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Abstract

Practical density-corrected density functional theory (DC-DFT) calculations rely on Hartree-Fock (HF) densities,
which can be computationally expensive for systems with over a hundred atoms. We extend the applicability
of HF-DFT using the dual-basis method, where the density matrix from a smaller basis set is used to estimate
the HF solution on a larger basis set. Benchmarks on many systems, including the GMTKN55 database for
main-group chemistry, and the L7 and S6L datasets for large molecular systems demonstrate the efficacy of our
approach. We apply the dual-basis method to both DNA and HIV systems, and compare with the literature. A
careful reparameterisation of HF-r2SCAN-DC4 eliminates the negative s8 coefficient, with no loss of performance.

Managing large molecular systems in computational chem-
istry is a significant challenge.[1] While Kohn-Sham density
functional theory (KS-DFT) is widely used due to its rea-
sonable balance between accuracy and computational cost,
quantitative calculations of large systems using large atomic
orbital (AO) basis sets remain unfeasible. Even for systems
with 50-100 atoms, using large AO basis sets can be com-
putationally demanding.[2]

Density-corrected DFT (DC-DFT) is a general theoretical
framework for identifying failures of density functional ap-
proximations (DFAs) by separating the errors into the error
due to the functional and the error due to the self-consistent
density.[3, 4, 5] In most DFT calculations, the density-driven
error is negligible, and the error is dominated by the func-
tional error. But in several well-characterized classes of
reactions, density-driven errors are significant.[6, 7, 8] In
such cases, it is presumed (and usually true) that elimina-
tion of the density-driven error by evaluation on the exact
density improves the results.

For practical applications, using the exact density n(r)
is too expensive relative to a DFT calculation, so there has
been a focus on identifying a density that reduces density-
driven errors (where they are significant) while also being
computationally manageable. HF-DFT is a practical ap-
proach that uses the Hartree-Fock (HF) density to mitigate
density-driven errors when the self-consistent density is suf-
ficiently inaccurate that it impacts the overall energy error.
Over the last decade, it has been found, for our standard
DFAs built on semilocal approximations, that substituting
self-consistent approximate densities with HF densities can
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significantly reduce energy errors in many classes of DFT
calculations.[9, 10, 11, 12, 13, 14, 15, 16, 17]

Recently, a systematic application of the principles of DC-
DFT has led to the development of density and dispersion-
corrected DFT (D2C-DFT), which exhibits high accuracy
in general main group thermochemistry and is particularly
effective for systems containing water.[18] However, apply-
ing DC-DFT methods with HF densities to large systems
presents two key challenges. First, the HF calculation
becomes too expensive due to the non-local exchange contri-
butions. Second, dispersion corrections are typically tuned
for small systems and may fail for larger systems, where
dispersion can account for much of the overall correlation
effects.

To reduce the computational cost of HF or DFT on large
systems, the dual-basis method has been developed by many,
including King and co-workers[19], Head-Gordon and co-
workers[20, 21, 22], and Gill and co-workers[23, 24]. With
this method, one performs a self-consistent calculation on a
small basis set, followed by a perturbative correction, repro-
ducing almost exactly the large basis set result at a fraction
of the cost. This produces small but acceptable errors in the
HF or DFT energies, relative to the corresponding results
in the large basis set.

However, total energies are protected by the variational
principle, where small errors in a wavefunction only pro-
duce squared errors in the energy. In this work, we test
the dual-basis method to see if it produces HF densities
that are sufficiently accurate for use in HF-DFT calcula-
tions. As an immediate application, we can also explore
whether dispersion-correction parameters typically tuned
on small systems maintain their accuracy as system size
grows. In many large systems, the majority of interactions
are non-covalent and governed by dispersion. In particular,
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a recent development involves incorporating many-body
contributions to dispersion energy, which will be discussed
in detail.

The effectiveness of dual-basis method in reducing com-
putational costs, while still providing results comparable
to large basis set calculations in both HF and DFT, has
been investigated.[20, 22, 23] But such previous calculations
have focused on improving energies. Here, we use only the
HF density and explore for the first time the errors of the
dual-basis method in reproducing the HF density for use in
HF-DFT calculations. The dual-basis method reduces the
computational cost, but does it introduce errors too large
to be useful in DC-DFT calculations?

