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Abstract

The time-periodic density of a Floquet state of a time-periodic potential does not uniquely determine that potential.

A simple example demonstrates this, and the implications are discussed. � 2002 Published by Elsevier Science B.V.

Ground-state density functional theory (DFT)
[1] has been tremendously successful in predicting
the electronic structure of atoms, molecules and
solids relatively inexpensively [2]. DFT hugely
simplifies calculations by introducing a fictitious
system of non-interacting electrons with exactly
the same density as the interacting many-electron
system, the Kohn–Sham system [3]. In 1984,
Runge and Gross generalized ground-state density
functional theory to time-dependent problems
(TDDFT) [4]. TDDFT has become popular for
studying atoms and molecules in laser fields, cal-
culating excitation spectra, polarizabilities, optical
response of solids, etc. [5,6]. Most applications are
in the linear response regime, where weak fields are
applied, using adiabatic local-density and gener-
alized gradient approximations (see in [6] for many
references). But it is especially for intense laser

fields that TDDFT would appear to be the only
practical way of studying the dynamics of many-
electron systems, where correlation effects are im-
portant. This would prove very useful in quantum
control problems [7].

In wavefunction methods, Floquet theory is an
attractive approach for studies of species in intense
laser fields. A time-periodic potential, such as in
the case of laser fields, allows for a complete set of
‘steady-state’, or Floquet solutions, in which the
problem reduces to a matrix diagonalization,
similar to the finding of Bloch states for spatially
periodic problems [8–11]. The system is assumed to
reach a Floquet state by some adiabatic ramping
of the time-dependent part of the potential (see e.g.
[11]). Floquet theory is particularly useful because
it is not limited to weak time-dependent fields.
Floquet theory has been successful in describing a
variety of phenomena, including multiphoton
ionization and detachment problems [12,13],
two-colour ionization [14,15], analysing micro-
wave ionization experiments [16], high harmonic
generation [17], selective excitation of molecular
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vibrational states using short laser pulses [18].
Most applications consider a one-electron picture,
although recently an R-matrix Floquet theory [19–
21] has been developed to address multiphoton
processes in many-electron systems.

Time-dependent density functional theory
transforms an interacting many-electron system
into a fictitious non-interacting Kohn–Sham sys-
tem with the same time-dependent density. The
basis of any density functional theory is a dem-
onstration of a one-to-one correspondence, for a
certain class of problems, between densities and
potentials, for a given interparticle statistics and
interaction. Ground-state DFT is founded on a
one-to-one mapping between densities of ground-
states and their potentials, whereas TDDFT is
based on a one-to-one mapping between time-de-
pendent densities and potentials for a specified
initial state. Consider problems in which the ex-
ternal potential is time-periodic, and the interact-
ing system has reached a Floquet state, so that its
density is time-periodic. It is natural to ask if the
time-periodic density of a Floquet state uniquely
determines the time-periodic potential. If it does,
then all properties of the system are functionals of
that density, which was the basis of [22,23].
However, we demonstrate here that two different
Floquet states can be found that evolve with the
same periodic density in different periodic poten-
tials, so the mapping is not unique.

Floquet states are steady-state solutions of the
time-dependent Schr€oodinger equation when the
Hamiltonian is time-periodic [8,9], Hðt þ T Þ ¼
HðtÞ. There exists a complete set of Floquet solu-
tions of the form [8,9]

wnðtÞ ¼ e�i�ntunðtÞ; unðt þ T Þ ¼ unðtÞ: ð1Þ

The time-periodic functions unðtÞ are termed quasi-
energy eigenstates (QES), and �n is termed the
quasi-energy. The QESs satisfy

fHðtÞ � io=otgunðtÞ ¼ �nunðtÞ ð2Þ

and play a role analogous to the stationary states
of a time-independent Hamiltonian. We shall
construct an example involving non-interacting
electrons in the periodically driven one-dimen-
sional harmonic oscillator

H ¼ � 1

2

d2

dx2
þ 1

2
x2

0x
2 þ kx sinðxtÞ: ð3Þ

The QESs are known analytically [24]:

unðxtÞ ¼ /nð�xxðtÞÞ expfiðxAx cosðxtÞ þ aðtÞÞg; ð4Þ
where /n are the eigenstates of the static harmonic
oscillator (k ¼ 0 in Eq. (3)), �xxðtÞ ¼ x� A sinðxtÞ,
the amplitude of the periodic shift

A ¼ k=ðx2 � x2
0Þ; ð5Þ

and

aðtÞ ¼ k2ðsinð2xtÞ=8þ cosðxtÞ � 1� x2 cosðxtÞ
� sinðxtÞ=ðx2 � x2

0ÞÞ=ðxðx2 � x2
0ÞÞ:

