
Recent developments in density functional
approximations

Li Li and Kieron Burke

Abstract

Peter	  Ellio*	   1	  

We survey some of the standard approximations used in density func-
tional calculations, most of which are at least twenty years old, and some
new approaches that have been developed since.

1 Introduction

Each year, at least 30,000 papers are published using density functional the-
ory to perform electronic structure calculations (Pribram-Jones et al 2015).
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General terms
DFT density functional theory

G3 A standard database of molecular energy differences
GGA generalized gradient approximation
GKS generalized Kohn-Sham

HF Hartree-Fock
KS Kohn-Sham

LC20 A database of 20 lattice constants of solids
metaGGA An extension of GGA that uses the KS kinetic energy

RPA random-phase approximation
S22 A database of weakly bonded molecules

TDDFT time-dependent density functional theory
XC exchange-correlation

Approximate functionals
B3LYP The most popular functional in chemistry

B88 An exchange GGA that is the most popular in chemistry
LDA local density approximation
PBE A popular GGA in materials science

PW86 A predecessor of PBE
PW91 The GGA that PBE is a simplification of
SCAN A recent meta-GGA

Table 1 Table of acronyms in alphabetical order. References are given where they first appear in
main text.

Almost all solve the Kohn-Sham (KS) equations (Kohn and Sham 1965) self-
consistently, and use some approximation for the exchange-correlation (XC)
energy as a functional of the (spin)-densities, EXC[n]. This article surveys
some of the more popular approximations. Some background is covered
in Burke (2012), which is more focused on chemistry.

1.1 Commonly used approximations

The original approximation was suggested by Kohn and Sham themselves (Kohn
and Sham 1965), namely the local density approximation (LDA), in which
the XC energy density at each point in the system is replaced by that of a
uniform electron gas with the density at that point. The exchange contribu-
tion was first written by Bloch (Bloch 1929), with correlation now well-known
from quantum Monte Carlo simulations of the uniform gas (Ceperley and
Alder 1980), parametrized in simple formulas (S. H. Vosko and Nusair 1980;
Perdew and Wang 1992). LDA is remarkably accurate for geometries, but
typically overbinds molecules by about 1 eV per bond, making it relatively
useless for thermochemistry (Jones and Gunnarsson 1989).

The next step in complexity is the generalized gradient approximation
(GGA), which creates an energy density using both the density and its gra-
dient at each point (Burke et al 1997a). The basic concept, and its first real-
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ization, were given already in the pioneering work of Ma and Brueckner (Ma
and Brueckner 1968). This was carefully refined in the work of Langreth,
leading to the Langreth-Mehl functional (Langreth and Mehl 1981, 1983).
Perdew pioneered the use of real-space cutoffs to create GGA’s, leading to
the PW86 functionalPerdew and Wang (1986). The highpoint of this detailed
construction was the PW91 functional (Perdew 1991; J. P. Perdew and Fi-
olhais 1992; Burke et al 1997b), and in 1993, it was shown that they yield
useful accuracy for binding energies, i.e., errors of about 6-10 kcal/mol (1
eV = 23 kcal/mol) (Gill et al 1992). The most commonly used GGA in ma-
terials today is a simplification of the PW91 form called PBE (Perdew et al
1996a), while in chemistry it is BLYP, with B88 exchange (Becke 1988) and
Lee-Yang-Parr correlation (Lee et al 1988). Both these are trained on Noble
gas atomic energies, yielding more accurate energies for those atomsElliott
and Burke (2009); Burke et al (2016).

The last standard step is to create a hybrid of GGA with the exact ex-
change energy from a Hartree-Fock calculation, by replacing a fraction, a,
of the GGA exchange with the Hartree-Fock (HF) exchange, as first sug-
gested by Becke (Becke 1993). This fraction is 20% in the famous B3LYP
functional, (which stands for Becke, 3-parameter, Lee-Yang-Parr), the most
commonly used approximation in chemistry today (Becke 1993; Lee et al
1988; S. H. Vosko and Nusair 1980; P. J. Stephens and Frisch 1994). Its
analog is PBE0 (Perdew et al 1996b; Ernzerhof and Scuseria 1999) which
uses 25% mixing.