This letter begins by demonstrating the efficacy of a dual-
basis method for obtaining HF densities, paving the way
for practical applications of HF-DFT to large molecular
systems. Furthermore, we show that the recently developed
D2C-DFT is sufficiently transferable to be applied to large
molecules. As the best performer among several D2C-DFTs,
we generally use D2C-r2SCAN. (Warning: the term large in
this paper can refer to large molecular systems, large basis
sets, or the chemical category large within GMTKN55,
depending on context.)

The dual-basis method for HF-DFT calculations is a
distinct approach from the Hartree-Fock perturbative cor-
rection (HFPC). A HFPC calculation is performed in sev-
eral stages. Initially, a self-consistent field calculation is
performed with a small primary basis set of size m. Subse-
quently, a Fock matrix with a larger secondary basis set of
size M is formed as follows:

F
[1]
ab = hab +

m∑
λσ

Pλσ [(ab|λσ) − 1
2 (aλ|bσ)], (1)

where F
[1]
ab is the Fock matrix with the size of M2, h is the

one-electron operator, and P is the density matrix obtained
from the self-consistent field calculation in a small primary
basis set. λ and σ (a and b) represent the indexes of the
basis function within the primary basis set (secondary basis
set). Then, the HFPC energy is given as follows:

EHFPC =
M∑
ab

P
[1]
ab hab +

M∑
abcd

P
[1]
ab P

[1]
cd [(ab|cd) − 1

2 (ac|bd)],

(2)

where P [1] is the density matrix obtained from a diagonal-
ization of F

[1]
ab . By replacing the exchange energy (the last

term) in Eq. 2 to the KS exchange-correlation energy ẼXC,
we can get the dual-basis HF-DFT energy as follows:

EHF−DFT =
M∑
ab

P
[1]
ab hab +

M∑
abcd

P
[1]
ab P

[1]
cd (ab|cd) + ẼXC(P

[1]
ab ),

(3)

In other words, the distinction between the HFPC and
the dual-basis HF-DFT calculation lies in the evaluation
of energy. Following a single diagonalization, the density
matrix is utilized to obtain the HF-DFT energy, not the
HFPC energy. (See Supporting Information for the Python
code of the dual-basis HF-DFT.)

The HF density matrix from a conventional self-consistent
field calculation with a secondary basis set can be obtained
with the cost of O(M4). This can be reduced to the cost
of O(m2M2) through the dual-basis method, as expressed
in Eq. 1, so, the dual-basis method reduces the cost to the
fraction O(( m

M )2). Here, we have mostly used the Ahlrichs
basis set (def2-) series[25, 26, 27] with the shorthand of 2Z
(double-ζ) for def2-SVPD, 3Z(triple-ζ) for def2-TZVPPD,
and 4Z(quadruple-ζ) for def2-QZVPPD. The diffuse ba-
sis functions (-D) are required to accurately describe the
long-range interaction energy in large systems.[28, 29] For
notation, the results of DFA or HF with a basis set are
denoted as DFA or HF/basis set. Similarly, the results
of a D2C-DFT with dual-basis calculation are shown as
D2C-DFT/(primary basis)/(secondary basis). For example,
the result of a D2C-r2SCAN dual-basis calculation using
def2-SVPD and def2-QZVPD as the primary and secondary
basis, respectively, is denoted by D2C-r2SCAN/2Z/4Z.

Figure 1 illustrates both the computational savings and
the inaccuracies introduced in the density and energy by the
dual-basis method. In Fig. 1(a), the reduction in cost for the
C60 isomerization energy calculation between the wall times
of 2Z/4Z and 4Z is approximately 0.05 (theoretically 0.1).
The result obtained from the 2Z/4Z dual-basis with the
D2C-r2SCAN (absolute deviation 0.83 kcal/mol) is close
to that from 4Z (0.81 kcal/mol), but ran in about one-
twentieth of the time. In comparison, the error in a 3Z
calculation (1.15 kcal/mol) is much larger and ran 4 times
slower.

