 10 we show how the ground state density varies
as α is increased. Even a very small value of α causes sub-
stantial asymmetry in the ground-state density, with almost
all the weight in the lower well when α = 0.1.

n kn ln
0 1 3
1 -1 4
2 11 3× 29

3 7× 11× 61 3× 5× 211

4 −5× 13× 17× 353 7× 219

5 −112 × 19× 23× 1009 3× 221

6 5× 17× 29× 49707277 3× 11× 228

7 34 × 7× 19× 23× 312 × 109× 1429 13× 230

8 −7× 11× 29× 37× 41× 4477909193 3× 239

9 −5× 11× 19× 23× 31× 43× 47× 1489× 6397× 8263 17× 241

10 7× 29× 37× 41× 53× 59× 3618497× 83558311 3× 19× 248

TABLE V. The known A2n are given by the kn and ln in
A2n = (kn/ln)

√
πR(−1)n where R = Γ(1/4)/Γ(3/4).

n A2n B2n

0 1.74803836952807987364 1.09253465015618881971
1 −0.14976752934194902593 0.03864050890478489138
2 0.03755551184532984104 −0.00385400310372957406
3 0.09159610485926231443 −0.00192912270049430287
4 −0.55736698690956972061 0.00455965708128336316
5 −5.08024277232829207859 0.01110530044025892883
6 72.53628245858812264379 −0.05611473947869961072
7 1591.77267377039864942443 −0.34434940280222393316
8 −48231.49420089254973409982 3.51923362542214395736
9 −1899239.99920378994311897265 39.91240769625859000539
10 95166684.23238064054845710849 −660.60215595012034723938

TABLE VI. The known WKB coefficients for the pure quartic
oscillator reported to twenty digits.

4.9. Asymptotic analysis of pure quartic oscillator

The asymptotic solution of the pure and generalized
quartic oscillator has been studied many times before
[3, 9, 10, 26]. We analyze only the pure quartic oscillator
and closely follow Bender & Orszag [3]. The WKB series for
a pure quartic oscillator with potential v(x) = x4/4 yields
the implicit formula

∞∑
m=0

A2m(4ε3/2)1/2−m =

(
n+

1

2

)
π, (19)

with the known A2n reported in Table V and in Refs. [3, 39].
One can invert this implicit expression to an explicit formula
for each level:

εn = 2−1/3
∞∑
m=0

B2m

(
n+

1

2

)4/3−2m

. (20)

We give the known A2n and B2n coefficients numerically in
Table VI to twenty decimal places. The analytic forms of
the B2n coefficients are given by

B2n = (−1)bn/2c
π2−nβn

181/3Γ(1/4)8/3
, (21)

where the βn are polynomials of order bn/2c in γ:

βn = Cn

bn/2c∑
k=0

an,kγ
k, (22)

where γ = Γ(1/4)8/π4. This allows the 11 known β2n to
be given by the constants in Table VII.

We can use our highly accurate energies to extract higher
order coefficients. We define the deviation from the 2m-th
order WKB approximation as

∆ε(2m)
n = εn − ε(2m−2)WKB,n, (23)

which, according to Eq. 20, has the asymptotic form

∆ε(2m)
n = B2mX

m−2/3
n +B2m+2X

m−2/3+1
n + ..., (24)

where

Xn =

(
n+

1

2

)−2
, (25)
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Uncommonly accurate energies for the general quartic oscillator

n Cn an,0 an,1 an,2 an,3 an,4 an,5

0 9 1
1 1 1
2 1/72 5 11/192
3 11/972 −1 93/640
4 17/559872 −77 539/20 102829/86016
5 23/5038848 119 −3289/48 28171999/430080
6 29/1088391168 5083 −661089/160 6734014687/716800 49829732957/90832896
7 1/1224440064 −43355 2931929/64 −10264192781/61440 492349052125069/1349517312
8 41/176319369216 −164749/4 806113/15 −262775969173/983040 787570022698313/527155200 45866361756966241/355140108288
9 47/2115832430592 3230513/27 −7446461/40 4267944409223/3686400 −1335041940357576377/120766464000 4907566420869344641093/98107454914560
10 53/1371059415023616 58397735/3 −9015402055/256 89325797863511/344064 −955865010579864937/268369920 1407560427696573497146789/32702484971520 5620192339921634510441141/1187588522115072