At least 80% of all DFT calculations currently being performed use one
of the approximations mentioned above. One can think of more sophisti-
cated approximations using more ingredients of the density, as in Jacob’s
ladder Perdew and Schmidt (2001). An important principle of progress in
making density functional approximations is to ensure that (almost) every-
where, each level of approximation performs at least as well as the previous
level, and also improves some features, making the previous level obsolete
(except to save computational time). One should avoid having different func-
tionals for different purposes.

1.2 Beyond ground-state DFT

What has been described above is generic ground-state DFT in the non-
relativistic limit and for collinear magnetic fields. The single largest use of
DFT beyond this domain is using time-dependent DFT (TDDFT) (Runge
and Gross 1984; Maitra et al 2004; Maitra 2016) in the linear response
regime to extract electronic transition frequencies (Casida 1996; M. Peter-
silka and Gross 1996). As much as 10% of all DFT publications include
TDDFT estimates of excitations. Such calculations almost all use the adia-
batic approximation for the XC kernel, and so are uniquely determined by
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the choice of ground-state approximation. Most such calculations are for
molecules (Burke et al 2005), as a non-local contribution is needed to yield
details of bulk semiconductor spectra correctly (such as exciton binding en-
ergies), and that contribution is missing from the commonly-used functionals
mentioned above (Onida et al 2002; Martin et al 2016).

Other extensions include magnetic DFT for non-collinear fields, relativistic
DFT (Engel and Dreizler 2011) and even QED (Flick et al 2015), DFT at
finite temperatures using the Mermin theorem (Smith et al 2017), coupling
between nuclei and electrons (Requist and Gross 2016), and so on. Again,
standard ground-state approximations are used unless a particular effect
requires going beyond these, such as extracting double excitations (Maitra
et al 2004).

2 Recent developments

This section is devoted to developments over the past twenty years.

2.1 RPA-type functionals

The famous adiabatic-connection fluctuation-dissipation formula of DFT yields
EXC in terms of the a frequency and coupling-constant and spatial integral
over the density-density response function (Langreth and Perdew 1975; Har-
ris and Jones 1974; Gunnarsson and Lundqvist 1976). This can be extracted
directly from the KS response function, constructed from the occupied and
unoccupied orbitals, and the XC kernel of TDDFT (Gross and Kohn 1985).
Ignoring the kernel yields RPA, also known as direct random-phase approx-
imation (RPA) (Furche 2001; Langreth and Perdew 1977, 1975; Chen et al
2017), also known as TD-Hartree. This scheme thus yields a fifth-rung (in
Jacob’s ladder) approximation that can be costly to evaluate, but the relative
burden is always decreasing (Furche 2008; Eshuis et al 2010).

Direct RPA overcorrelates systems, because it includes only ‘bubble’ di-
agrams in the many-body expansion of the energy, and misses other con-
tributions at higher-order that reduce correlation. It also has difficulties with
self-interaction, because it yields finite correlation energies even for only
one electron. These two effects yield inaccuracies in the dissociation ener-
gies of molecules. Recent progress has included various approximations to
the XC kernel to yield improved energetics and computational cost-savings.
A very recent development, using the exact frequency-dependent exchange
kernel, and a clever and physically motivated resummation of higher-orders,
appears to overcome stability problems and even allows the binding curve
of N2 to be accurately calculated (Erhard et al 2016; Burke 2016) (which is
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difficult even in coupled-cluster theory, due to the multireference nature of
the wavefunction at large separations).

2.2 Weak interactions

Tremendous progress has been made in the last two decades for including
weak, van der Waals interactions (vdW) into DFT calculations. The standard
functionals model covalent, ionic, and metallic bonds reasonably well, but
fail for longer, weaker bonds. Because of their semilocal nature, they cannot
yield weak-binding that falls off as R6, where R is the separation between
two atoms or molecules. Thus corrections must be added to the standard
functionals to capture these effects. There are three main schemes for doing
this.