The dual-basis approach might ruin the spatial distribu-
tion of the density even when the energy is accurate. To
illustrate how density deviations from different levels of
basis sets appear, Figs. 1(b) and (c) show the density devi-
ations with three different basis sets for the He atom and
the C60 molecule, respectively. Although the spatial dis-
tribution of electron density does not fully account for the
density-driven energy error,[31] examining this distribution
in real space can still provide valuable insights, particularly
since accurate energies have already been identified. Given
that the purpose of using the dual-basis scheme is to gener-
ate the energy in the secondary basis set, the deviation in
Figs. 1(b) and (c) is calculated based on the density of the
secondary 4Z basis set. Electron densities derived from the
2Z/4Z dual-basis set are noticeably closer to the 4Z electron
density compared to electron densities calculated with the
2Z or 3Z basis set. The deviations resulting from the dual-
basis method are negligible. The visualization of atomic
and molecular densities demonstrates that the dual-basis
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Figure 1: (a) Absolute deviations and wall time for the calculation of the C60 isomerization energy by D2C-r2SCAN with different
basis sets. The absolute deviation is estimated from DLPNO-CCSD(T)/CBS.[30] The 2Z, 3Z, and 4Z correspond to def2-SVPD,
def2-TZVPPD, and def2-QZVPPD basis sets, respectively. 2Z/4Z(3Z) denotes a dual-basis result with 2Z as the primary and 4Z(3Z)
as the secondary basis sets. The number of basis functions in those basis sets is shown in Table S1 and the total energy is also
compared in Fig. S2. The wall time is measured with 64 cores of an Intel(R) Xeon(R) CPU Platinum 8358 @ 2.60GHz. (b) Radial
density distribution difference of the He atom, and (c) density difference of the C60 molecule, relative to HF with 4Z. In (c), the
isosurface is |∆n(r)|=0.001 , and red shade indicates negative values. The relative total energies are shown in Fig. S3.

method can produce highly accurate electron densities at a
fraction of the cost. Moreover, in each case, the deviations
introduced by the dual-basis are much smaller than the
difference in HF and PBE densities.

From this point forward, we will evaluate the dual-basis
HF-DFT approach across various molecular systems, from
small to large, using the following benchmark datasets and
error metrics. The GMTKN55 is a widely-used benchmark
database for general main group thermochemistry, kinet-
ics, and noncovalent interactions.[32]. As the GMTKN55
molecules are typically small, we benchmark two datasets,
L7[28] and S6L (6 complexes in the S12L[29] dataset). Both
datasets consist mostly of dispersion-stabilized noncovalent
complexes. With a maximum of 153 atoms, we refer to this
database as L13. (See Fig. S1 for the structure information.)
In addition, the DNA-ellipticine and HIV-indinavir systems,
containing 157 and 343 atoms, respectively, are evaluated.

For performance evaluation, we compare four DFT
methodologies. (See Computational Details for more in-
formation.) Self-consistent DFT calculations without any
corrections (DFT); self-consistent DFT calculations with
Grimme’s original D4 dispersion corrections[34] (DFT-D4);

DFT calculations on HF densities (HF-DFT); and a recently
proposed density and dispersion-corrected DFT[35], which
is HF-DFT with a tailored dispersion correction optimized
within the DC-DFT framework (D2C-DFT). Error analysis
uses the mean absolute deviation (MAD) of the DFT energy
from the reference for each database, which is defined as:

MADj =
1

Nj

Nj∑
i=1

∣∣Eij − Eref
ij

∣∣ . (4)

here Nj is the total number of reactions in the jth dataset.
For the ith reaction in the jth dataset, Eij is the DFT
energy and Eref

ij is the reference energy. We set |Eref
j | as

the mean absolute energy of this set, and wj=Eref/|Eref
j |,

where Eref=56.84 kcal/mol is the mean for all 55 |Eref
j |

values. Next, to assess the efficacy of the dual-basis method
relative to the result of the secondary basis set, the mean
absolute basis deviation (MABD) of this set can also be
defined as follows:

