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Standard density functional approximations often give questionable results for odd-electron rad-
ical complexes, with the error typically attributed to self-interaction. In density corrected density
functional theory (DC-DFT), certain classes of density functional theory calculations are signifi-
cantly improved by using densities more accurate than the self-consistent densities. We discuss how
to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential
energy surfaces of HO·Cl− and HO·H2O complexes using various common approximate functionals,
with and without this density correction. Commonly used approximations yield wrongly shaped
surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical
shapes and minima when density corrected. This improvement is retained even in the presence of
implicit solvent.

1. INTRODUCTION

Odd-electron radical complexes like HO·Cl− and HO·H2O
are of tremendous importance throughout chemistry and in
related fields, such as in radiation chemistry, atmospheric
chemistry, environmental chemistry, and cell biology[1–7].
In particular, the behavior of anions in droplets is of critical
importance to understanding atmospheric chemistry. Com-
mon sense suggests that anions are less perfectly screened
near a water-air interface, and so have lower concentration
there. Recent classical molecular dynamics (MD) simula-
tions have shown just the opposite[8], creating considerable
controversy on this point. Since anions are strongly quan-
tum mechanical, it is logical to check traditional MD sim-
ulations, using only classical force fields, against ab initio
molecular dynamics (AIMD) calculations, which use density
functional theory (DFT) to generate the potential energy
surfaces (PES).

Unfortunately, standard DFT approximations have is-
sues for such systems[9–12]. Several studies show DFT
approximations predict two minima in the ground-state
PES. One of the minima is a hydrogen-bonding struc-
ture, while the other is a two-center three-electron inter-
acting hemi-bonding structure[13]. Many DFT studies pre-
dict the hemi-bonding structure as the global minimum of
[HO·Cl(H2O)n]− complex[8, 14–17]. This is attributed to
the infamous self-interaction error[8, 16, 17], because AIMD
studies with self-interaction corrected (SIC) methods agree
with PES scans with high-level (beyond DFT) quantum-
chemical methods, showing no hemi-bonding configuration
in the ground state[8, 16, 17]. Hemi-bonding configurations
have been observed in experiments[18, 19], but high-level
quantum-chemical studies show that these are excited-state
rather than ground-state configuration[20].

Thus, high-level quantum chemical calculations reveal
that the ground-state PES has only one minimum, which is
the hydrogen-bonding structure. The hemi-bonding struc-
ture is relatively overstabilized in DFT because three elec-

trons are incorrectly delocalized over two atoms rather than
having localized electron configurations. Essentially, the
AIMD studies raise more questions than they answer.

However, recent work[21] produces a much simpler and
more general picture of such errors, and suggests alternative
solutions. In any approximate DFT calculation, the density
is found by self consistently solving the Kohn-Sham (KS)
equations, using an approximate KS potential derived from
the energy approximation. This procedure finds the den-
sity that minimizes the energy approximation for the given
system. The final output energy is of the approximate en-
ergy functional evaluated at the approximate density. For
most KS-DFT calculations using standard approximations,
the KS potential appears to be of very poor quality[22].
In particular, the eigenvalues are usually too shallow by sev-
eral eV[23]. DFT approximations are designed to yield good
energies, but this does not automatically imply good poten-
tials. Functional derivatives are determined by how well the
approximation performs for small variations away from the
density of interest. Nevertheless, usually the self-consistent
density is rather good, because the approximate KS poten-
tial is rather close to a simple shift of the exact KS poten-
tial. (Highlighting this point, a recent approximation yields
highly accurate energies with truly terrible potentials[24].)

This then raises a simple issue. One can think of two dis-
tinct sources of error in such a calculation: One of the error
due to the energy approximation itself, and the other er-
ror in the corresponding approximate density. In most DFT
calculations, it is (correctly) believed that the first (func-
tional) error dominates. But in many interesting cases that
are specific to the system and the approximation, the error
in the approximate density can be unusually large, so that
it contributes more to the total energy error than would
usually be the case. In such cases of density-driven errors,
use of a more accurate density should reduce the final er-
ror substantially. A small HOMO-LUMO gap (∆εg) in the
original approximate DFT calculation is often a strong indi-
cator of a large density-driven error[21, 25]. In many cases,
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with standard DFT approximations, a Hartree-Fock (HF)
calculation provides a sufficiently accurate density to garner
much of the improvement in energetics. We dub such a
calculation, which is quite general, density corrected DFT
(DC-DFT), meaning any DFT calculation in which the den-
sity is not found self consistently, but by some other method
that substantially reduces the density-driven error.

