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We use density-matrix renormalization group, applied to a one-dimensional model of continuum
Hamiltonians, to accurately solve chains of hydrogen atoms of various separations and numbers
of atoms. We train and test a machine-learned approximation to F [n], the universal part of the
electronic density functional, to within quantum chemical accuracy. Our calculation (a) bypasses the
standard Kohn-Sham approach, avoiding the need to find orbitals, (b) includes the strong correlation
of highly-stretched bonds without any specific difficulty (unlike all standard DFT approximations)
and (c) is so accurate that it can be used to find the energy in the thermodynamic limit to quantum
chemical accuracy.

I. INTRODUCTION

Although widely used in solid-state physics, chem-
istry, and materials science [1], Kohn-Sham density func-
tional theory (KS-DFT) with standard approximations
fails for strong correlation [2, 3]. The prototype is the
H2 molecule. When stretched, the electrons localize on
each site while remaining in a singlet state, but this is
not captured by such calculations [4]. These kinds of dif-
ficulties have led to the popularity of many beyond-DFT
schemes, ranging from the simple addition [5] of a Hub-
bard U to the use of dynamical mean field theory [6] as
well as many others.

But even KS-DFT is too slow for many large calcu-
lations, such as those using classical MD or continuum
mechanics [7]. The original DFT, first suggested in the
Thomas-Fermi approximation [8, 9] and later justified by
the Hohenberg-Kohn theorem [10], uses only pure func-
tionals of the total density, n(r). This ‘orbital-free’ ver-
sion has the potential to be much faster than even the
most efficient KS implementations, because the KS equa-
tions need not be solved [11]. Several recent attempts
have constructed machine learning (ML) kinetic energy
functionals specifically to bypass this step [12–15]. These
are designed to be used in conjunction with standard KS
approximations to speed up such calculations, but not to
improve their accuracy.

Meanwhile, beyond the world of DFT, density matrix
renormalization group (DMRG) has become a standard
tool for finding extremely accurate solutions to strongly
correlated lattice problems [16–19]. In recent years,
a one-dimensional analog of ab-initio Hamiltonians has
been developed, using typically about 20 grid points per
atom and interactions involving many grid points, with
the express purpose of rapidly exploring both concep-
tual and practical issues in DFT [3, 20–23]. A particu-
lar advantage is that, since 2000 grid points is routinely
accessible, this includes up to 100 atoms, and extrapola-
tions to the thermodynamic limit are much easier than in
three dimensions. Applications include a demonstration
of the behavior of the KS gap in a Mott-Hubbard insula-

tor [20] and a proof of convergence of the KS equations
with the exact functional, regardless of the starting point
or strength of correlation [21].
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FIG. 1. (Color online) Electronic energy of infinite chain from
model learned from extrapolated chain densities and energies.
The accurate value was calculated with infinite DMRG (see
text).

In the present work, we combine all these methodolo-
gies to demonstrate several important features. We per-
form DMRG calculations on a variety of one-dimensional
hydrogen atom chains, with from 2 to 20 atoms, and
whose interatomic spacing R varies from 1 to 10 Bohr
radii, and use these to train a ML model of F [n], the
‘universal’ part of the density functional identified by
Hohenberg-Kohn. This simulanteously includes both
the non-interacting kinetic energy sought in orbital-free
DFT and the exchange-correlation energy that is approx-
imated in KS calculations. We demonstrate that, with
reasonable amounts of training, we can self-consistently
calculate densities and energies for these chains at new
values of R, outside the training set, with quantum chem-
ical accuracy. This includes highly stretched systems
which are strongly correlated, and where all popular
DFT approximations fail. We furthermore extrapolate
the DMRG densities from the center of finite chains to
the infinite chain limit, i.e., a 1d solid. We train a new
ML model and find we can solve self-consistently the solid
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problem at the same level of accuracy. Fig. 1 shows the
convergence of our ML method for a typical separation
of the infinite chain with respect to the number of train-
ing points. The horizontal lines show two independent
DMRG estimates of the energy.