MABDj =
1

Nj

Nj∑
i=1

∣∣Eij/p/s − Eij/s
∣∣ . (5)
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Figure 2: Various depictions of mean absolute basis deviation (MABD) of D2C-DFT on the GMTKN55 database. In (a), the
datasets are ordered as in Ref. [32] and classified according to chemical properties as in Ref. [33]. The ratio of MABD (2Z/4Z)
to MAD (mean absolute deviation) is below 0.2 (horizontal line) for most datasets. Marker size is proportional to the weighted
MABD, the weighted version of Eq. 5, in kcal/mol. The square in the upper left corner denotes 5.36 kcal/mol, the WTMAD-2 of
D2C-r2SCAN.; (b) MABD for three approximations: D2C-PBE, -r2SCAN, and -B3LYP. (MADs of D2C-DFTs are shown in Fig. S6.);
(c) shows MABD for various basis set pairings for the def2-series of basis sets, with def2- omitted for simplicity. (*In the case of
def2-TZVPD/def2-QZVPD, the first structure within the C60ISO dataset is evaluated self-consistently with def2-QZVPD due to a
convergence issue. See Table S4 and Fig. S7.); (d) Same as (c) but for just the G21EA dataset (adiabatic electron affinities) where a
sizable primary basis set is needed.

where E/p/s is the dual-basis energy evaluated with the
primary and the secondary basis set, and E/s is the energy
evaluated in the secondary basis set. Therefore, MABD
measures the deviation due to the use of a dual-basis set with
respect to the results of the same calculation of secondary
basis.

The GMTKN55 database comprises 55 sub-datasets, and
the weighted total mean absolute deviation (WTMAD-2)
is[32]

WTMAD-2= 1
N

55∑
j=1

wj

Nj∑
i=1

∣∣Eij − Eref
ij

∣∣= 1
N

55∑
j=1

NjwjMADj

(6)
where N is the total number of reactions,

∑55
j=1 Nj=1505.

The weighted version of Eq. 5 can also be obtained by
replacing MADj in Eq. 6 to MABDj . (The weights for each
dataset are listed in Tables S2 and S3.)

The dual-basis method offers efficient access to the results

of the secondary basis set. It is not necessary for the primary
basis set to be a subset of the secondary basis set, as the
density obtained from the small basis set could be projected
into the large basis set.[20] In addition, HF perturbative
corrections are less sensitive to the basis set pairing.[24]
However, the MABD can vary depending on the system. To
assess the significance of these deviations, we first test the
pairings of basis sets for dual-basis HF calculations using
a series of Ahlrichs (def2-) basis sets on the GMTKN55
database. Additionally, in Fig. S4, the same results could be
obtained from the Bauza30[36] dataset within the pairings
over the def2- series with Jensen (pc-)[37, 38], and Dunning
(cc-)[39] families. The dataset contains mainly noncovalent
interactions, including halogen, chalcogen, and pnictogen
bonds, which are prevalent in large molecular systems.

Figure 2 captures both the reliability and caveats asso-
ciated with the choice of basis set pairs used in the dual-
basis D2C-DFT calculations, using the GMTKN55 database.
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Figure 2(a) shows the ratio of the D2C-r2SCAN/2Z/4Z
MABD and the D2C-r2SCAN/4Z MAD for each dataset in
GMTKN55. This is as important, below 0.2 (horizontal line)
means the dual-basis result affects the error by less than
20 %, i.e., can be ignored, as is the case for most datasets.
Marker size represents the weighted MABD of each dataset.
The few datasets above the 20 % line either have weighted
MABDs much smaller than WTMAD-2 (indicated by a tiny
marker size) or have 4Z MADs less than 1 kcal/mol, i.e.,
an extremely small MAD yields an unusually large ratio.
The MAD of BSR36 dataset, bond-separation reactions,
is only 0.33 kcal/mol, so even the very small MABD of
0.38 kcal/mol yields a ratio larger than 1. Likewise, the
MABD of RG18, which contains the interaction energies
in rare-gas complex, is only 0.04 kcal/mol, but because of
its large WTMAD-2 weight of 98, yields an unusually large
weighted MABD of 3.92 kcal/mol. (See Tables S2 and S3
for the weight information.) Similar behavior can be seen in
Fig. S5 for D2C-PBE and D2C-B3LYP. In Fig. 2(b), we show
MABD for three different approximations. MABD is consid-
erably smaller than MAD (Fig. S6) in scale. Depending on
the approximations, the MADs are widely distributed, but
the MABDs are not. The largest MABD is from MB16-43
because of its large reference energy. All three functionals
have comparable MABD.