The quasi-energy is �n ¼ ðnþ 1=2Þx0 þ k2=ð4ðx2�
x2

0ÞÞ (modulo x).
For our first Floquet state, U, we take two non-

interacting electrons in a spin-singlet in this po-
tential, occupying the n ¼ 0 and n ¼ 1 quasi-en-
ergy orbitals. The density is then

nðxtÞ ¼
ffiffiffiffiffiffi
x0

p

r
ð1þ 2x0�xxðtÞ2Þe�x0�xxðtÞ2 : ð6Þ

We now find a different Floquet state that evolves
with this density in a different periodic potential.
Consider the spin-singlet with one doubly occu-
pied spatial state

eUUðx1x2tÞ ¼ ~uuðx1tÞ~uuðx2tÞe2i~��t; ð7Þ

where

~uuðxtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðxtÞ=2

p
eif ðxtÞ; ð8Þ

where f ðxtÞ is a real, time-periodic function,
f ðx; t þ T Þ ¼ f ðx; tÞ. eUUðx1x2tÞ has the same peri-
odic density (Eq. (6)) as U, for all times. We now
find the potential ~vv that it evolves in. From in-
verting the time-dependent Schr€oodinger’s equa-
tion, we have

~vvðxtÞ ¼ 1

2

~uu00ðxtÞ
~uuðxtÞ þ i

_~uu~uuðxtÞ
~uuðxtÞ þ ~��; ð9Þ

where ~�� is the orbital quasi-energy (see Eq. (7)).
The function f ðxtÞ is determined by ensuring ~vv is
real, and, together with the quasi-energy, by re-
quiring that ~vv–v ! 0 at large x. We find

238 N.T. Maitra, K. Burke / Chemical Physics Letters 359 (2002) 237–240



~vvðxtÞ ¼ 1

2
x2

0�xxðtÞ
2

1

 
� 4

ð1þ 2x0�xxðtÞ2Þ2

� 4

1þ 2x0�xxðtÞ2

!
þ x0

1þ 2x0�xxðtÞ2

þAx2x sinðxtÞ þ x0 � x2
0A

2 sin2 ðxtÞ=2:
ð10Þ

The phase,

f ðxtÞ ¼ Ax cosðxtÞx� A2ðx2 � x2
0=2Þ

� sinð2xtÞ=4x; ð11Þ

is uniquely defined up to a purely time-dependent
function. At large x, ~vvðxtÞ ! x2

0x
2=2þ kx sinðxtÞ;

this has the same form as the original potential
vðxtÞ. The quasi-energy of ~uuðxtÞ is ~�� ¼ 3x0=2þ
A2ðx2 � x2

0=2Þ=2, (modulo x). We notice how
~uuðxtÞ just sloshes back and forth in its well in a
similar way that the original orbitals /0 and /1 do;
the magnitude shifted by the same factor A sinðxtÞ
and with the spatially dependent phase being the
same.

Fig. 1 illustrates the periodic density, the two
different pairs of orbitals and their potentials.

Let us assume that we can find a two-electron
interacting system with this same density nðxtÞ.
Then the wavefunctions U and ~UU and potentials v
and ~vv are possible Kohn–Sham wavefunctions and
potentials, respectively. The difference in the two
Kohn–Sham potentials is then the difference in the
exchange-correlation potential vxcðxtÞ for the two
choices (see also [25]). Thus, despite several claims
in the literature [22,26], the exchange-correlation
potential is not a pure density functional: nðxtÞ is
the same in each case but vxcðxtÞ is not. (Note also
that, except in the case of very weak, off-resonant
driving [27], one cannot define a ‘ground Floquet
state’ [26] by its quasi-energy, since this is only
defined modulo x.)

This phenomenon is explained in the theorem
of Runge and Gross, where the functionals de-
pend on the initial-state of the system as well as
on the time-evolving density [4,25,28,29]. One can
show that for one electron, there is no initial-state
dependence [25]; here, this means that for Floquet
states of one electron the mapping between den-

sities and potentials is unique. This is not true for
more than one electron. If we consider t ¼ 0 as
the initial time in our example, we have given the
first explicit demonstration of this effect for
Floquet states in time-periodic potentials. One
cannot escape this initial-state dependence in
the case of periodic dynamics. The Floquet
TDDFT of [22] must be modified to account for
this effect.

The situation here closely resembles that of
excited states in time-independent problems: there
may be a number of different excited states of
different potentials that all share the same density.
The functional for each of them must be different
(see [30]).

Finally we note that, as in the general time-de-
pendent case [25], any adiabatic approximation,
that lacks initial-state dependence, would incor-

Fig. 1. Top LH panel: the real and imaginary parts of the

original Floquet orbitals /0ðx; 0Þ (solid) and /1ðx; 0Þ (dotted) at
time¼ 0, together with their density (thick line). Middle LH

panel: The real and imaginary parts of the alternative doubly

occupied Floquet orbital ~//ðx; 0Þ (dashed), which has the same

density shown (thick line). Bottom LH panel: the two poten-

tials, v is the solid, and ~vv is dashed. The right-hand side shows

the same quantities at t ¼ T=4. The parameters were: x0 ¼ 1,

k ¼ 0:5, x ¼ 1:2.
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rectly predict the same potential for both the cases
in our example.
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