II. BACKGROUND

A. DFT

The Hohenberg-Kohn theorem [10] establishes that the
ground-state energy and density of a many-body problem
may be found by minimizing a density functional:

E = min
n

{
F [n] +

∫
d3r n(r) v(r)

}
, (1)

where n(r) is the single-particle density, normalized to
N particles, and v(r) is the one-body potential. The
functional F can be defined via a constrained search as
[24]

F [n] = min
Ψ→n
〈Ψ| T̂ + V̂ee|Ψ〉 (2)

where T̂ is the kinetic energy operator and Vee is the
electron-electron repulsion operator, while Ψ is a normal-
ized antisymmetric (for fermions) wavefunction. While
this showed that the old Thomas-Fermi theory [8, 9, 25]
was an approximation to an exact formulation, few mod-
ern calculations perform such a direct minimization. In
practice, almost all calculations use the famous Kohn-
Sham (KS) scheme, which uses an auxillary set of non-
interacting orbitals in a single, multiplicative potential
whose density is defined to match that of the original
system, and in terms of which we can write

F [n] = TS[n] + U [n] + EXC[n], (3)

where TS is the non-interacting kinetic energy of the KS
electrons, U is the Hartree self-repulsion, and EXC is the
exchange-correlation energy (defined by this equation).

The genius of the KS formulation is that EXC is typi-
cally a small fraction of F , so that much higher accuracy
can be achieved by approximating only this component.
The cost of the KS scheme is formally N3, the cost of
solving for the orbitals. Much of modern DFT research
is devoted to improving approximations to EXC, within
which all quantum-many body effects are contained (by
definition). The smaller field of pure DFT, also known
as ‘orbital-free’, aspires to approximate TS[n] directly, as
in the old TF theory [8, 26], and thus bypass the need to
solve the KS equations.

Many modern XC approximations are local or semilo-
cal, i.e., use the density and its gradient to approximate
the XC energy density at a point. While remarkably
useful results can be obtained with such approximations,
there remains a classic failure that can be understood in
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FIG. 2. (Color online) Binding curve for a 1d H2 molecule.
Black: highly accurate, converged DMRG results. Blue: LDA
result restricted to a spin singlet [23].

terms of the simple H2 molecule [27]. Those approxima-
tions work well in the vicinity of the equilibrium bond
length, but as the bond is stretched, they fail more and
more badly. In the limit of a large but finite bond length
(which we call stretched), a spin-restricted calculation
yields the highly inaccurate energy of two unpolarized
H atoms. On the other hand, an unrestricted calcula-
tion yields an accurate stretched energy, but has broken
spin symmetry. Neither situation is satisfactory [4], and
most modern approximations fail in this way. An analo-
gous failure occurs for semilocal approximations to TS[n]
when bonds are stretched in orbital-free DFT. Fig. 2 il-
lustrates the failure of semilocal XC, by comparing the
blue restricted LDA curve with the black DMRG curve.
There is a huge error in the stretched limit.

B. DMRG benchmark data

It is difficult to overemphasize the utility of bench-
mark quantum chemical calculations for the development
of DFT. The DFT revolution in quantum chemistry was
made possible by the existence of the well-tested G2 data
set for small molecules, and databases in quantum chem-
istry have proliferated ever since. On the other hand,
calculations of ‘quantum chemical’ accuracy, i.e., errors
below 1 kcal/mol, are much more difficult and rarer for
solids. A recent heroic effort [28] was made for benzene,
a molecular crystal.

For the present study, we need to consider chains of
up to 20 H atoms, with many different values of the in-
teratomic spacing ranging from about 1 to 10 Bohr. Ex-
tracting this large amount of data at the required level
of accuracy from a quantum chemical code would be ex-
tremely demanding, if not impossible, given the strong
correlation effects when the bonds are stretched.

Recently, DMRG has been applied to a one-
dimensional analog of real-space Coulomb-interacing
Hamiltonians, for precisely the purpose of performing
demanding, highly accurate benchmark calculations of
strongly correlated systems. In particular, the interac-
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tion is modeled as

vee(u) = A exp(−κ |u|) (4)

where A = 1.071 and κ−1 = 2.385 [23]. This choice
best mimics a popular soft Coulomb interaction, while
having a single exponential allows DMRG to run very
fast [23]. The one-body potential is then taken as v(x) =
−Zvee(x), where Z is the ‘charge’ on a nucleus. Here
Z = 1 for each H atom in the chain. This 1d analog
allows rapid testing of novel ideas in electronic structure,
especially those involving the bulk limit. Fig. 2 is in fact
for 1d H2 with these parameters, and illustrates that the
failures of standard DFT approximations such as LDA
mimic those of 3d Coulomb systems. The DMRG curve
plateau is at twice the ground-state energy of one of these
1d H atoms.