In Fig. 2(c), the MABD between the results of the dual-
basis D2C-r2SCAN and those of D2C-r2SCAN evaluated
with the secondary basis set on GMTKN55 is presented.
Since the dispersion correction is independent of the basis
set, it cancels, and the results are the same as those of HF-
r2SCAN. Among dual-basis combinations, we recommend
2Z/4Z as a default choice, balancing cost and accuracy.
Using a large primary, such as 3Z/4Z, results in a lower
MABD, but with much smaller computational savings.

DFT calculations have basis set incompleteness error
(BSIE)[40] and basis set superposition error (BSSE)[41]
that depend on the size of the basis set, which remains true
in the dual-basis method. The G21EA dataset, which is
dominated by the slow convergence of the anions, requires
special attention. In Fig. 2(d), we show that the G21EA
dataset requires a primary basis set of at least def2-TZVPD
levels, which is superior to the def2-QZVP primary basis
set result. (See Fig. S8 for the separate energy distributions
of neutral species and anions in the G21EA dataset.)

For the entire GMTKN55 database, including the afore-
mentioned datasets, the dual-basis 2Z/4Z can change the
WTMAD-2 of D2C-DFT by up to 1∼3 percentage. (See Ta-
ble S5.) Moreover, the interaction energies in large systems
are predominantly driven by inter- and intra-molecular dis-
persion. As the 2Z/4Z dual-basis set, as shown in pink and
green markers in Figs. 2(a) and (b), does not cause signifi-
cant problems, it will be utilized in the following discussion
for the L13 database.

Figure 3 shows the absolute deviations of D2C-DFT en-

Figure 3: (a) Absolute energy deviations of D2C-r2SCAN for
GMTKN55 and (b) subsets with more than 230 electrons. The
absolute energy deviation is defined as |∆E| =

∣∣Ẽ − Eref
∣∣

ergies with dual-basis and secondary basis. In Fig. 3(a),
we can see that D2C-r2SCAN/2Z/4Z approximates the sec-
ondary basis energies well, with many points lying near the
diagonal line. There is a huge improvement over 2Z results.
A few dual-basis results are better than 4Z, but this is surely
accidental. Most of the points deviating significantly from
the diagonal originate from the difficult MB16-43 dataset,
due to a huge range of energies (|Eref | =468 kcal/mol). The
MAD of D2C-r2SCAN with 2Z, 2Z/4Z, and 4Z for the MB16-
43 dataset are 19.72, 10.37, and 9.96 kcal/mol, respectively.
Considering the energy range, the associated deviations are
comparatively small (∼1 % of the reference energy). (See
Fig. S9.) Especially, the consistency of the 2Z/4Z results
with the 4Z results is more evident for the three relatively
large systems (C60ISO, ISOL24, and UPU23) in Fig. 3(b),
suggesting that the performance of the dual-basis method
is not significantly affected by the size of the system.

Table 1 provides an analysis of the GMTKN55 into
relatively large systems, closed/open-shell, and density-
insensitive/sensitive cases. The increased WTMAD-2 of
3.32 kcal/mol between 2Z and 4Z energies is significantly re-
duced to 0.07 kcal/mol with 2Z/4Z. Reduction in WTMAD-
2 of more than 3 kcal/mol is observed in relatively large
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Table 1: Weighted total mean absolute deviations (WTMAD-2)
of D2C-r2SCAN for the GMTKN55 database in kcal/mol.