TABLE VII. The constants yielding the βn via Eq. 22.
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FIG. 11. The coefficients B22 and B24 are obtained by a
linear fit to the above data. We plot B22 + B24Xn to show
how closely this model matches the data.

yielding

∆ε(2m)
n X2/3−m

n = B2m+B2m+2Xn+B2m+4X
2
n+... (26)

Thus by calculating accurate energies, multiplying them by

X
2/3−m
n , and fitting to a line, we confirm the WKB coef-

ficients up to twentieth order and find the next two coef-
ficients numerically, as shown in Fig. 11. Our most ac-
curate approximations to B22 and B24 were calculated us-
ing [3/3000] to be B22 = −1.2052792 × 104 and B24 =
2.98 × 105, which are accurate to the number of digits
shown. To speed up the calculation we took advantage of
parity and calculated the odd and even energies separately
using the ParallelTable function in Mathematica [35].

5. CONCLUSIONS

We have used Blinder’s method to extract many quan-
tities from the general quartic oscillator to many digits
[5]. We have considered many distinct limits and scenar-
ios where these benchmark results might be useful. We
have covered energetics of eigenstates, the virial theorem,
tunneling between wells, the sextic oscillator, analytic forms
in a few basis functions, error dependence on choice of ω,
perturbation theory in the quadratic term, asymmetric wells,
and asymptotic analysis of WKB results for the pure quar-
tic case. In all cases, we have provided preliminary analysis
and compared with the exact results. Some of this work
should also prove useful for pedagogy. This would include
both the use of Mathematica to generate accurate results
and the derivations of various results in this context. Users
who wish to replicate our results can start with Ref. [5] and
modify the Hamiltonian with a quartic potential using the
matrix elements in Eq. 6. But the two examples of asymp-
totic techniques are beyond most standard curricula, and
unfamiliar to most theorists. Refs. [3, 20, 22, 40] provide a
pedagogical introduction to such methods.
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Appendix A: Derivation of asymptotic splitting
formula

We now explain how to derive Eq. 11, the asymptotic
approximation to ∆ε = ε1 − ε0 in the limit λ→∞.

We introduce the shorthand η = (2/λ)3/4 so λ →
∞ =⇒ η → 0+. In terms of η Eq. 10 of the main
text becomes

φ(η) =
4

η2

∫ √1−η

0

dx
√

(1− x2)2 − η2. (A1)

In the limit η → 0+,

φ(0)(η) =
4

η2

∫ 1

0

dx(1− x2) =
(2λ)3/2

3
. (A2)

We evaluate Eq. A1:

φ(η) =
8

3η2

√
1 + ηF (η), (A3)

where F (η) = E(y)− ηK(y), y = (1− η)/(1 + η) and

K(x) =

∫ π/2

0

dθ

f(x, θ)
, E(x) =

∫ π/2

0

dθf(x, θ), (A4)

with f(x, θ) =
√

1− x sin2 θ [41]. The following expansion
will prove useful shortly:

F (η) = 1− η

2
+

3

16
η2(1− 6ln2 + 2lnη) +O(η3), (A5)

as η → 0+ [42]. Inserting Eq. A5 into Eq. A3 and expand-
ing around η = 0, yields

φ(2)(λ) =
(2λ)3/2

3
− 3

4
lnλ− 1

4
(2 + 9ln2). (A6)

The above equation combined with Eq. 9 leads to the final
result, Eq. 11 of the main text.
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