C. Machine learning of the KS kinetic energy
functional

ML is a set of algorithms developed to find hidden
insights in data. It is widely used especially when the
pattern behind complicated data is difficult to deduce ex-
plicitly. Successful applications include computer vision
[29], cybersecurity [30], ancient abstract strategy games
[31], etc.

Recently, in chemistry and materials science, machine-
learning has become a popular tool for analyzing proper-
ties of molecules and materials, and finding specific func-
tions from large data sets [32, 33]. But it has also been
applied to the problem of finding density functionals, con-
structed by interpolation from accurate examples. To
date, the focus has been on the KS kinetic energy, TS[n],
partially because of the ready availability of data (every
cycle of every one of the 30,000 KS-DFT calculations each
year [1] produces an accurate example of TS[n]) and be-
cause of the enormous potential for speeding up routine
DFT calculations.

The ML algorithm we used for modeling TS[n] is ker-
nel ridge regression (KRR). It is a nonlinear regression
method with an L2 regularization [34]. The density func-
tional is represented as

TML
S [n] =

NT∑
i=1

αik[n, ni], (5)

where NT is the number of training data, ni(x) are the
training data and k[n, ni] is a kernel, some measure of the
“similarity” between densities. Throughout this work, we
use a Gaussian kernel,

k[n, n′] = exp(−‖n− n′‖2/2σ2), (6)

where

‖n− n′‖ =

∫
dx(n(x)− n′(x))2. (7)

Such a kernel is standard in KRR, and has yielded excel-
lent results in previous studies of TS[n] [14]. The weights
α = (α1, · · · , αNT

) are found by optimizing the cost func-
tion

C(α) =

NT∑
i=1

(TML
S [ni]− TS[ni])

2 + λαTKα (8)

where K is the kernel matrix, Kij = k[ni, nj ]. The reg-
ularization strength λ and length scale σ are hyperpa-
rameters which are found via cross validation. A crucial
principle in kernel ridge regression is the separation of the
training data from the test data. A test set is constructed
entirely independently from the training set. The cross-
validation to find the hyperparameters occurs using only
training data. The resulting approximate functional is
tested only on the test data.

While highly accurate results for TS[n] can be found
with relatively little data [12], it was immediately real-
ized that the corresponding functional derivative is highly
inaccurate. This is unfortunate, as the practical use-
fulness of an accurate model for TS[n] is in finding the
density via solution of the Euler equation (for the KS
system):

δTS

δn(x)
= −vS(x), (9)

where vS(x) is the KS potential. This difficulty has been
surmounted in a sequence of increasingly sophisticated
methods [13–15], each of which constrains the density
search to only the manifold of densities spanned by the
data, avoiding searching in directions for which there is
insufficient data to evaluate TS accurately. With such
techniques, it has been possible to demonstrate an ML
TS functional that correctly mimics the KS solution even
as a bond stretches [13], something impossible for any
local or semilocal approximation to TS. The value of this
is to cut down the computational cost of large, repetitive
KS calculations, but one still uses some standard XC
approximation. Thus a machine-learned functional for
TS can, at best, reproduce the incorrect LDA curve of
Fig. 2.

III. METHOD

In all applications in this work, we generate a large
data set of highly accurate results generated using
DMRG. We use a real-space grid with spacing 0.04, which
has previously been shown to be sufficient to converge
the results [23]. We calculate the energies and densities
of chains of even numbers of atoms, from 2 to 20, with in-
teratomic separations between 1 and 10 Bohr. Higher ac-
curacy is achieved when every atom is centered on a grid
point, discretizing the set of allowed separations. The
specific separations used are listed in the supplemental
information.
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Then a subset of these data are left out as test set.
The training set, with NT values of R, are collected from
the remaining data. These are chosen to be as close to
equally spaced as practical. The test set is excluded from
the data where the training set is sampled from, to avoid
contamination via the cross-validation process.

A. Machine-learned functional for a given molecule
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FIG. 3. (Color online) Same as Fig. 2. The green curves
are ML with NT = 5 on both the exact (dashed) and ML-
optimized (solid) densities. The red solid curve is the ML
with NT =20 on ML-optimized (solid) densities. Black dashed
curve is the exact DMRG curve, matching nearly exactly the
NT =20 on ML line.