In the domain of explicit non-local density functionals, there is the se-
quence of approximations originally developed by Langreth and Lundqvist
and co-workers (Dion et al 2004). These approximations are derived non-
empiricially, remarkably starting from contributions to the uniform gas corre-
lation energy. The original was from 2004, and an improved parameterization
was given in vdW2 (Klimeš et al 2009). These explicit density functionals can
be applied to all materials, from molecules to solids, but have been designed
assuming the system has a gap (not a metal) (Berland et al 2015).

At the extreme opposite end of the scale, there are the parametric
schemes of Grimme and co-workers (Grimme 2006), commonly referred to
as DFT-D. These are not explicit density functionals, but rather additional
energies that include estimates of the C6 (and higher-order) coefficients in
the asymptotic expansion of the vdW energy between atoms, combined with
a damping factor to keep the contributions finite as the separation reduces.
Such schemes require empirical parameters for each atom for a given stan-
dard XC approximation, but can yield highly accurate energy curves for small
weakly bound molecules (Burns et al 2017).

In between is the scheme developed by Tkatchenko and Scheffler, which
requires only one parameter for a given XC functional, and produces accu-
rate add-on corrections to DFT energies (Tkatchenko and Scheffler 2009).
This has been expanded to incorporate collective electrostatic effects so that
metals and materials in many dimensions and on different length scales can
be treated (Hermann et al 2017). A final scheme is that begun by Becke and
Johnson, which uses the dipole moment of the exchange hole to determine
C6 (and higher) coefficients (Johnson and Becke 2006).

Of course, more expensive treatments, such as RPA mentioned above,
automatically include approximations to the VdW forces.
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2.3 meta-GGA’s

The third rung of Jacob’s ladder is the meta-GGA, which adds a new ingredi-
ent beyond that of the density and its gradient. This is most often chosen to
be the (positive) kinetic energy density of the KS orbitals. The aim for a good
meta-GGA is to aim for the accuracy of hybrids without the computational
overhead of the exact exchange contribution. The cost of exact exchange
is relatively manageable in molecular calculations with atom-centered basis
functions, but can often be prohibitive when using periodic boundary con-
ditions and plane-wave basis sets. Running a range-separated hybrid (see
next section) can sometimes take 1000 times longer than a typical GGA in
a materials calculation.

Perdew and co-workers and many others have spent several decades
developing meta-GGA’s, with many flawed attempts (Sun et al 2015). But
the most recent effort, called strongly constrained and appropriately normed
semilocal density functional (SCAN), has passed many standard tests and
appears very promising to join the pantheon of commonly-used function-
als. The G3 dataset (L.A. Curtiss and Raghavachari 2005) is a standard
set of chemical bonds that LDA overbinds by about 3 eV (typically about
1 eV/bond). PBE reduces this to about 1 eV, while SCAN reduces this to
about 1/4 eV. SCAN also has errors that are 2-3 times smaller than PBE on
the S22 dataset (Jurecka et al 2006) of weakly bonded systems. At the same
time, SCAN reduces errors in lattice parameters on the LC20 data (Sun et al
2011) set from about 0.05Åin PBE to about 0.01Å. SCAN also yields better
water properties than PBE (Perdew et al 2017). On the other hand, the un-
derestimation of chemical barrier heigths by PBE is only mildly improved, by
about a factor of 30% (whereas hybrids are often 2-3 times better). Thus, for
many properties, SCAN yields accuracies similar to hybrid functionals, but
at a fraction of the computational cost (for materials codes).

2.4 Range-separated hybrids

The theory behind range separation is an exact one, developed first by An-
dreas Savin (Toulouse et al 2009; Savin 1996; Leininger et al 1997). One
simply writes the Coulomb repulsion as a sum of a short-ranged contribu-
tion (decaying more rapidly than the inverse of the separation) and a long-
ranged contribution, which has no Coulomb singularity at zero separation.
One can then include one contribution as an interaction in some generaliza-
tion of the KS equations, and have the redefined XC contribution accounting
for the other. This is all formally exact, and exact XC functionals exist for
such schemes (though they differ from their regular KS counterparts).