We note that a better term for self-interaction error is de-
localization error, which has been recently much studied by
Cohen et al[26]. Our analysis complements theirs. In that
language, we are able to determine if a given delocalization
error is density-driven or not. If the former, a better den-
sity will improve the energy; if the latter, as in the case of
stretched H+

2 , it will not. We expect cases like DFT calcu-
lation on stretched He+2 to be normal, so the density-driven
error would be small compared to the functional error[10].

In the present work, we apply this scheme to a variety of
commonly-used standard approximations in DFT, applied
to the HO·Cl− complex. We use the HF density as our
more accurate density. We use the notation A-B, where
A indicates the method for finding the density, and B the
method for finding the energy. Thus HF-DFT implies using
a HF density, but evaluating its energy using DFT approx-
imation. In Fig. 1 we show the near-perfect agreement of
many commonly-used functionals for the potential energy
surface of HO·Cl−, once they are evaluated on HF densi-
ties. We find that not only does HF-DFT always produce
a PES with the correct global minimum, but that the dif-
ference in PES’s between different approximations becomes
negligible and is, up to a constant, essentially identical to
the CCSD(T) PES. Thus, with this elementary correction,
the PES of such systems changes from being a disappoint-
ing failure to being a resounding success for approximate
DFT.

There is always a price to be paid for progress, and in
this case, there are two (not so hidden) challenges to tak-
ing advantage of this improved performance. The first is
that, if the density is no longer the minimizer for the given
approximate energy functional, many basic theorems, such
as the Hellmann-Feynman theorem, no longer apply, and
many of these are used in standard DFT codes. But the
way to calculate forces has already been detailed in a pi-
oneering work[27] which pointed out that HF-DFT gener-
ically improves most reaction barriers over self-consistent
DFT, and implemented it in the ACES code. The second
is that AIMD simulations are often performed with plane
waves enforcing periodic boundary conditions, and solving
the HF equations can be computationally expensive in such
implementations[28]. However, some simpler scheme avail-
able in those codes, such as self-interaction corrected local
density approximation (LDA-SIC)[29], might yield densities
sufficiently accurate for the purpose while using e.g., gener-
alized gradient approximations (GGA) for the energy evalu-
ation. Alternatively with the recent success of hybrid func-
tionals such as HSE06[30] in predicting fundamental gaps,
it might be straightforward to run a HF calculation under
these conditions.

But all these are beyond the scope of the present paper.

The aim here is to show just how much of an improvement
is possible with DC-DFT. We begin with some theory, which
also includes the historical background. Since this idea is
so elementary, it has been touched upon several times in
the distant and recent past. We also explain how this fits in
with all the present attempts to go beyond standard approx-
imations, including using exact exchange in DFT[31, 32], ab
initio DFT[33], and several many-body approaches using KS
orbitals[34, 35]. Next we show a variety of results for the
complex at hand, using several functionals, basis-sets, and
implicit solvent models. We also demonstrate similar re-
sults for the HO·H2O radical, showing that the effect is not
specific to anionic species, but is much more general.

2. THEORY

A. Definition of error decomposition

In any KS-DFT calculation, only a small fraction of the
total energy need be approximated as a functional of the
density, namely the exchange-correlation (XC) energy. In
reality, we always use spin densities, but for the present
purposes, we suppress the spin index. The self-consistent
solution of the KS equations has been designed to de-
liver the density that minimizes the total energy in the KS
scheme[36]:

Ẽ[n] = TS[n] + U [n] + V [n] + ẼXC[n] (1)

where the ∼ indicates an approximation. The functionals
E[n], Ts[n], U [n], V [n], and EXC[n] are the total energy,
kinetic energy, external potential energy, Hartree-energy and
XC energy functionals, respectively[37].

The energy error in a DFT calculation is defined as

∆E = Ẽ[ñ]− E[n] (2)

where ñ(r) is the approximate self-consistent density. We
may write this error as the sum of two contributions. We
call the first the functional error. It is the energy error made
by the functional evaluated on the exact density, and comes
entirely from the XC approximation:

∆EF = Ẽ[n]− E[n] = ẼXC[n]− EXC[n]. (3)

The density-driven error is the energy difference generated
by having an approximate density:

∆ED = Ẽ[ñ]− Ẽ[n], (4)

so that the total energy error is the sum of these two:

∆E = ∆EF + ∆ED. (5)
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FIG. 1. PES of HO·Cl− with various DFT methods on HF densities (HF-DFT), using the aug-cc-pVTZ basis set. X marks
the global minimum of each PES.

This separation applies to any approximate DFT calcula-
tion, not just a KS calculation of electronic structure. But
here we focus exclusively on the latter, since we wish to
use this as a tool to analyze chemical calculations using
KS-DFT.