D2C-r2SCAN WTMAD-2 ∆WTMAD-2a

(kcal/mol) 4Z 2Z 2Z/4Z
GMTKN55 5.36 3.32 0.07

C60ISO, UPU23, ISOL24b 5.32 3.12 0.20
Closed-Shell 5.58 4.21 0.07
Open-Shell 4.81 1.08 0.06

Density-Insensitive 5.42 3.94 0.04
Density-Sensitive 5.22 1.90 0.13

a∆WTMAD-2 represents the difference from WTMAD-2 of 4Z.
bThe datasets with over 230 electrons in the GMTKN55 database.

systems, closed-shell sysetms, and density-insensitive cases.
The WTMAD-2 of D2C-r2SCAN with 4Z is reduced to
5.23 kcal/mol when using a restricted open-shell HF (ROHF)
density with high spin contamination (> 0.1) in unrestricted
HF (UHF) wavefunction.[42] For the dual-basis calculations
here, open shell systems were computed with UHF densi-
ties. When available, ROHF densities should further reduce
errors.

In large non-covalent systems, dispersion interactions
dominate. Table 2 shows that the dispersion energy con-
tributes on average 10 kcal/mol in the case of HF-r2SCAN,
accounting for approximately 60 % of the total interaction
energies. (See also Table S6.) This highlights the impor-
tance of an adequate description of the dispersion energy
(Edisp) in large molecular systems. Most approximate func-
tionals do not fully capture dispersion interactions[44] and
many different dispersion correction methods have been
developed, such as notably DFT-D[45, 46, 34], exchange
dipole moment (XDM) dispersion model[47], and many-
body dispersion (MBD) method[48].

In particular, the importance of the many-body con-
tribution (often, three-body term) of dispersion energy
arises when considering large non-covalently bounded sys-
tems and molecular crystals.[49] Despite the ongoing debate
over the use of the Axilrod-Teller-Muto (ATM) three-body
term,[50, 51, 52] the significance of the many-body effect of
dispersion energy in large systems remains undeniable. In
small molecular systems, the three-body interaction is neg-
ligible, but in large molecular systems, the effect becomes
apparent. The aforementioned methods are often param-
eterized only for small complexes, raising the question of
whether they will work well for larger ones.

From Ref. [18], DC4 represents a DFT-D4 correction
founded on the DC-DFT principle, which focuses on mini-
mizing only the functional error by optimizing parameters
solely for density-insensitive cases. The right columns of
Table 2 show that the three-body dispersion energy aver-

ages 2.9 kcal/mol and constitutes approximately 20 % of
the total dispersion energy in the original DC4. This is
substantial, given the variations among different functionals
and the possibility for three-body interactions to become
more pronounced in large molecular systems. Many believe
that the contribution of three-body interactions is up to
10 % of the total Edisp.[34, 49] The increased three-body
dispersion energy can be explained by the negative s8, an
nonphysical artifact of the repulsive R−8, which leads to
excessive R−6 and three-body ATM terms.[53] The two
effects cancel each other out and seem to work well on the
small system, but when we move to the large molecular sys-
tems, an excessive ATM term is observed. To address this
issue, we developed D2C-DFT by adjusting the parameters
to pass through the validation of a large molecular system
dataset.[35] D2C-DFT has an attractive R−8 term, and the
ATM term is reasonable as shown in the left columns in
Table 2.

The performance of D2C-DFT with the dual-basis
method is assessed on the L13, a challenging large-molecule
dataset. The results are benchmarked against those of the
GMTKN55 in Fig. 4. Figure 4(a) shows the monotonic
improvements along Jacob’s ladder[55] for the GMTKN55
database. In Fig. 4(b), the sequence of the approxima-
tions is disordered. D2C-BLYP shows improvements over
the corresponding DFT-D4, but D2C-revPBE slightly low-
ers the performance of revPBE-D4, perhaps due to error
compensation between dispersion energy and charge trans-
fer energy of revPBE-D4,[56] i.e., the HF density disturbs
the balance of the two opposite signed errors. D2C-TPSS
and D2C-B3LYP also show worse results compared to the
corresponding DFT-D4. For r2SCAN-D4, D2C-r2SCAN
improves the results and HF-r2SCAN-XDM improves even
more. Interestingly, ωB97M-V[57], regarded as the best
workhorse functional,[58] exhibits a similar performance
compared to the other approximations.

We optimized the XDM parameters with HF-r2SCAN/4Z
following the DC-DFT principle, referred to as HF-r2SCAN-
XDM. The optimized XDM parameters are shown with
explanations in the Table S7. The results of HF-r2SCAN-
XDM demonstrate that significant improvements to large
molecular systems can be achieved without compromising
the capacity of small systems.