But a plethora of choices now await. The first is the length scale on which
the range separation is performed, often denoted 1/ω. This is a continuous
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parameter, and since approximations will be made to the corresponding EXC,
the results are sensitive to it. Just like the fraction of exact exchange in global
hybrids, there is always a temptation to adjust it.

Furthermore, the separation into long- and short-range contributions can
occur for the exchange contribution (most common), the correlation, or both.
Finally, one may wish to treat the short-range contribution with an approxi-
mate functional or, in other situations, the long-range contribution! For exam-
ple, a vexing problem in TDDFT is to accurately calculate charge-transfer ex-
citations of well-separated donor-acceptor complexes. Including long-range
Fock exchange exactly works very well for this problemStein et al (2009). On
the other hand, the very successful HSE06 functional (Heyd et al 2003) is a
range-separated hybrid, in which the long-range exchange is treated with an
approximate functional, but the short-range exchange is treated exactly, to
model screening in an extended insulator (Janesko et al 2009). This partic-
ular hybrid typically yields accurate gaps for moderate-gap semiconductors
and insulators (Perdew et al 2017).

2.5 Gaps of solids

A crucial failure of the standard approximations is their inability to predict
gaps of semiconductors and insulators. The LDA underestimates the gap of
bulk Si by a factor of 2, and makes Ge a metal, and GGA’s fare little better.
From very early on, a great strength of the GW method (Aryasetiawan and
Gunnarsson 1998) has been its ability to provide accurate and reliable gaps.

To understand this issue, it is important to first note that the KS gap of a
periodic solid does not match the fundamental gap of the solid (Perdew et al
1982; Perdew 1985). All indications suggest that in fact LDA and GGA yield
reasonably accurate KS gaps (ie close to the KS gap found with the exact
ground-state functional) (M. Grüning and Rubio 2006). But, unlike LDA and
GGA, the exact functional allows access to the fundamental gap, which is
just I −A, the difference between the ionization energy and electron affinity
of a system. Consider a very large but finite cluster of material. One can then
add and subtract an electron to find I and A and deduce the exact gap. In
fact, modern methods exist for doing this in a periodic calculation (M. Stadele
and Vogl 1999). But in LDA or GGA, the added electron or hole delocalizes
over the entire system and, because of their lack of a derivative discontinuity,
I −A collapses to the HOMO-LUMO KS energy difference, i.e., the KS gap.

A great success of the past two decades has been the accurate calcula-
tion of moderate gaps using hybrid functionals such as HSE06 (Heyd et al
2003). This is achieved by going to a generalized KS scheme (Seidl et al
1996), in which the orbital dependent part of the functional is treated as in
HF theory, not pure KS theory (which would require treating it with optimized
effective potential (OEP) methods (Kümmel and Kronik 2008)). By having
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an orbital-dependent potential, one can show that the generalized Kohn-
Sham (GKS) gap of such a calculation does match I −A and because of
the orbital-dependence, an approximate derivative discontinuity is included.
Thus the GKS gap in such a calculation is the approximate fundamental
gap, and is wider than the corresponding KS gap. This is how hybrid func-
tionals and meta-GGA’s yield wider and generally more accurate gaps than
GGA’s (Perdew et al 2017).

3 Challenges and hopes

Here we review some of the more depressing failures of our current approx-
imations.

3.1 Strong correlation

The failure of DFT with standard approximations for strongly correlated sys-
tems has been known since before its invention, as HF has problems for
H2 when it is stretched (Heitler and London 1927). The problem can be
analyzed and related to localization/delocalization errors of the standard ap-
proximations when integer (or half-integer) numbers of electrons localize on
different sites (Cohen et al 2008). This is often called static correlation in
quantum chemistry and involves the KS gap between two states becoming
very small, and the exact many-body wavefunction becoming an (almost)
equal mixture of two Slater determinants.