Note that this elementary breakdown is hardly a break-
through. Most developers and many users of DFT have
thought along these lines or come across this in some cal-
culation or context of theory development. What is new
is how far this elementary step can be taken in analyzing
all practical DFT calculations, i.e., those using approximate
functionals, and how to improve many of these.

B. Classification of DFT calculations

The first point to note is that for most calculations using
the KS scheme and modern approximations to XC, such as
a GGA or a global hybrid, the densities are remarkably accu-
rate. The above tool allows us to specifically quantify this
accuracy, by measuring it in terms of its effect on the quan-
tity we almost exclusively care about, namely the ground-
state energy. In any calculation, if |∆ED| � |∆EF |, any
error in the density is irrelevant for practical purposes. For
example, it has long been known that the density with stan-

dard approximations is highly inaccurate at large distances
from the nuclei, due to the highly inaccurate HOMO in
such calculations[38]. However, in most cases, this inaccu-
racy produces only a very small density-driven error in the
energy, so such approximations remain accurate for ground-
state energies. Moreover, DFT approximations produce far
more accurate ionization energies via total energy differ-
ences than via orbital energy differences. Next, we consider
some popular application, such as the calculation of a bond
length with DFT. Since the bond length is extracted as the
minimum of the total energy, the contributions to the error
can be split into functional-driven and density-driven, and
the two compared. Thus one extracts the density-driven
contribution to a given property of a given system with a
given approximate functional. If this error is small or neg-
ligible compared to the actual error, we classify such a cal-
culation as normal. We believe the vast majority of DFT
calculations fit into this category, and we gave several ex-
amples in our previous work, including cases like stretched
H+

2 cation[21].

In fact, in many circumstances of method development,
there is an underlying assumption that the calculation is
normal. With a new approximate functional, it can often
be the case that the functional derivative is demanding to
calculate. Thus, often a lower-level, more standard approx-
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imation is used to calculate orbitals in the KS equations,
and the new approximation is tested on those orbitals. If
the calculation is normal, this (almost) guarantees that only
a small error is made by this procedure, and the change upon
self-consistency will be negligible.

Our main interest, naturally, will be in those calculations
where the density-driven error is a significant fraction of the
total. We denote such calculations as abnormal. In such
cases, a more accurate density will reduce the error (assum-
ing no accidental cancellation of functional- and density-
driven errors). We can also state just how much more ac-
curate that density need be: Enough to make the density-
driven error small relative to the functional error. In such
cases, correcting the density in a DFT calculation greatly
reduces the error; hence our name for this method.

While this separation scheme can be applied to any ap-
proximate DFT calculation, we are presently focused on the
infamous self-interaction error inherent in standard GGA
and global hybrid calculations. In earlier work, we found
that many cases of such errors (small anions, underesti-
mated transition barriers, and incorrect dissociation limits)
were in fact density-driven[21, 39]. In such cases, the den-
sity was particularly poorly described, and a simple HF den-
sity was sufficient to drive out the density-driven error. Note
that this does not mean the HF density is especially good.
In the vast majority of cases (the normal ones), the HF
density is worse than the self-consistent DFT density[40],
and HF-DFT is worse than self-consistent DFT, as we have
shown in cases like stretched H+

2 in our previous work[21].
In these normal cases, self-consistent DFT is usually suf-
ficient enough for getting accurate energies despite having
incorrect potentials[21, 41]. But for abnormal systems, the
self-consistent DFT density is especially poor in a very sys-
tematic way, a way that is largely fixed by HF. As we showed
in Ref. 21, an unusually small KS HOMO-LUMO gap, ∆εg,
in the DFT calculation indicates a likely abnormal calcula-
tion. This means the self-consistent solution is unusually
sensitive to small changes in the potential, so that an er-
ror in the XC contribution to that potential can produce an
unusually large effect on the density. In the case of atomic
anions, this becomes extreme: The HOMO is positive if the
basis set is used to hold it in, and zero in the basis-set con-
verged limit[41]. This leads to very poor densities, missing
a significant fraction of an electron, and large density-driven
errors. HF densities are a major improvement in such cases.

C. Simple illustration: Two-electron systems

To illustrate the idea, we consider the simplest possible
case, the He atom. We begin by applying our analysis to
a HF calculation of the system. For two spin-unpolarized
electrons, a HF calculation is equivalent to a KS-DFT cal-
culation with

ẼXC[n] = −U [n]/2. (6)

In fact, the total error in such a calculation is simply the

TABLE I. Energy decomposition of H− and He.

atom method
E ε1s ∆E ∆ED ∆EF

(Hartree) (mHartree)

He
HF -2.86 -0.92 42.07 -0.05 42.12

PBE -2.89 -0.58 10.82 -0.98 11.80

H− HF -0.49 -0.04 41.29 -0.71 42.00
PBE -0.54 -0.00 -10.39 -11.40 1.00

FIG. 2. Radial densities (solid line) and KS potentials (dashed
line) of He evaluated with various methods. All values are
in atomic units. An atomic DFT code was used for the
calculations[42].