Figure 5 shows D2C-r2SCAN results for the large pharma-
cological molecules, DNA-ellipticine and HIV-indinavir.[43]
The number of electrons in DNA-ellipticine is 710, and
HIV-indinavir contains 1088 electrons, about 3 times
larger than C60, the biggest molecule in GMTKN55.
For DNA-ellipticine, the result of D2C-r2SCAN/2Z/4Z
(−41.6 kcal/mol) lies within the error bar of the refer-
ence (−40.4 ± 1.47 kcal/mol). For HIV-indinavir, D2C-
r2SCAN/2Z/4Z predicts −117.1 kcal/mol and the refer-
ence is −121.5 kcal/mol. Additionally, we calculated D2C-
r2SCAN/2Z/3Z with and without counterpoise correction
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Table 2: Comparison of D2C-r2SCAN and HF-r2SCAN-DC4 for interaction (Eint) and dispersion energiesa (Edisp) for the L13
database in kcal/mol.

D2C-r2SCANb HF-r2SCAN-DC4c

dataset complex Eref
int

d ∆Eint
e Edisp E

(6)
disp E

(8)
disp E

(9)
disp ∆Eint Edisp E

(6)
disp E

(8)
disp E

(9)
disp

L7

C2C2PD -20.9 -1.6 -15.2 -17.0 -0.2 2.0 -0.1 -13.7 -21.3 3.7 3.9
C3A -17.5 0.2 -11.1 -12.4 -0.1 1.4 1.2 -10.1 -15.2 2.5 2.6

C3GC -29.2 -0.4 -19.2 -21.5 -0.2 2.5 1.2 -17.6 -26.5 4.4 4.5
CBH -11.0 2.2 -8.6 -9.2 -0.1 0.7 3.0 -7.8 -10.1 1.3 1.0

GCGC -13.5 -2.0 -11.1 -11.9 -0.1 0.9 -1.4 -10.5 -14.6 2.4 1.6
GGG -2.1 -0.6 -4.3 -4.5 0.0 0.2 -0.4 -4.1 -5.4 0.9 0.5
PHE -25.5 1.0 -5.3 -5.6 -0.1 0.4 1.3 -5.0 -6.4 0.9 0.6

S6L

2a -35.5 -0.3 -18.2 -19.9 -0.2 1.9 0.9 -17.0 -24.9 4.3 3.6
2b -21.8 -2.7 -13.5 -14.6 -0.2 1.3 -1.7 -12.5 -18.3 3.1 2.6
4a -42.5 2.3 -29.0 -32.8 -0.4 4.2 3.3 -28.0 -41.2 6.9 7.3
5a -43.8 1.0 -12.9 -13.8 -0.1 1.0 1.5 -12.5 -16.5 2.6 1.5
6a -89.6 2.2 -11.4 -13.6 -0.1 2.3 3.6 -10.0 -15.5 2.1 3.4
7b -28.6 2.9 -17.2 -20.5 -0.2 3.6 5.0 -15.0 -23.3 3.1 5.2

Mean -29.4 0.3 -13.6 -15.2 -0.2 1.7 1.3 -12.6 -18.4 2.9 2.9

aThe dispersion energy is decomposed as the components of the dipole-dipole (E(6)
disp), dipole-quadrupole (E(8)

disp) and triple-dipole ATM (E(9)
disp).

bUsed dispersion parameters in Ref. [35]. cUsed dispersion parameters in Ref. [18]. dDLPNO-CCSD(T0)/CBS[43]. e∆Eint = Eint − Eref
int .

and the results are −115.6 and −117.6 kcal/mol, respec-
tively. The results demonstrate that the parameter fitting
in the dispersion correction scheme for small molecules is
sufficiently transferable to large molecules, and that the
dual-basis method can be employed to efficiently obtain
results.

