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Kohn-Sham regularizer (KSR) is a differentiable machine learning approach to finding the exchange-
correlation functional in Kohn-Sham density functional theory (DFT) that works for strongly correlated
systems. Here we test KSR for weak correlation. We propose spin-adapted KSR (sKSR) with trainable
local, semilocal, and nonlocal approximations found by minimizing density and total energy loss. We
assess the atoms-to-molecules generalizability by training on one-dimensional (1D) H, He, Li, Be, Be++

and testing on 1D hydrogen chains, LiH, BeH2, and helium hydride complexes. The generalization error
from our semilocal approximation is comparable to other differentiable approaches, but our nonlocal
functional outperforms any existing machine learning functionals, predicting ground-state energies of
test systems with a mean absolute error of 2.7 milli-Hartrees.

Determining the ground-state properties of many-
electron systems is fundamental to molecular modeling
problems in chemical and material sciences. However,
solving the Schrödinger equation explicitly for more than
a few hundred electrons is computationally intractable.
Among several methods of approximation, Kohn-Sham
density functional theory (KS-DFT or simply DFT) [1,
2], a method based on the electron density distribution
rather than the many-electron wave function, provides
chemically useful results with O(N3) scaling for an
N -electron system [3]. DFT is formally exact, but
the exchange-correlation (XC) energy, resulting from
the quantum-mechanical interaction between electrons,
must be approximated in practice. Hundreds of XC
energy functional approximations have been formulated
in the past few decades [4]. Functionals can be
designed non-empirically, for example using physics and
chemical-based intuition and satisfying known exact
constraints [5], or can involve some fitting to reference
data [6]. However, in any approach, these functional
approximations do not yield chemical accuracy in
general, that is, with errors less than 1.6 milli-Hartrees
(mH) in atomic units (or 1 kcal/mol). Improving
the accuracy of XC functional approximations often
incurs additional computational cost in the practical
DFT calculation [7]. However, there is no systematic
way in general to develop and improve XC functional
approximations.

In recent years, machine learning (ML) has been used
to find better DFT approximations. Attempts have
been made to enhance either the speed or accuracy of
DFT. Some used ML techniques to boost computational
efficiency by approximating the non-interacting kinetic
energy without solving the KS equations [8–11]. In an

effort to improve the accuracy of ML-DFT, a significant
leap was achieved by Nagai et al. [12], who used a
neural network (NN) model to approximate the XC
functional and trained it with high accuracy coupled
cluster (CCSD(T)) energies and densities of just three
small molecules, while self-consistently solving the KS
equations. This functional impressively generalized
to 148 small molecules [13] to predict their energies
and densities with accuracies comparable to human-
designed functionals. However, the test set atomization
energies were not chemically accurate. Also, they didn’t
have access to gradient information and were therefore
limited to a gradient-free optimization scheme, which is
inherently slow, often suffers poor convergence issues,
and is difficult to scale to more complex NN models.
In DFT, many useful properties are extracted from

the density, although an XC functional approximation
need not produce accurate densities along with accurate
energies [14]. In KS-DFT, we calculate the density
self-consistently, and there is a nonlinear dependence
of the XC functional on the density. Learning this
relationship requires not only the ground truth mapping
of the functional inputs to outputs but also how the
functional performs in the underlying process. Hence
the use of differentiable programming [15] becomes
more intuitive [16]. With differentiable programming,
conditioning the networks with physical insights becomes
much simpler, and it can further help to ease the process
of training.
Recently, Li et al. [17] made a valuable step in

this direction by considering the entire DFT self-
consistent calculation as a differentiable program. They
implemented an end-to-end differentiable DFT code for
1-dimensional (1D) systems using JAX [18], a library
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that provides differentiation, vectorization, just-in-time
compilation, and other composable transformations of
Python and NumPy programs [19]. They parameterized
the XC functional with an NN which incorporated
non-local information about the density, along with
known physical constraints. The self-consistent KS
calculations were embedded into the training process by
backpropagating the gradients through the KS iterations.
It was dubbed the Kohn-Sham regularizer (KSR). It
could yield chemically accurate energies for uniformly
separated 1D hydrogen chains at any separation by
training on highly accurate energies and densities from
only a few separations.