(quantum-chemical) definition[43] of the negative of the
correlation energy:

∆E = EHF[nHF]− E[n] = −EC. (7)

In Table I, we list the different errors in HF and PBE calcu-
lations, for both He and H−. We see that, for HF applied
to He, the density-driven error is minuscule (0.05 mH), i.e.,
about 0.1% of the functional error. This says that, for this
problem, the HF density is extremely accurate, and essen-
tially all the error comes from the missing correlation energy.
Such a calculation could be considered ultra-normal.

Next, we repeat the analysis with the PBE
approximation[44]. Here the total error is smaller
(about 11 mH), and the density-driven error is -1 mH.
Because this is still only of order 10%, this remains a
normal calculation, just like the HF calculation. But in Fig.
2, we show the corresponding densities and KS potentials
for the PBE and HF calculation. Although the densities
are identical to the eye, we see that the KS potential of
the PBE calculation is far too shallow. This is typical
of all approximate DFT calculations, and leads to KS
eigenvalues that are far too shallow(-0.58 eV instead of
-0.903 eV). Nevertheless, we emphasize that these are
normal calculations, and the error in the potential produces
very little error in the density, and so relatively small
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density-driven errors. We also emphasize that normality
(or otherwise) is a characteristic of a particular calculation
(i.e., the system and the approximation together).

FIG. 3. Same as Fig. 2, but for H−.

Now we repeat this exercise for the H− ion. It is often
said that H− is ‘correlation bound’, meaning that in HF the-
ory, H− is not stable. In a HF calculation, the ground-state
energy of H is lower than that of H−. Nonetheless, we can
still converge the calculation and obtain the ground-state
energy. The correlation energy remains about the same,
but the density-driven error is much larger. In Fig. 3, we
can see the error in the density by eye. Nonetheless, this
calculation is also normal, with a density-driven error that
is only about 3% of the total. It is the functional error that
makes H− correlation bound.

A very different story is seen for the PBE calculation on
the same system. In fact, only by allowing a fraction of an
electron (about 0.3) to escape the system can the calcu-
lation be properly converged at all[38]. Here the density-
driven error is more than 10 times larger than the magnitude
of the functional error. The density itself is very dramati-
cally different from the exact one, and the PBE KS poten-
tial is not only too shallow, but is actually positive, and the
eigenvalue is exactly zero. This is a very abnormal calcu-
lation. Evaluation of the PBE approximation on the exact
density removes the density-driven error, and so drops the
total energy error by an order of magnitude. Even using the
HF density is sufficient to produce a much highly accurate
electron affinity of H[41].

We end this section by noting that the functional errors
and density-driven errors have opposite signs. Thus, in a
normal calculation, application of the approximate func-
tional on the exact density will increase the energy error
(albeit only slightly). We have found this in all our calcula-
tions so far, which suggests this is typical behavior. Thus we
do not recommend universally using more accurate densities
than the self-consistent density. Only when a calculation is
abnormal do we suggest such a procedure.

D. History

In the early days of DFT, it was often easier to use a
HF code to find densities and evaluate XC approximations
on those densities, again because such calculations were
assumed to be normal[45, 46]. When DFT began to be-
come popular in chemical applications in the early 1990’s,
this mode of testing approximations, called HF-DFT, was
used in calculations[47, 48]. But very quickly, the compu-
tational and conceptual advantages of self-consistency led
to self-consistent DFT calculations. Moreover, the HF-DFT
results were not systematically compared to self-consistent
DFT calculations, except in some pioneering works which
suggested that in difficult cases, the HF-DFT may yield
more accurate answers[49]. The present paper may be con-
sidered as a fuller exploration and quantification of those
early results.

E. Context

What does this analysis say about the many attempts to
improve energetics in other ways, such as ab initio DFT[33],
random-phase approximation (RPA) [34, 35], density-matrix
functionals, etc? Our analysis explains several key features.
The first is that, despite having very wrong-looking XC po-
tentials, and hence bad KS potentials, the effect of these
errors on the energy via the density is minimal (a more de-
tailed explanation is given in Ref. 50). Thus despite legions
of papers reporting the very incorrect energy eigenvalues
of KS potentials with approximate functionals, especially
the highest occupied one which, for the exact functional,
matches the negative of the ionization potential, DFT with
these approximations continues to be very heavily used, be-
cause the energetics are unaffected.