We continue to use the H2 molecule to illustrate our
method. Contrary to previous work, we apply KRR al-
gorithms to ML the interacting functional F [n] itself, by
training on highly accurate DMRG energies and densities
at various values of R. In Table I, we list the errors for
H2 as a function of NT, both on the exact density and on
an optimally constrained density found by the methods
of Ref. [35].

To illustrate the procedure, in Fig. 3, we show
the energies with only 5 training points, R =
1.00, 3.20, 5.48, 7.76, 10.00, yielding the smooth, green
dashed curve, when evaluated on the exact densities. The
curve (almost) exactly matches at the training points,
but is noticeably inaccurate inbetween. But note that,
in contrast to all previous studies, we are fitting the full
F [n], not just TS[n], so that, e.g., our inaccurate curve
dissociates H2 correctly, while no standard DFT calcula-
tion, with a standard XC approximation, can.

The problem is actually much greater than even the
smooth dashed green curve would suggest. In practice,
we not only need the energy functional, but also its
derivative, at least in the vicinity of a solution density.
This is because we use the functional to find the density
itself, via the Euler equation

δF

δn(x)
= −v(x). (10)
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FIG. 4. (Color online) Optimal densities for 1d H2 molecule in
the test set: DMRG (black dashed), ML with NT =5 (orange
solid), ML with NT =20 (red solid).

In fact, the derivatives of ML functionals such as that of
Eq (6) are highly inaccurate and cannot be used to find
the minimizing density. Methods have been developed
to constrain the search to the manifold of training data
via non-linear gradient denoising (NLGD) [35]. For our
H2 with NT = 5, these lead to the (even worse) solid
green curve of Fig. 3. The optimal density is shown in
Fig. 4. We clearly see that (a) the accuracy is not high
enough and (b) the error is dominated by the error in the
densities. (This is called a density-driven error [36] in a
DFT calculation.)

However, when we increase to 20 data points, the ML
curve (red solid) is indistinguishable from the exact one,
and the error at equilibrium is only 0.007 kcal/mol, and
shrinks with increasing R. This calculation applies all the
principles discussed in Ref. 13, but is now applying them
to the many-body problem, not just the KS problem.
Even in the stretched limit, where the system is strongly
correlated, there is no loss of accuracy. Note that we are
not just fitting the binding curve, as we are reproducing
the many-body density at every value of R, starting from
data at a limited number of values. In Fig. 4, we plot the
optimally-constrained densities at R = 4.0 (outside all
training sets) for NT = 5 and NT = 20, compared with
the exact density.

Here, ML has entirely bypassed the difficulty of solv-
ing the many-fermion problem. The machine learns the
characteristics of the solution without ever solving the
differential equation. Moreover, the HK theorem is a
statement of the minimal information needed to char-
acterize the ground-state of the system. In some ways,
this ML approach is the purest embodiment of the HK
theorem.

B. Finding a data-driven optimal basis for longer
chains

The cost of optimal gradient descent methods, evalu-
ated on a spatial grid, grows very rapidly with the num-
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ber of grid points, and rapidly becomes unfeasible as the
number of H atoms grows. Thus a simpler representation
of the density is required. To overcome those difficulties,
we introduce a basis set. Inspired by the localized atomic
bases used in most quantum chemical codes, we devel-
oped a data-driven basis set using Hirshfeld partitioning
[37] and principal component analysis (PCA).
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FIG. 5. Partition density of each H atom in H8.
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FIG. 6. Single H atom densities for H atoms in different
chains and atomic distance (gray). The average density is
plotted in red.

To partition a molecular density via the Hirshfeld
scheme, begin with the protomolecule of overlapped
atomic densities at the nuclear positions of the real
molecule. If n0

i (x) = n0
1(x−(i−1)R) is an isolated atomic

density at the i-th nuclear center, spaced R apart, then

n0(x) =

N∑
i=1

n0
i (x) (11)

is the density of the protomolecule, where R is the inter-
atomic spacing. We define a weight

wi(x) = n0
i (x)/n0(x), (12)

n
(x

)

7 5 3 1 1 3 5 7

x

FIG. 7. First 7 principal components of the densities shown
in Fig. 6, from top to bottom.

associated with each atom, and then define the density
of each Hirshfeld atom within the real molecule as

ni(x) = wi(x)n(x), (13)

where n(x) is the exact molecular density. The ground
state density of a single hydrogen atom n0

i (x) is reported
in Ref. 23. Fig. 5 shows partition densities ni(x) of atoms
in one H8.