Following a similar approach, Kasim and Vinko [20]
implemented an end-to-end differentiable DFT code
in 3D for Gaussian-type orbitals and trained local
and semi-local NN-based XC functional approximations,
evaluating performance on small molecules. In another
work, Dick et al. [21] constructed a semilocal XC
functional that was carefully curated to account for
several known exact conditions and pretrained to match
SCAN, a popular meta-GGA functional [22]. While
both of these works explore the generalizability of ML
approximations for weakly correlated molecules with
differentiable DFT codes, they do not incorporate global
information, and their accuracy is limited to that
of human-designed semilocal functionals. A slightly
different approach involves introducing an ML correction
term to a nonempirical or semi-empirical XC functional
within a KS-DFT self-consistent framework [23, 24]. In
such an approach, only a portion of the XC energy is
approximated using ML and the functionals retain the
characteristics of the baseline XC functional used. The
recently proposed ML local hybrid functional, DM21 [25],
addresses spin-symmetry breaking and delocalization
error in DFT functionals. Consequently, it performs
well on several main-group benchmark datasets and
also correctly dissociates molecules. Unlike KSR,
this functional is trained on large datasets of highly
accurate reaction energies (not densities) in the loss
function without explicitly supervising the self-consistent
iterations.

[C3] Li et al. [17] explored the generalizability of KSR
for a few strongly correlated systems with stretched
bonds which is a completely different domain from most
chemical applications of DFT. The aim there was to
generate accurate binding energy curves (all the way to
the dissociation limit) using the entire density (for the
nonlocal approximation called global-KSR), using inputs
at only two separations, for unpolarized hydrogen chains.
The generalizability was in finding the entire bond-
dissociation energy curve of these chains. Moreover, only
the total density was used and not the spin densities.

In the present work, we propose spin-polarized
versions of local, semilocal, and nonlocal XC
functional approximations within a differentiable
spin-DFT implementation of KSR. We modify these
approximations to predict XC energy densities using

spin-densities as feature vectors while optimizing the
NN parameters using total density and energy loss.
Contrary to Ref. [17], we test the KSR approach in
the domain of routine DFT calculations in chemistry,
namely in and around equilibrium bond lengths. We
find the remarkable result that training on energies
and densities of a few atoms (and ions) alone produces
accurate ground-state energies for equilibrium molecules
(very reminiscent of the use of appropriate norms while
avoiding using any covalent bond energies). We train
and test on a variety of different elements, to obtain
the generalizability relevant to chemistry. Almost all
previous work in the chemical domain tests various
approximate functional forms employing the standard
ingredients locally [12, 20, 21]. Our work achieves high
accuracy using the total density and is not limited to a
specific set of human-chosen features.
The practical implementation of DFT involves solving

the Kohn-Sham (KS) equations to calculate the ground-
state electron density,{

−1

2
∇2 + vS[n](r)

}
ϕi(r) = ϵiϕi(r). (1)

The electron density, n(r), is the sum of the probability
density over all occupied one-electron KS orbitals, n(r) =∑

i |ϕi(r)|2. The KS potential, vS[n](r), contains the
external one-body potential, the Hartree potential, and
the XC potentials,

vS[n](r) = v(r) + vH[n](r) + vXC[n](r). (2)

The XC potential is the functional derivative of the XC
energy, EXC[n], with respect to the electron density [2],
vXC[n](r) = δEXC[n](r)/δn(r). We can express EXC[n] in
terms of an XC energy density per electron, ϵXC[n](r):

EXC[n] =

∫
d3r ϵXC[n](r)n(r). (3)

The ground-state energy is calculated from the self-
consistent density by summing the non-interacting
kinetic energy, TS, the external potential energy, V , the
Hartree energy, U , and the XC energy,

E0 = TS[n] + V [n] + U [n] + EXC[n]. (4)

The computational efficiency is also affected by the level
of approximation used for the XC functional [26].
Density matrix renormalization group (DMRG) [27]

can be used to efficiently generate highly accurate
benchmark energies and densities for these 1D analog
systems. We can address such systems using 1D
KS-DFT calculations as well with suitable XC energy
functional approximations, such as the 1D local spin-
density approximation (LSDA) which was constructed
in Ref. 28 from the 1D exponentially repelling uniform
electron gas.
In essence, KSR is a ML-DFT regularization technique

that utilizes a differentiable analog of the standard
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self-consistent DFT computational flow during training
to train a suitable parameterized model for EXC[n] =
EXC,θ[n], where θ are trainable parameters [17]. In
this work, we consider NN-based (neural) XC models,
but KSR as a regularization technique can apply more
broadly to any differentiable model choice. Knowledge
of physical properties and constraints in the exact XC
functional can help guide the construction of a neural
XC approximation. The NN that parameterizes the
XC functional in KSR is carefully curated to account
for a few of the expected behaviors of the exact XC
functional. Nonlocality is facilitated by adding a global
convolution layer in ϵXC,θ[n] to help capture long-range
interactions. The sigmoid linear unit (SiLU or Swish) [29,
30] activation function is used throughout because of
its infinite differentiability. The KSR network is also
complemented with a self-interaction gate (SIG) that
partially cancels the self-interaction error by mixing in
a portion of Hartree energy density to ϵXC.