Second, we now have a tool for quantifying the energetic
error due to the density error. This allows us to ask ques-
tions such as when do we need to improve the density, in
order to improve the energy. For example, DFT calculations
using so-called exact exchange (EXX) have much more ac-
curate KS potentials than those of standard approximations,
yet usually worse energetics. This is because their functional
errors usually outweigh the reduction in the density-driven
error. Obviously, our present answer is a purely pragmatic
one. In specific circumstances, the density becomes suffi-
ciently poor as to be the major source of error. This shows
that only in certain circumstances does this problem need to
be addressed, and if ways could be found to avoid the poor
self-consistent densities in such cases, a variety of apparent
DFT errors would be avoided.

3. HO·CL− COMPLEX

We begin with the PES of the HO·Cl− complex. The PES
was scanned by changing the Cl-O distance (R) and Cl-O-H
angle (θ), as indicated in Fig. 4(a). The O-H bond length
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FIG. 4. PES of HO·Cl− with various methods, using the AVTZ basis set. X marks the global minimum of each PES.

was fixed at 1.0 Å. We performed single-point energy cal-
culations with DFT, HF-DFT, and coupled-cluster method
(CCSD(T)) on each geometry. We used GGA functionals
(PBE[44] and BLYP[45, 51]), hybrid functionals (PBE0[52]
and B3LYP[14]) and a double-hybrid functional with empiri-
cal dispersion correction (B2PLYP-D)[53, 54]. We did these
both in the gas phase and with implicit solvent. For im-
plicit solvent calculations, we use the conductor-like screen-
ing model (COSMO)[55] within the Turbomole suite[56].
We used Dunning’s augmented correlation-consistent basis
sets with X zeta functions (aug-cc-pVXZ, X = 2-3, denoted
as AVXZ for simplicity from now on)[57, 58].

A. Density functional approximation

Contour plots of the HO·Cl− complex PES evaluated with
various methods are shown in Fig. 4. For this simple com-
plex, we compare DFT results with CCSD(T), which we take
as a benchmark. We notice several drastic failures of DFT
approximation in these calculations. The worst qualitative
failure is that the minimum of the GGA PES is not at 0◦,
but is closer to 30◦. This is an incorrect hemi-bonding ar-
rangement, attributed to the strong self-interaction error of
the extra electron in the literature[8, 16, 17]. We also note
that the contours of the PES are quite incorrect in shape

everywhere in the plane we have plotted. Finally, the GGA
PES is too negative overall (blue everywhere) indicating it
is essentially useless for performing AIMD simulations of
anions. While PBE is very popular for many materials sim-
ulations and static quantum chemical calculations, in fact,
most AIMD simulations do not use PBE but other GGA’s
instead[59]. This is because some key attributes of ther-
mal simulations of water are incorrectly described by PBE.
A popular alternative is BLYP, even though this is rarely
used in regular quantum chemical calculations (unlike its
hybrid off-spring, B3LYP). But a glance at Fig. 4 (c) shows
that BLYP is almost identical to PBE for this purpose, and
suffers all the same difficulties.

On the other hand, hybrid density functionals, which add
some fraction of HF to the GGA form, usually improve
energetics[60] and partially correct self-interaction error. So
in Fig. 4 (e) and (f) we plot the results with PBE0 and with
B3LYP, which is the most popular functional in quantum
chemistry. We see that indeed there is great improvement.
The minimum is now correctly at alignment, the surfaces
are not entirely blue, and the shape is roughly correct.

As we have shown in Fig. 1, the results by evaluating
DFT energies on HF densities are striking. In every case, we
get essentially identical results throughout the plane of the
PES. All minima are in the correct locations, no curves are
too blue, and all the details are correct. The results are so
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consistent that we can draw several important conclusions.

• Such good agreement confirms the theory behind DC-
DFT. All these DFT calculations are abnormal, and
the error is greatly reduced by using a better density.
It also confirms that the HF density is sufficiently
more accurate than the self-consistent DFT density
for these calculations to produce much more accurate
energies.

• For this problem, we no longer need the benchmark
defined by CCSD(T). The extreme level of consistency
between so many different DFT approximations imply
that all such calculations are yielding a very accurate
answer.

• While the hybrid functionals definitely improve over
the GGA’s, the primary effect is the improvement in
the self-consistent density due to the HF component
in the energy. In fact, evaluated on a sufficiently accu-
rate density, there is no need to use a hybrid functional
(but of course, finding the HF density is relatively ex-
pensive in AIMD calculations).