Next, for a specific chain length N , we consider a range
of interatomic separations R, and consider the collection
of every atomic density within the chain for every value of
R in a training set, each centered on the origin, as shown
in Fig. 6. These individual atomic partition densities re-
flect the diverse behaviors caused by the interaction be-
tween the hydrogen atoms inside the chains. A principal
component analysis is applied to these densities, and the
eigenvalues are ordered in decreasing magnitude to find a
subspace with the maximum variance. Each atomic den-
sity can be accurately represented by the base density
f0(x) (red in Fig. 6) and 7 principal components (Fig.
7),

ni(R, x) = f0(x) +

7∑
p=1

ci,p(R)fp(x). (14)

Thus the total density of HN with separations R is∑N
i ni(R, x), and is described by just 7N coefficients.

Note that f0(x) is very close to an isolated atom density,
but we use the average to center our data for the PCA
analysis. Our representation greatly reduces the num-
ber of variables in the density representation for a given
chain length, and saves a significant amount of computa-
tional cost when solving for the ground state density of
the system. This new basis set is completely data-driven
and physically meaningful.

We next repeated these calculations for a sequence of
chains of increasing length. In each case, we train FML[n]
on a limited training set, and then compare on a test set
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N NT λ σ |∆EF|/N max |∆EF|/N |∆E|/N max |∆E|/N EML
R=9.8/N EDMRG

R=9.8 /N

2 5 1.0× 10−8 1000 2.54 7.02 9.74 20.3 -421.291 -425.797

2 20 4.6× 10−10 2.15 0.00121 0.00802 0.005 0.013 -425.785 -425.797

2 50 1.0× 10−12 0.70 0.00003 0.00034 0.050 0.304 -425.798 -425.797

4 50 2.2× 10−11 46.4 0.0021 0.016 0.005 0.017 -428.617 -428.620

8 50 1.0× 10−4 2.15 0.011 0.31 0.28 1.68 -430.011 -430.032

12 50 1.0× 10−12 0.46 0.0031 0.010 0.24 0.88 -430.502 -430.503

16 50 2.2× 10−11 0.46 0.0042 0.012 0.08 0.41 -430.738 -430.738

20 50 2.2× 10−11 0.46 0.0042 0.014 0.26 0.88 -430.880 -430.880

∞ 50 1.0× 10−8 0.46 0.012 0.050 0.073 0.27 -431.447 -431.444

TABLE I. ML performance on different chains HN . NT is the size of training set. Regularization strength λ and kernel length
scale σ is the model hyperparameters selected by cross validation [14]. The functional driven error ∆EF /N [36] is tested on the
entire test set to show the overall accuracy. The total error ∆E/N is tested on the equilibrium test set to emphasize accuracy
around equilibrium position. ER=9.8/N shows that ML can get very accurate dissociation limit. All errors are given in kcal/mol.
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FIG. 8. (Color online) Learning curves for several 1d H chains.
(a) ML using the total density. (b) ML using the bulk parti-
tion densities (see text).

(see supplementary material), with the accurate results
supplied by DMRG. The learning curves, i.e., error as a
function of NT, of chains of differing length, are shown
in Fig. 10(a). The error typically decreases with amount
of training data, but for fixed NT, longer chains display
substantially larger errors. This is because the binding
energy curve changes more rapidly when the chain length
is increased.

In applied machine learning, feature engineering,
which uses domain knowledge of the data to improve the
efficiency of ML algorithms, is a crucial step. Here, we
know that as the chain length increases, the central den-
sity should converge to a fixed value (thermodynamic
limit). We therefore choose the central two atomic den-
sities alone to use as a minimal input feature for learning
the energy of a given finite chain. The learning curves
for models trained only on this central partition density
are shown in Fig. 10(b). For chain lengths greater than
or equal to 12, substantially greater accuracy is reached
for a fixed amount of training data. Here we still use
the total density for N ≤ 8 and the bulk density for
N ≥ 12. The model performance and hyperparameters
are presented in Table I.

C. Extrapolation to the thermodynamic limit

Our ultimate goal is to use ML to find the energy of
the infinite chain to within chemical accuracy, for all in-
teratomic separations. To do this, we first build a set
of infinite chain energies and densities. For each value
of R, we extrapolate both the density and energy of our
finite chains as a function of N . This then gives us a set
of data for the infinite chain that we can both train and
test on and gave rise to Fig. 1.