In Ref. 17 several neural XC functional models were
proposed: a local functional which only depends on the
density at each point (KSR-LDA), a semi-local functional
that uses local and gradient information about each point
(KSR-GGA), and a global functional which utilized the
global convolution layer and the SIG described above
(KSR-global).

A main deficiency of the KSR technique in Ref. 17
is that it does not explicitly account for spin, and
so may not generalize well for spin-polarized systems.
Extending this technique and associated NN models to
spin DFT requires a differentiable framework that can
backpropagate through resulting spin densities. Spin is
often incorporated in the neural XC functional using
relative polarization, ζ, as a feature [12]. For up and
down spin densities, {n↑, n↓}, ζ = (n↑ − n↓)/n. While
ζ can be introduced as an additional input channel to
KSR neural ϵXC, its scale can be very different relative to
n in general. Instead, we use up and down spin densities
as input features, which have similar scales. The usual
models and concepts for KSR can be extended to obtain
a spin-adapted KSR (sKSR).

In sKSR-global, we have a global convolution layer that
takes spin densities as inputs, and the kernel takes the
form:

G (nσ(x), ξp) =
1

2
ξp

∫
dx′nσ(x

′)e−|x−x′|/ξp , (5)

where σ ∈ {↑, ↓} and ξp is a trainable parameter that
represents an interaction scale. To keep the number of
parameters comparable with KSR-global, we input each
spin density to a global convolution layer consisting of
8 channels. We then concatenate the output on the
channel dimension and input it to the latter convolution
layers. For weakly correlated systems and greater
generalizability, this approximation does not include
any SIG. The rest of the network architecture is kept
unchanged. sKSR-LDA and sKSR-GGA approximations
to XC are devoid of global information. For sKSR-LDA,

two convolution layers with filter size one and 8 channels
map the spin-density to ϵXC at the same spatial point
x. In sKSR-GGA, we specify the total density gradient
explicitly as an additional input channel along with the
spin-densities. Instead of using one convolution layer
with filter size three, we use three convolution layers
with filter size one and 8 channels each. The rest of
the sKSR-LDA and sKSR-GGA architectures are also
similar to KSR-LDA and KSR-GGA. Fig. 1(a) shows
the comparative network structures for all three types
of approximations. In all cases, the resulting ϵXC is
symmetrized with respect to the input of the up and
down densities:

ϵsymm
XC [n↑, n↓] =

1

2

[
ϵXC[n↑, n↓] + ϵXC[n↓, n↑]

]
. (6)

Our approximation replaces the ϵXC in a spin-polarized
self-consistent KS-DFT framework. For spin-polarized
systems we perform the above spin-unrestricted KS-DFT
procedure, however for unpolarized systems we use spin-
restricted KS-DFT to preserve spin-symmetry. Fig. 1(b)
shows the conventional computational flow and the flow
of the gradients during the self-consistent optimization.
To train the neural XC functional, we use the following
loss function:

L(θ) =Etrain

[
(EsKSR − EDMRG)2/Ne

]︸ ︷︷ ︸
energy lossLE

+Etrain

[∫
dx (nsKSR − nDMRG)2/Ne

]
︸ ︷︷ ︸

density lossLn

, (7)

where EsKSR and nsKSR are the converged total energy
and total density obtained from the neural XC functional
approximations, and EDMRG and nDMRG are the exact
ground-state electronic energy and total density for each
of the test systems. The total loss is evaluated as an
expectation over training examples, where Ne is the
number of electrons for a given training example. All
quantities are in atomic units. We only consider the
converged energy in the energy loss term rather than
the energy trajectory throughout KS iterations, which
was explored in Ref. 17. In this work we find that
the self-consistent calculations converge quickly for the
small atoms and ions used in training, and incorporating
energy loss from each KS iteration minimally affects the
efficiency of the optimization process. The gradients are
calculated based on the total loss with respect to the
parameters, θ, through automatic differentiation. They
are back-propagated across the self-consistent cycles and
the parameters of the neural XC functionals are updated
until the total loss is minimized.
As a simple consistency test, we pose the question:

can KSR learn human-designed functionals from their
observable results? Here we specifically investigate
whether sKSR-LDA can learn the relatively simple but
general human-designed 1D LSDA XC functional. Since
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(a) (b)