FIG. 5. KS HOMO-LUMO gap, ∆εg, of HO·Cl− complex for
several approximate functionals.

Next we consider the gap in the approximate self-
consistent KS calculations. Part of the DC-DFT theory is
that an abnormal system should have an unusually small KS
gap, suggesting that its density is unusually inaccurate[21].
Fig. 5 shows ∆εg for the HO·Cl− complex. Each point
corresponds to the energy minimum of each θ, i.e., using R
that gives the lowest binding energy for given θ. Since we
scanned R = 2.5 ∼ 4.5 Å for calculations, we excluded θ >
70◦ from this figure where the energy minimum was located
at R = 2.5 Å or R = 4.5Å. The GGA methods clearly have
small ∆εg (less than 1 eV) which is consistent with the large
density-driven error in these methods. In the case of hybrid
methods, the ∆εg is a mixture of a HF gap and a KS gap
rather than pure KS gap, so it may not be as good as an
indicator for density-driven errors. The hybrid ∆εg are not
as small as in GGA, but still less than 2 eV, which explains

the moderate density-driven error compared to GGA meth-
ods. As some DFT calculations with ∆εg even as high as
2.5 eV have large density-driven error[21], calculations with
∆εg below 2 eV should be suspected of being abnormal.

To gain more insight and quantitative understanding, we
show energy curves along R = 3.0 Å in Fig. 6. The binding
energy Eb is defined as Eb = E[HO · Cl−] − (E[·OH] +
E[Cl−]), where E[HO · Cl−], E[·OH], and E[Cl−] is the
energy of HO·Cl− complex, OH radical, and Cl− anion re-
spectively. We see very clear patterns. In Fig. 6(a), the
GGA’s (blue and green) produce incorrect minima at θ =
20◦. Hybrid methods (red and orange) are much more accu-
rate near the minimum, but show increasing error as θ gets
larger. On the other hand, in Fig. 6(b), all the GGA and
hybrid curves line up almost perfectly, once evaluated on
HF densities. The small remaining deviation among them
is near the minimum, where the PBE methods (PBE and
PBE0) are most accurate. In any case, all are slightly shifted
above the accurate CCSD(T) curve.

Finally, we decompose the energy error into density-driven
and functional errors for both the GGAs and hybrids in Fig.
6(c). GGA methods show large density-driven error for all
regions, maximizing at θ = 130 ∼ 140◦, while hybrid meth-
ods have less but still significant density-driven error max-
imizing at θ = 120 ∼ 130◦. Functional errors stay almost
constant for every θ. The evaluated density changes as the
geometry changes and the functional used is left unchanged,
resulting in this independence of functional error to geome-
try.

B. Basis sets

We have also calculated PES for both PBE and B3LYP,
self consistently and in HF-DFT, using a smaller basis,
namely, AVDZ. These are qualitatively and quantitatively
almost identical to those with AVTZ, showing basis set con-
vergence, and that AVDZ may be sufficient for most pur-
poses for these calculations. This is illustrated in the energy
error decomposition for PBE in Fig. 7(a), where the shifts
from one basis to the next are tiny compared to all other
energy error contributions. The ∆εg of both methods in
Fig. 7(b) are also similar.

C. B2PLYP-D functional

Next, we show what happens when we use a more modern
and more accurate approximate functional for this problem.
The B2PLYP-D functional is a double hybrid functional
combined with empirical dispersion parameters[53, 54]. In
conventional hybrid functionals, HF exchange is added as
the non-local exchange contribution. In addition to this,
B2PLYP-D has the non-local perturbation correction added
for the correlation part by second-order perturbation the-
ory. This is based on ab initio Kohn-Sham perturbation
theory (KS-PT2) by Görling and Levy[61, 62]. Due to the
large Fock exchange fraction, self-interaction error is greatly
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FIG. 6. Binding energy along R = 3.0 Å of HO·Cl−: CCSD(T) (black), PBE (blue), BLYP (green), PBE0 (red), B3LYP
(orange). Panel (a) shows self-consistent results, (b) are HF-DFT results, while (c) shows ∆ED (dot-dash) and ∆EF (dotted).
AVTZ basis set is used in all calculations.

FIG. 7. (a) Decomposition of HO·Cl− complex energy curve along R = 3.0 Å of PBE/AVDZ (light blue) and PBE/AVTZ
(blue) calculations. (b) ∆εg of HO·Cl− complex for each basis set.

reduced, while the side effects of having large Fock ex-
change, such as incomplete static correlation, are alleviated
by the second-order perturbation in the correlation[63]. This
leads to excellent results in many cases[63, 64], including
two-center three-electron bonding in radical complexes[65],
which makes the method a great choice of benchmark for
this work.

