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I. TWO ELECTRON SYSTEMS

To make Fig. 1, we carefully interpolated accurate QMC energies1,2 from Z−1 = 1 to 0,

and repeated this procedure applying PBE to the exact densities to find ∆EF (Z). We also

used Turbomole3 to solve for self-consistent PBE energies and the eigenvalue. For Z ≤ Zc,

the eigenvalue is pinned to 0, and an increasing fraction of an electron escapes. To achieve

self consistency, we decreased the occupation of the orbital from 2 until we find an occupation

at which the total energy converges and the eigenvalue vanishes.

II. HO·H2O COMPLEX
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2.9 140 -0.29 CCSD(T) -0.17 2.8 50 60

2.9 140 -0.25 PBE -0.32 2.5 90 50

2.9 150 -0.22 HF-PBE -0.11 2.9 50 60

FIG. S1. Binding energies in eV of HO·H2O calculated with various methods for (a) hydrogen-

bonding structure and (b) hemi-bonding structure.

PES scan results for HO·H2O complex are shown in Fig. S1. Self-consistent PBE greatly

overstabilizes the hemi bond, resulting in a strong, unphysical hemi-bonding minimum,

∆εPBE
g is less than 1 eV. CCSD(T) and HF-PBE, on the other hand, give the hydrogen-

bonding geometry as the global minimum.
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III. H+
2 DISSOCIATION
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FIG. S2. Binding energy of H+
2 as a function of separation in several calculations, and the PBE

HOMO-LUMO gap.

Dissociation of H+
2 with a standard functional is shown in Fig. S2. We compare self-

consistent calculations with the HF-DFT method and HF method. The HOMO-LUMO gap

(∆εg) is also shown in the figure.

IV. CALCULATION DETAILS

Self-consistent PBE calculation for two electron systems were performed with an aug-cc-

pV6Z basis set5. For all other calculations (e.g. NaCl dissociation, OH radical complexes,

H+
2 dissociation), self-consistent PBE and HF-PBE calculations were performed with an aug-

cc-pVTZ6–8 basis. All calculations mentioned above were performed with the Turbomole3

program. SCF convergence and density convergence criteria of 10−8 were used, and grid size

of 6 were used for PBE calculations.
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