FIG. 1. (a) sKSR-global, sKSR-LDA and sKSR-GGA architectures to calculate ϵXC from spin-densities. (b) sKSR –
differentiable KS-DFT with spin-polarization. Black arrows refer to the conventional computational flow. The gradients
flow along red-dashed arrows to minimize the loss during training.

our sKSR-LDA model utilizes hundreds of parameters,
it is unclear whether training on just a few LSDA
generated DFT results will yield a neural XC model that
matches LSDA. We find that by training sKSR-LDA on
LSDA-generated He and Li++, we recover the LSDA
XC functional almost exactly for unpolarized and fully
polarized systems, see Figure 2. The sKSR-LDA model
deviates at the high-density limit (low rS limit) due to
the limitation that our training densities only consist of
rS > 0.5.

0 2 4 6 8 10
rs

0.6

0.5

0.4

0.3

0.2

0.1

XC
(r s

)

sKSR LDA
XC (rs, = 0)
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FIG. 2. sKSR-LDA trained on 1D LSDA-calculated Li++

and He energies and densities. Here rS = 1/2n and ϵunifXC

corresponds to the XC energy density of the 1D uniform
electron gas [28].

Next, we assess generalizability by training sKSR
models using a few 1D atomic systems and testing on

TABLE I. Training, validation and test sets for
generalizability experiment. The molecules in the test
set refer to the relaxed structures.

Training Validation Testing

H, He, Li Be+ H2, H3, H4, H
+
2 , H

+
3

Be, Be++ LiH, BeH2, HeH+

H-He-He-H2+

He-H-H-He2+

unseen 1D molecular systems. We trained all three
models on DMRG energies and densities of H, He, Li,
Be, and Be++ and validated on Be+. For training
and validation details, see Supporting Information. The
trained model was later used to calculate the properties
of several molecules in their equilibrium ground-state or
relaxed form (see Table I). The errors in total energies,
ionization, and atomization energies, as well as the
average density losses for all three neural XC functional
approximations, are reported in Table II. Compared to
LSDA, the mean absolute error (MAE) in sKSR-LDA
calculated energies is reduced by a factor of three. On the
other hand, sKSR-global is an order of magnitude higher
in accuracy and yields total energies with an MAE of 2.7
mH, not so far from the chemical accuracy limit of 1.6
mH. The cumulative MAEs for the training, validation
and test datasets are reported in Supporting Information.

The importance of spin in sKSR can be seen by
comparing results with the original KSR-global model
from Ref. [17]. For a valid comparison, we consider
KSR-global without the SIG and train it with the sets
from Table. I, without adding the energy trajectory loss.
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TABLE II. Total energy errors (in mH), density losses (in 10−4 Bohr−1), and errors in ionization potentials for atoms and
atomization energies in molecules (in mH) calculated using uniform gas LSDA [28], sKSR-LDA, sKSR-GGA, and sKSR-global
respectively, for the training, validation, and test sets in Table I.