In an entirely separate calculation, we also performed
DMRG directly for the infinite chain, using the method of
McCulloch [38] for a four atom unit cell [39]. The system
is initialized by solving the equivalent finite size system
with box edges at R/2. As a part of the iDMRG algo-
rithm [38], a single unit cell is then inserted into the cen-
ter of the finite system and 15 sweeps are performed over
the inserted unit cell. The sequence is repeated–after
adding another unit cell–until convergence. We com-
pare these energies with the extrapolated values, find-
ing agreement to within 1 kcal/mol for all values of
R. This agreement validates our extrapolation proce-
dure. We find that, with 50 data points, the ML re-
sult, on the optimized density, also agrees to within 1
kcal/mol. Thus, armed with the 50-data-point machine
learned functional, one can self-consistently find the den-
sity and energy of the infinite chain to quantum chemical
accuracy.

Our final figure simply demonstrates that the error for
the infinite chain (and for all the ML calculations) is
almost entirely due to the error in the optimized density.
The functional-driven error [36] is the energy error made
on the exact density:

∆EF = EML[n]− E[n] = FML[n]− F [n]. (15)

We see that, at any level of training, ∆EF is an order
of magnitude smaller than the final energy error on the
optimized density. Thus the error is density-driven but,
nonetheless, can be forced down to quantum chemical
limits with enough data.
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FIG. 9. (Color online) Electronic energy per atom in the
thermodynamic limit, both via DMRG chains (extrapolated
to infinity) and using machine learning with 50 data points
per chain.

20 30 40 50 60 70 80

NT

10-2

10-1

100

101

|∆
E
|/
N

 (
kc

a
l/
m

o
l)

max(|∆EF |)/N
max(|∆E|)/N

FIG. 10. (Color online) For a given training set with NT

training points, the functional driven error, ∆FF per atom
is shown in red (lower curve). The upper curve is the total
energy error per atom evaluated self-consistently.

IV. DISCUSSION

We have shown that it is in principle possible to con-
struct, via machine learning, the entire interacting func-
tional of Hohenberg and Kohn, F [n], so accurately that
optimized densities and energies evaluated on them are
within quantum chemical accuracy. We have done this
using the 1d simulation of continuum Hamiltonians es-
tablished over the last several years, and using DMRG as
an efficient solver. We apply the ML methods previously
developed for approximating the non-interacting kinetic
energy. Here, because we have precise energies for the in-
teracting system to train on, we are able to construct the
interacting functional, including all exchange and cor-
relation effects. Our ML functional has no difficulties
when bonds are stretched so that correlations become
strong. We have even managed to apply this methodol-
ogy to chains extrapolated to the thermodynamic limit,
producing chemically accurate results for solids. This
level of accuracy is far beyond that of any existing DFT
calculation of a solid.

We conclude with a long list of the many things we

have not done. Most importantly, all calculations have
been in one dimension, because of the relative ease of
setting them up, the efficiency of DMRG, and the rapid-
ity of approach to the bulk limit. We do not know how
much additional cost is involved in three dimensional cal-
culations. In fact, other recent work [40] shows that 3d
molecular calculations do work for the orbital-free prob-
lem, but that both a good choice of basis set is needed, as
well as building a density-potential map directly, avoiding
the need to minimize the ML density functional. Thus,
the extension to 3d appears entirely practical.

A second limitation is the rather large amount of
data employed. When we need an accurate calculation
at every 0.2 atomic units, how much have we achieved
when we interpolate between points? But this extreme
amount is needed only because we must produce a self-
consistent density from the ML functional, and one that
is so accurate as to introduce only a 1 kcal/mol density-
driven error. This is a level of accuracy that could only
be dreamed of with human orbital-free approximations.
There are two ways in which this requirement might be
very dramatically reduced: (a) machine-learning the HK
map n[v] directly, as mentioned above (but here for the
interacting density as a functional of the potential) and
(b) returning to a KS scheme. The latter would yield
highly accurate densities almost always, and a ML EXC[n]
would almost certainly not produce a significant density-
driven error. Of course, the price paid is the cost of
solving the KS equations, but that price is acceptable for
the overwhelming applications of DFT at present.

A third important limitation is that, throughout this
paper, we have used only uniformly spaced chains of
atoms. In practice, of far greater interest would be
the case of varying separations, even if all atoms (or
molecules) are the same kind, as in an MD simulation of
liquid water. We believe the density basis created here
should prove very useful in constructing a more general
ML functional that would apply to a much larger variety
of situations.