In Fig. 8(a), this approximation is doing an excellent job
of reproducing the PES everywhere, on its self-consistent
density! Thus this functional is sufficiently accurate for this
problem that this is a normal calculation. Sure enough,
when we repeat the calculation using the HF density, as
shown in Fig. 8(b), the PES worsens. This strongly suggests
that the B2PLYP-D self-consistent density is better than the
HF density here. Thus this functional can be used for this
problem without modification, so long as the user can afford
to evaluate it, and should not be density corrected. But all
the cruder older approximations yield abnormal results and
need correction.

D. Solvation

D’Auria et al.[8] performed AIMD simulations on the
HO·Cl− complex in explicit water solvents where the min-
imum appeared to be a hemi-bonding structure (θ = 80◦)
with a standard approximate functional BLYP, while self-
interaction corrected BLYP (BLYP-SIC) gave a hydrogen-
bonding minimum structure on θ = 0◦. They then scanned
the gas phase HO·Cl− complex PES along θ = 0◦ and θ =
80◦ based on those observations. As we observed in our gas
phase calculation, the true minimum of gas phase HO·Cl−

complex lies somewhere between θ = 0◦ and 80◦. To look
in more depth at solvation effects, we show contour plots
of HO·Cl− complex in implicit water solvent in Fig. 9.

For both PBE and B3LYP calculations, the minimum is
clearly a hemi-bonding structure with θ = 80◦, in contrast to
the gas phase calculation, where the global minimum was
at θ = 20◦. The Fock exchange in the hybrid functional
indeed has some effect, producing a second local minimum
along the hydrogen-bonding region (θ = 0◦), yet did not
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FIG. 8. PES of HO·Cl− with the (a) B2PLYP-D functional and (b) HF-B2PLYP-D method, with its (c) binding energy curve
along R = 3.0 Å. The AVTZ basis set is used in all calculations. X marks the global minimum of each PES.

FIG. 9. PES of HO·Cl− with implicit water in contour plot. PES is constructed upon (a) PBE, (b) B3LYP, (c) HF-PBE, and
(d) HF-B3LYP scanning results. AVTZ basis set used in all calculations.

correct the overstabilization of the hemi-bonding structure,
resulting in the wrong global minimum.

On the other hand, the sole minimum of both DC-DFT
calculations is the hydrogen-bonding structure for both gas
phase and implicit water calculations. Unlike the self-
consistent DFT results, the PES are quite similar regard-
less of functional, which was a trait also observed in gas
phase PES, and no sort of local minimum is shown in the

hemi-bonding region. This shows the accuracy of DC-DFT
is on par with SIC-DFT with far less computational cost, at
least for non-periodic cases, even in the presence of implicit
solvent. Finally, we would like to mention that there are
some works that show KS-DFT greatly underestimates the
redox potential of OH·/OH− and Cl·/Cl− in explicit solvent
while this is not the case in implicit solvent simulations[12].
Even though it is possible that there is some difference be-
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tween our results and the explicit solvent results, our find-
ings matched the explicit solvent result unlike the OH·/OH−

and Cl·/Cl− case. We believe this discrepancy is due to
the difference between a anion-radical complex and a lone
radical, alleviating the effect of extended states of explicit
solvent.

4. HO·H2O COMPLEX

FIG. 10. (a) Geometrical parameters used in calculations
of HO·H2O complex. (b) Comparison of the PES scan for
HO·H2O complex using various methods. Binding energies
are plotted against χ. Each point is using the minimum en-
ergy geometry for given χ.

To confirm that the performance of DC-DFT is not re-
stricted to anion complexes, we also look at a neutral rad-
ical complex. We evaluated the PES of the HO·H2O com-
plex using DFT, HF-DFT and CCSD(T) with AVTZ basis
set. PBE and BLYP functionals are used in DFT calcula-
tions. We used the same parameters used by Chipman[13],
depicted in Fig. 10(a). The evaluated PES is depicted
in Figs. 10 and 11. The binding energy Eb here is de-
fined as Eb = E[HO·H2O] - ( E[·OH] + E[H2O]), where
E[HO·H2O], E[·OH], and E[H2O] is the energy of the
HO·H2O complex, OH radical, and H2O molecule, respec-
tively.

In Fig. 10, each point indicates the minimum energy
possible for a given χ. We chose to scan between χ = 20◦ to
60◦ and 120◦ to 190◦. The χ = 20◦ to 60◦ region is where
the hemi-bonding geometry was observed in excited state
calculations, while the latter is where the global minimum
of the ground state was discovered[13].