Dataset Symbol LSDA sKSR-LDA sKSR-GGA sKSR-global

∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP

Training H 26.6 5.35 -26.6 4.51 0.55 -4.50 4.49 0.31 -4.49 0.85 0.33 -0.85

He 41.4 2.89 -8.46 20.2 0.63 -21.3 7.49 0.24 -10.2 -0.69 0.03 0.62

Li 33.7 5.02 16.6 -11.5 0.40 37.4 -12.0 1.37 20.2 -2.37 0.12 2.79

Be 24.5 1.18 21.4 -23.5 1.03 12.1 -2.70 0.65 -5.29 1.16 0.07 -1.23

Be++ 55.3 0.75 -18.1 29.2 0.16 -46.1 6.55 0.49 -34.1 0.41 0.02 -1.43

MAE 36.3 3.04 18.3 17.8 0.56 24.3 6.65 0.16 14.8 1.10 0.12 1.38

Validation Be+ 46.0 1.95 9.37 -11.3 0.12 40.5 -7.99 0.61 14.5 -0.07 0.03 0.49

∆AE ∆AE ∆AE ∆AE

Test H2 34.04 1.82 19.2 19.5 0.35 -10.5 6.83 1.99 2.14 -0.73 0.07 2.43

H3 35.6 1.93 44.3 0.45 0.21 13.1 -3.07 5.57 16.5 -3.56 3.22 6.11

H4 32.3 3.82 74.3 7.66 1.59 10.4 -9.34 4.18 27.3 2.87 1.46 0.53

H+
2 19.6 6.68 7.09 2.78 0.71 1.73 1.68 1.71 2.81 -1.94 1.04 2.79

H+
3 31.2 0.78 22.1 20.6 1.87 -11.6 15.4 11.5 -6.44 -0.40 0.47 2.09

LiH 30.9 3.72 29.5 -8.55 2.47 1.53 -16.6 3.86 9.14 -4.38 0.66 2.86

BeH2 32.8 7.49 45.0 -27.8 5.5 13.4 -34.6 3.09 40.9 -5.07 1.29 7.93

HeH+ 37.3 1.71 4.18 18.8 0.17 1.40 5.18 0.59 2.31 -1.60 0.13 0.91

H-He-He-H2+ 36.7 14.7 46.1 5.00 6.00 35.5 -9.04 2.50 24.0 5.39 4.52 -6.77

He-H-H-He2+ 46.1 7.40 36.7 19.9 6.48 20.6 4.35 4.75 10.6 0.79 5.47 -2.18

MAE 33.6 5.00 32.9 13.1 2.53 12.0 10.6 3.98 14.2 2.67 1.83 3.46

The MAE in KSR-global predictions for total energies
of the test molecules is 10.02 mH, comparable to sKSR-
GGA, but much worse than sKSR-global (see Table. A2
in Supporting Information). sKSR-global also converges
more quickly than KSR-global, reaching lower training
losses with fewer training steps (see Fig. A7 in Supporting
Information).

The size of our dataset is practically limited by
the chemical space provided by 1D and the associated
exponential interaction. Even though we are dealing with
a much smaller dataset, we trained the sKSR models
on the ground-state energies and densities of 5 atomic
systems only and did not include any molecules, contrary
to results in Ref. 12 and Ref. 20 which train on derived
quantities, such as atomization and ionization energies,
and include molecules in training.

Using sKSR-global, the predicted densities of each
molecule have little noticeable error, see Fig. 3(a). The
corresponding XC potentials are shown in Fig. 3(b).
For all unpolarized systems, we run restricted KS
calculations, and the up and down XC potentials match,
while for polarized systems (Li, Be+, H+

2 , and H3 only)
we run unrestricted KS calculations. The sKSR-LDA
and sKSR-GGA total densities and XC potentials for
the test set are included in the Supporting Information.
The comparison to exact XC potentials is not expected
to be as precise as potentials are extremely sensitive to
densities. However, for each of these examples, we see

that the sKSR-global XC potential closely mimics the
exact XC potential, even though we did not include XC
potentials in the training. Furthermore, seemingly large
deviations in the XC potentials can result in similar
resulting densities. For example, this can be seen in
the case of BeH2 where the XC potentials are noticeably
different but the resulting densities are very similar. The
KS potentials are reasonably accurate for the test set
(see Supporting Information). Note that similar to the
exact XC potentials, the sKSR-global XC potentials are
smooth, due to the use of a smooth activation function.

We can use these potentials to validate the
known theoretical properties of the exact XC
potentials for different test systems, compare with
other XC approximations, and utilize them to
introduce corrections to existing local and semilocal
approximations. Similarly, sKSR-global can also produce
quite accurate spin-densities even though we did not
incorporate spin-densities in the loss function while
training the XC functionals (see Fig. A1 in Supporting
Information).

A very interesting question is: how does our weakly-
correlated sKSR behave for strongly-correlated systems?
We answer this by studying the paradigm case of the
H2 binding curve in Fig. 4, where the sKSR-global
curve remains highly accurate up to at least 3 Bohr.
Just as with all single-particle methods, the restricted
calculation yields energy that is far too high in the
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(a)

(b)

FIG. 3. (a) The densities obtained using sKSR-global (orange dashes) and the exact ground-state densities (gray), (b) average
XC potentials calculated from sKSR-global approximation (red dashes) to ϵXC and their exact counterparts calculated with
DMRG (light blue) for the test molecules in Table. I at equilibrium separations. The sKSR potentials are shifted by a constant
for a better comparison with the exact XC potentials. sKSR-global was trained on H, He, Li, Be, and Be++ and validated on
Be+. Note that, in general, these 1D densities and XC potentials can differ even qualitatively from their 3D analogs.

dissociated limit. On the other hand, an unrestricted
calculation, which breaks spin-symmetry beyond about
4 Bohr, does dissociate correctly, but at the price of poor
spin densities and a kink in the binding energy curve.
Fig. A6 in Supporting Information shows analogous
features for sKSR-LDA and sKSR-GGA, and also shows
the accuracy of the total density of the unrestricted
solutions at large separations. Fig. 4 also shows the result
of a KSR-global calculation (i.e., total density only), but
trained just on atoms. While it naturally dissociates
correctly, it is much less accurate. Of course, the KSR-
global of Ref. 17 is chemically accurate for the entire
curve because its training included a stretched bond.

