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ABSTRACT Most approximate density functionals do not bind small atomic
anions because of large self-interaction errors. Yet atomic electron affinities are
often calculated using finite basis sets with surprisingly good results, despite
positive highest occupied molecular orbital (HOMO) energies. We show that
excellent results (better than for ionization potentials) can be obtained using
standard approximate functionals evaluated on Hartree-Fock or exact-exchange
densities for which the extra electron is bound. Although these good results found
with limited basis sets are not accidental, we argue that this method cannot be used
in general. Thus a positive HOMO indicates that the total energy should not be
disregarded, only treated with caution.
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T reating atomic anions with density functional theory
(DFT) has long been controversial.1,2 The net negative
charge produces strong self-interaction errors (SIEs),3

resulting in such a large upward bump in the effective poten-
tial that the last electron is unbound.

In Figure 1, we show the exact Kohn-Sham (KS) potential
for Li-, found from the density of a highly accurate quantum
Monte Carlo (QMC) calculation with a zero-variance zero-bias
estimator,4 and by inversion of the KS equations. The highest
occupied molecular orbital (HOMO) is at ε2s = -A, with A =
0.62 eV, the electron affinity (EA).We also show theKS poten-
tial when the exchange-correlation (XC) contribution is eval-
uated using the local density approximation (LDA) on this
accurate density. The 2s orbital of this potential is a very sharp
resonance, at approximately 0.80 eV.

Formal theorists argue that approximate DFT does “not
apply to negative atomic ions if the orbital energy (is) not
negative.”5 Despite this, many have ignored these warnings,
calculated EAs within DFT, and found reasonable results using
reasonable basis sets.1 Because such calculations have positive
HOMO energies for the anion, many authors report EAs found
in this way with a note of caution. More than a decade ago,
these opposing views werewell expressed in refs 1 and 2, with
the latter arguing for why such calculations should be dis-
countedon formal grounds, and the formerdemonstrating that
nopractical problems arise, evenwith very large basis sets, and
that useful results can be found for many small molecules.6

The fact remains that a formally problematic procedure
yields physically meaningful results. This strongly suggests
that there is a systematic property to be explored. In the
present letter, we use DFTcalculationswith exact exchange to
elucidate that structure and show how the practical and
formal are reconciled. Our analysis suggests a new practical
solution to the problem that is as accurate as any existingDFT
method with fewer formal difficulties.

We begin with our notation and formalism. The KS equa-
tions for any atom or ion are

-
1
2
r 2 þ vσSðrÞ

� �
� iσðrÞ ¼εiσ� iσðrÞ ð1Þ

where vS
σ(r) is a single, multiplicative spin-dependent KS

potential, and σ is a spin index (up and down spins). The KS
potential is written as a sum of three contributions:

vσSðrÞ ¼vðrÞ þvH½n�ðrÞ þvσXC½nv, nV�ðrÞ ð2Þ

where v(r) =-Z/r for an atom, vH(r) is the Hartree potential,
and the XC potential is

vσXC½nv, nV�ðrÞ ¼
δEXC½nv, nV�
δnσðrÞ

ð3Þ

Thus, for either the exact or someapproximateXC functional of
the (spin) densities, we have a self-consistent set of equations.

Far from a nucleus, the Hartree potential decays as N/r,
where N is the electron number. The exact XC potential decays
as

vXCðrÞf -1=r, r f ¥ ð4Þ

which is apure exchangeeffect.7 For aneutral atom,ZequalsN,
and vS(r) approaches -1/r exactly. However, almost all local
and gradient-corrected functional approximations to vXC(r)
decay incorrectly with r, typically exponentially, as the density
decaysexponentially. Thishasonlya small effecton thedensity
itself, but leads to very poor HOMO levels in such calculations
(errors of several eV). These are all manifestations of the
infamous SIE.
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well-known complications arise, such as in the calculation of
forces. But these difficulties are far less subtle and challenging
than those of positive HOMOs.

Finally, we note that even our method will fail if the (L)HF
density is insufficiently accurate or the approximate func-
tional does not provide accurate energies. Thus we expect
comparable accuracy to that foundhere formolecular valence
anions, but the weakly bound states such as dipole- or higher
multipole-bound anions26 will bemuchmore challenging and
may require self-interaction-free energy functionals along
with a correct treatment of dispersion.

COMPUTATIONAL DETAILS

In all our calculations, the total energies of neutral atoms
and ions are calculated using the usual self-consistent unrest-
ricted HF, LHF, and KS-DFT. The approximate functionals in
DFT calculations are LDA (S-VWN5),27-29 PBE,22 hybrid
(B3LYP20,21 and PBE023), andmeta-GGA (TPSS24) functionals.
We use Dunning's augmented correlation-consistent pVXZ
(aug-cc-pVXZ, X = D, T, Q, and 5; AVXZ in this paper) basis
sets.16,17 For the LHF calculations for anions, we calculate the
Slater potential numerically everywhere to get accurate re-
sults. The calculations with basis sets are performed with
TUBOMOLE 6.2.30 For the special cases of H- and Li-, we
perform fully numerical DFTcalculations using anOEPcode31

to calculate vS(r), vXC(r), and the densities using EXX. Since
this code makes a spherical approximation, we do not use it
for nonspherical cases. To calculate approximate functionals
on HF densities, we perform unrestricted HF calculations on
both neutral and negative atoms. Then, we evaluate the total
energies of atoms usingHForbitals, so the kinetic energies are
those of HF.
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