In short, there are many issues that must be addressed
before this functional could be used in practice. But in
theory, machine-learning, combined with the Hohenberg-
Kohn theorem, can produce quantum chemical accuracy
for strongly correlated solids.
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VI. SUPPLEMENTARY MATERIAL

A. Description of Data

The density matrix renormalization group (DMRG)
[16–19] has become the gold standard for calculations
in one dimension. The ansatz made for the wavefunction
is that of a matrix product state (MPS). This ansatz al-
lows for a site-by-site determination of the wavefunction
by concentrating on a small number (in our implemen-
tation, two) lattice sites at a time. Once the wavefunc-
tion is updated on those two sites, the next two sites are
treated. The entire system is swept back and forth un-
til convergence which usually occurs very quickly in one
dimension.

To evaluate the Hydrogen chains in this work, an ex-
tended Hubbard model [20, 21, 23],

H =
∑
j,σ

−1

2a2

(
ĉ†j,σ ĉj+1,σ + h.c.

)
− µ̃njσ (16)

+
∑
j

vjnj +
1

2

∑
ij

vijeeni(nj − δij), (17)

can be constructed to recover the continuum limit in the
limit of many sites. The prefactor on the kinetic energy
terms is chosen to match the finite difference approxima-
tion for the kinetic energy with grid spacing a. An exter-
nal potential is applied in the variable vj while µ̃ = µ− 1

a2

for chemical potential µ. Also, an electron-electron term,
vijee is represented by an exponential function [23], This
exponential mimicks the soft-Coulomb interaction, which
itself is an approximation of the Coulomb interaction
in 3d but spherically averaged [23]. The similarity be-
tween these functions gives the similar behaviors of the
1d atoms and their 3d counterparts when the symmetry
is high.

Systems are calculated with open boundary conditions
(“box” boundary conditions). The limit where the box
boundary is far from the nearest atomic center is always
taken, so no finite size effects appear.

A complication is apparent in 1d that does not appear
in 3d. There is no angular momentum in 1d. Thus, not
all neutral atoms bind their electrons. One can see this in
a reduced example as follows: Consider a delta function
interaction in 1d of the form −δ(x− R/2)− δ(x+ R/2)
[41]. When R = 0, there is only one solution. At any
finite R, the number of electrons that will bind increases
from two. The same effect occurs for the exponential
interaction, though it is not as easy to see.

This implies that a lower cutoff in the exponentially
interaction hydrogen chains will impose a lower limit on
suitable chain length. We are interested in systems that
do bind all electrons, so a systems below a critical R are
ignored. Table II lists the range of interatomic distances
used for each chain. For each Hydrogen chain data gen-
erated by DMRG, first sample 80 data from the entire
test set range in Table II equi-distantly. This test set is
inaccessible in the training process. The rest of data in

N training set range entire test set range equilibrium test set range

2 1.0 ≤ R ≤ 10 (146) 1.2 ≤ R ≤ 9.8 (80) 1.2 ≤ R ≤ 3.12 (19)

4 1.4 ≤ R ≤ 10 (136) 1.6 ≤ R ≤ 9.8 (80) 1.6 ≤ R ≤ 4.08 (25)

8 1.4 ≤ R ≤ 10 (136) 1.6 ≤ R ≤ 9.8 (80) 1.6 ≤ R ≤ 4.28 (27)

12 1.6 ≤ R ≤ 10 (131) 1.8 ≤ R ≤ 9.8 (80) 1.8 ≤ R ≤ 4.32 (26)

16 1.6 ≤ R ≤ 10 (131) 1.8 ≤ R ≤ 9.8 (80) 1.8 ≤ R ≤ 4.32 (26)

20 1.6 ≤ R ≤ 10 (131) 1.8 ≤ R ≤ 9.8 (80) 1.8 ≤ R ≤ 4.4 (27)

TABLE II. Hydrogen chain data. N is the number of Hy-
drogen atoms in the chain. R is the atomic distance between
atoms. The number of DMRG data in each range is in paren-
these.

training set range in in Table II are used as grand training
set, where the NT training data are uniformly sampled
to train the model. The equilibrium test set range is a
subset of entire test set range, emphasizing the perfor-
mance around equilibrium positions. The upper bound
is around twice the equilibrium position given by DMRG
result.
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