We point out that reference interaction energies from
Quantum Monte Carlo and CCSD(T) calculations can
differ significantly in large molecular systems.[59, 60, 61]
For L13 and DNA-ellipticine system, the discrepancy be-
tween FN-DMC and DLPNO-CCSD(T0)/CBS can exceed 1
kcal/mol.[43] For the L13 database, the discrepancy is typi-
cally 0∼2 kcal/mol, but for the 4a system in S6L, it reaches
10.4 kcal/mol. For DNA-ellipticine, the discrepancy is 4.4
kcal/mol, but could be as large as 9.2 kcal/mol considering
the error bars. As such discrepancies (and their origin)
are beyond the scope of the present work, here we simply
benchmark against the common standard, CCSD(T).

In electronic structure calculations, the accuracy practi-
cally depends on the quality of the basis set, but the use
of a large basis set is formidable when calculating large
systems. Therefore, a small basis set with counterpoise
correction can be an efficient choice to mitigate the impact
of BSSE.[62] However, the counterpoise correction can be
applied to the interaction energy, not the binding energy,
and it cannot fully correct the BSIE. While the validity

of the counterpoise correction in the HF-DFT scheme has
been verified (see Fig. S10), here we recommend using the
dual-basis method without the counterpoise correction to
achieve large basis set results at a lower cost, allowing for
effective correction of both BSSE and BSIE simultaneously.

In this work, we demonstrated that the dual-basis method
can be a promising approach by evaluating the HF densities
and applying them to HF-DFT. The dual-basis HF densities
reproduce the secondary HF densities well both in terms
of spatial distribution and energy. A very small change in
WTMAD-2 on GMTKN55 demonstrates the efficacy of the
dual-basis method.

In large systems, where dispersion interactions play an
important role, we have found that three-body interactions
need to be considered carefully when applying dispersion cor-
rections. In this regard, D2C-r2SCAN corrects the parame-
ters of HF-r2SCAN-DC4 to avoid the nonphysical artifact
of a repulsive E

(8)
disp. Among the D2C-DFTs, D2C-r2SCAN

shows good performance without compromising accuracy on
small molecules (GMTKN55) and HF-r2SCAN-XDM shows
even greater improvements. Accurate energy predictions on
pharmacological molecules show the potential for extension
to larger molecules.

We have shown that DC-DFT can be extended to large
molecular systems through the dual-basis scheme with
proper dispersion correction. We expect that this approach
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Figure 4: (a) WTMAD-2 of the GMTKN55 database and
(b) mean absolute deviations (MADs) of the L13 database in
kcal/mol. Density functional approximations are ordered accord-
ing to the WTMAD-2 values for each rung of Jacob’s ladder.
WTMAD-2 of the ωB97M-V and B97M-V are from Ref. [54]
where 3Z with counterpoise correction is used. Self-consistent
DFTs and D2C-DFTs are from Ref. [35] where 4Z is used. For
L13, 3Z with counterpoise correction is used for self-consistent
DFT calculations. D2C-DFTs and HF-r2SCAN-XDM use 2Z/4Z
for L13. The reference data (DLPNO-CCSD(T0)/CBS), ωB97M-
V, and B97M-V results for the L13 database are from Ref. [43]
where 3Z with counterpoise correction is used. The bars rep-
resenting D2C-DFTs with HF-r2SCAN-XDM are filled, while
those representing the other approximations are empty. The
optimized XDM parameters for HF-r2SCAN are shown in the
Table S7.

will allow us to explore a wide range of larger systems
accurately at a reasonable cost.

computational details

All HF and DFT calculations are performed through
the Python-based Simulations of Chemistry Framework
(PySCF)[63], using customized Python codes for the dual-
basis method. The following functionals have been used in
DFT and HF-DFT calculations: PBE[64], BLYP[65, 66],
and revPBE[67] for GGA, TPSS[68], and r2SCAN[69] for
mGGA, B3LYP[70, 71] for hybrid. Density fitting, resolu-
tion of identity[72, 73, 74], was used for all calculations.

Figure 5: Energy predictions for large non-covalent complexes
of pharmacological interest, (a) DNA-ellipticine and (b) HIV-
indinavir. Shades in (a) represents error bars for each reference.
All results except D2C-r2SCAN are taken from Ref. [43] where 3Z
with counterpoise correction was used for the DFT calculations.
For D2C-r2SCAN, 2Z/4Z was used.
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