The CCSD(T) results reproduce Chipman’s result, where
the global minimum is in the hydrogen-bonding region of
χ = 140◦. On the other hand, despite having a minimum
in the hydrogen region, both DFT methods clearly have the
global minimum in the hemi-bonding region of χ = 50◦.
Now, as one can expect from the HO·Cl− complex results,
the HF-DFT curve successfully resembles the CCSD(T) re-
sults, having the global minimum in the hydrogen-bonding

region of χ = 150◦. Also CCSD(T) and HF-DFT results
have no minimum in the hemi-bonding region, so the χ
value with the lowest energy is 60◦.

We scanned through R and α on the χ values that give
minimum energy for each method and region in Fig. 11.
Once again, the PES of HF-PBE looks like the PES of
CCSD(T) with an energy shift in both hemi-bonding and
hydrogen-bonding region, while PBE has a clearly different
PES in the hemi-bonding region.

Fig. 12 shows the error decomposition of the PBE calcu-
lation. As expected, calculations in the hemi-bonding region
exert a strong density-driven error. In the hydrogen-bonding
region, the density-driven error is quite small compared to
the hemi-bonding region, but ∆εg in both regions is still
quite small (∆εg = 1.09 eV at the hemi-bonding minimum,
0.97 eV at the hydrogen-bonding minimum).

5. CONCLUSION

Approximate DFT typically suffers from severe self-
interaction error in calculations of odd-electron radical
complexes[8, 16]. This work shows that the density correc-
tion in DC-DFT, even using simple HF densities, can often
give more accurate results than DFT using self-consistent
densities in these types of calculations. To explain this in
a systematic way, we showed any approximate calculations
can be classified into one of the two types. In normal cal-
culations, the functional error dominates, while in abnormal
calculations, the density-driven error is larger than the func-
tional error. We illustrated this using simple two-electron
systems, namely H− anion and He atom. Approximate DFT
was abnormal in H− showing severe density-driven errors,
while all other cases were normal. In these normal cases,
the density-driven error was negligible, despite having very
wrong-looking KS potentials. By this analysis, we stressed
that DC-DFT is likely to give better results than approx-
imate DFT with self-consistent densities only for abnor-
mal calculations, and not for normal calculations. We pre-
sented PES’ of an anion radical complex, e.g., the HO·Cl−

complex, using various common approximate functionals in-
cluding GGA functionals and hybrid functionals and even
more modern functionals like B2PLYP-D, with both self-
consistent DFT and DC-DFT. Both GGA and hybrid func-
tionals behaved poorly self consistently and only using the
highly accurate B2PLYP-D self-consistent density was suffi-
cient for getting accurate PES. On the other hand, DC-DFT
gave identical PES’ regardless of the approximate functional
used, and gave correct global minima and PES slopes, show-
ing GGA and hybrid approximate functional calculations are
abnormal calculations. Using the concept introduced from
our previous letter[21], we showed a very small ∆εg can
be used as an indicator of abnormality. We checked the
calculations with different basis sets where we have simi-
lar results for both AVDZ and AVTZ basis set. We also
showed even calculations with implicit solvent have similar
tendencies, where self-consistent GGA and hybrid densities
give poor results, predicting hemi-bonding structures as the
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FIG. 11. PES of HO·H2O with various methods for specific χ values. The upper panels correspond to hemi-bonding structures,
while the lower panels correspond to hydrogen-bonding structures. AVTZ basis set used for all calculations.

global minimum. PES’ evaluated from DC-DFT were once
more identical, independent of the functional used. Finally,
we examined the validity of DC-DFT for neutral radical
complexes by evaluating PES’ of HO·H2O. Self-consistent
DFT predicted the hemi-bonding structure as the global
minimum, while DC-DFT correctly predicted the hydrogen-
bonding structure as the global minimum. These results
and the ∆εg showed the abnormality in these self-consistent
DFT calculations. DC-DFT can be used as a simple cure
of abnormality, i.e., strong density-driven error especially
driven from self-interaction, which has less computational
cost and is free of empirical parameters compared to vari-
ous SIC methods. We must mention the HF density we used
in this work may not be appropriate for all cases, includ-
ing cases with strong spin-contamination[39], or periodic
boundary conditions. Nonetheless, one can use DC-DFT
with any other source of accurate densities in cases where
the HF density is not suited. Additionally, we expect this
method to give promising results for various problems that
are challenging for approximate DFT like reaction barriers
and dissociation[21], when the errors are density-driven.
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FIG. 12. Error decomposition for PBE PES scans of HO·H2O
complex. Each point is using the minimum energy geometry
for given χ.
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