In many cases, the predictability of sKSR can extend
well beyond the equilibrium bond distance. Fig. 5 shows
the complete dissociation energy curve of LiH obtained
from restricted calculation. Near equilibrium, sKSR-
LDA and sKSR-GGA underestimate the binding energy
but perform better than LSDA. As the bond is stretched,
sKSR-GGA and sKSR-LDA quickly deviate from the
expected trajectory. However, sKSR-global performs
well throughout, extending its predictive accuracy well
beyond the equilibrium bond distance. We show the
total density and the XC potential of stretched LiH
at 5.92 Bohr in Fig. 6. LSDA largely overestimates
the total energy of the stretched molecule, but its
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KSR-global
DMRG

FIG. 4. The binding energy curve of H2 molecule calculated
based on the total energy prediction for H2 molecule and the
energy of the individual H atoms. sKSR-global was evaluated
using restricted KS (blue) and unrestricted KS (red dashes)
scheme. The DMRG (black) and KSR-global (green) results
are also shown. All the neural approximations, with and
without spin, are trained on the dataset given in Table. I.

density remains reasonably accurate. The XC potentials
calculated from neural XC functional approximations are
comparable, with sKSR-global closely approximating the
exact behavior. A comparison of the sKSR-global and
the exact total density and XC potential of stretched LiH
with respect to the atomic contributions from Lithium
and Hydrogen is included in the Supporting Information.

FIG. 5. The complete dissociation energy curve of LiH
molecule generated with sKSR-LDA (orange), sKSR-GGA
(green) and sKSR-global(red). The DMRG (black dashes)
and the uniform gas LSDA (blue dashes) results are also
shown. The neural XC functional approximations were
trained and validated on atoms and ions given in Table. I.

The approximate total energy of a molecule can have
two types of error contributions: the error due to the
approximate functional and the error arising from the
self-consistent density [31]. For most XC functionals, the
total density calculated from the self-consistent solution

(a)

(b)

FIG. 6. (a) The total density and (b) the average XC
potentials of LiH at a bond-distance of 5.92 Bohr calculated
with the three neural XC functionals as well as uniform-
gas LSDA. The exact (DMRG) average XC potentials are
included for comparison.

of the KS equations works as an excellent approximation
to the exact density for most systems. Hence, the
density-driven error is often negligible. However,
some approximations can have significant density-driven
errors [32]. For our test molecules, the errors in the self-
consistent densities were trivial and consequently had
minimal impacts on the atomization energy errors. The
functional and density-driven errors in our neural XC
functional approximations are reported for the hydrogen
molecule in the supplementary information section.

We found that sKSR-global achieves remarkable
accuracy and generalization in a very data-efficient
manner by including the self-consistent KS equations
into the training. sKSR-global predicts the ground-
state energy of ten unseen molecules in equilibrium
with a mean absolute error of 2.7 mH (∼1.7 kcal/mol)
when trained with just five atoms and ions. Hence,
a nonlocal XC functional approximation trained on
atomic energies and densities can generate predictions for
weakly-correlated molecules with near chemical accuracy.
An extension of this work can lead to an ML functional
that is applicable across a broad chemical spectrum
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without using an exceedingly large training set. The end-
to-end differentiable implementation also ensures smooth
and reasonable XC potentials. In addition, sKSR-global
trained on atoms can adequately describe a molecule with
a stretched bond. Combining differentiable programming
with inherent physical intuition thus takes us one step
closer to a generalizable, chemically accurate ML XC
functional.

The application of the current sKSR algorithm is
limited to 1D systems and our test set does not include
real 3D molecules. However, the methods presented
are transferable to 3D and we anticipate that the
characteristic performance is not unique to 1D systems,
as these systems tend to mimic their 3D analogs [33].
The low-dimensional examples are useful for quick and
rigorous assessment of the quality of an approximation.
Besides, the predictions from the local and semilocal
approximation explored in our study are consistent with
the 3D differentiable formulations in Ref 20 and Ref. 21.
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