It is important to note that the difficulties lie only with the failure of approx-
imations under these circumstances, rather than the KS scheme itself. This
can be beautifully illustrated with the two-site Hubbard model, for which it is
trivial to construct the exact KS system, even when strongly correlated (Car-
rascal and Ferrer 2012). Even in realistic cases (albeit in 1d), the KS equa-
tions for a strongly correlated system always can be made to converge to the
exact ground-energy and density if the exact XC functional is used (Wagner
et al 2013). But of course many of the features of the KS system do not re-
semble those of the physical system under such conditions (Carrascal et al
2015). This point is often confused by practitioners of many-body theory. The
differences between KS response functions and the many-body analogs for
strongly-correlated systems is not a signal that a density functional approxi-
mation is failing to yield accurate energies for such systems.

But strong correlation in solids is even more difficult than static correla-
tion in molecules. To see this simply, consider chains of uniformly spaced
H atoms. As the spacing is increased, an electron localizes on each site.
For H2, the true wavefunction combines two Slater determinants. But for
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H4, there are 4 such determinants, and a DFT calculation with, say LDA,
will break symmetry into 4 different solutions, one of which will have lowest
energy (Wagner et al 2014). As the number of atoms in the chain grows,
so does the number of nearly degenerate solutions, separated by spin ex-
citations of very small energy. In the thermodynamic limit, these become
infinite, and the usual quantum chemical starting point of a single Slater
determinant becomes hopeless (Qiu et al 2017). Because this is such an
important problem, vast amounts of research have been performed studying
this limit, especially by the group of Weitao Yang (Zheng et al 2011), but also
by Scuseria (Motta et al 2017), and Becke (Johnson and Becke 2017).

3.2 The role of empiricism

The most practical systematic approach to the construction of density func-
tionals has that been championed by Perdew: Combine exact conditions that
are relevant to a given level of approximation with appropriate norms, such
as the uniform gas or hydrogen atom, to create approximations of tremen-
dous generality (Medvedev et al 2017). A key aspect of this approach is
that, as one rises on Jacob’s ladder, each successive approximation works
better than the previous one (or at least is no worse) under almost all cir-
cumstances (and the cases where it does not are usually very informative).
Thus, for a given computational cost, there is a single (or at least, very sim-
ilar) obvious choice that is rarely worse than using a lower rung. Use of ap-
propriate norms may appear empirical, but it can be understood as choosing
parameters in the approximations to capture limits that have not been fully
derived as yet, but in principle could be. The extremely successful B88 ex-
change functional (Becke 1988; Elliott and Burke 2009) can be viewed as
incorporating appropriate norms (exchange energy of atoms).

On the other hand, the profusion of inexpensive computing resources has
led to many databases with either experimental results or those of high-level
computational chemistry against which new approximations can be tested.
It has also led to empirical fitting of density functional approximations with
many parameters, as championed by Truhlar and coworkers (Zhao and Truh-
lar 2008, 2006; Zhao et al 2006). This approach typically produces more
accurate approximations than those of Perdew et al for the systems and
properties fitted, and for related systems and properties. But it does not yield
single universal approximations that generically improve over previous steps
on the ladder. Such approximations can fail badly when applied beyond their
range of applicability.

An entirely new approach to functional approximation is to use machine-
learning to learn from accurate data (Snyder et al 2012; Rupp et al 2012;
Bartók et al 2010). This differs from the earlier approaches, because it au-
tomatically includes highly nonlocal contributions, as captured for example
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in the kernel which measures density separations by integrals over the en-
tire system (Snyder et al 2012; Li et al 2016b; Vu et al 2015; Snyder et al
2013). Recent advances include the first KS-MD simulation with an ML-DFT
approximation to bypass solving the KS equations (Brockherde et al 2017),
and accurate approximation of the full interacting functional (including XC)
(Li et al 2016a) even for strong correlation and even for extended systems
(but so far, only in 1d, because of the cost of generating accurate data).

3.3 New horizons

An entirely new arena for DFT has grown immensely in the last decade or
so is applications to warm dense matter (Smith et al 2017), with tempera-
tures significant on the electronic scale (about 100,000K), but not so high
that Thomas-Fermi theory (or classical behavior) dominates. Applications
range from modeling planetary interiors to inertial confinement fusion. This
field is so ‘hot’ that even the input to thermal LDA, the XC energy of a uni-
form gas as a function of temperature, is only now being calculated at high
accuracy (Groth et al 2017).
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