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Below we provide supplemental figures accompanying the main text, including various plots depicting
the accuracy of the locally-thermal Perdew–Burke–Ernzerhof (ltPBE) ansatz relative to conditional-
probability density functional theory (CP-DFT) data, and its satisfaction of two exact conditions. When
useful, we make comparisons to other thermal generalized gradient approximations in the literature,
namely the one proposed by Karasiev et al. (referred to here as KDT16).
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1. CP-DFT RESULTS

1.1. XC Enhancement Factors

All CP-DFT XC enhancement factor data has been

included as .csv files for systems of various densities,

gradients, and temperatures. We include files for

unpolarized systems: rS = 0.1, 0.5, 1, 2, 4, 10 for 0 
s  5 and 0.05  t  4; and for fully polarized systems:

rS = 0.1, 0.5, 1, 2, 4 for 0  s  3 and 0.05  t  4.
The ltPBE approximation is depicted alongside CP-DFT

data in the following figures, showing its performance for

each density at select reduced temperatures. Fig. S1 depicts

the results for unpolarized data, while Fig. S2 depicts the

results for fully polarized data.

1.2. XC Hole Densities

Below we depict various plots illustrating the

temperature-dependent XC hole densities output from

the CP-DFT procedure outlined in the main text. Fig. S3

depicts the results for unpolarized systems, while Fig. S4

depicts the results for fully polarized systems. In all cases,

the CP-DFT procedure produces an XC hole density with

the same on-top value and energy as PBE as t ! 0.
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1.2 XC Hole Densities Supp. Mat. for “GGA Made Thermal”

FIG. S1. Grid of plots depicting temperature-dependent

XC enhancement factors as functions of the dimensionless

gradient s for unpolarized systems of various rS values. The

data points represent CP-DFT calculations connected by solid

lines, while the ltPBE approximation (Eq. 1) is represented

by the dashed curves. The corresponding percent deviation of

the ltPBE ansatz is included, largely found to be  8% (but

often much less) in the tested temperature range.

FIG. S2. Grid of plots depicting temperature-dependent

XC enhancement factors as functions of the dimensionless

gradient s for fully polarized systems of various rS values. The

data points represent CP-DFT calculations connected by solid

lines, while the ltPBE approximation (Eq. 1) is represented

by the dashed curves. The corresponding percent deviation of

the ltPBE ansatz is included, largely found to be  8% (but

often much less) in the tested temperature range.
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Supp. Mat. for “GGA Made Thermal”

FIG. S3. Grid of plots depicting temperature-dependent XC hole densities for unpolarized systems of various rS, s, and t. We

use black to denote the ground-state PBE XC hole density, while the CP-DFT XC hole at di↵erent reduced temperatures is

depicted in various colors.
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Supp. Mat. for “GGA Made Thermal”

FIG. S4. Grid of plots depicting temperature-dependent XC hole densities for fully polarized systems of various rS, s, and t.
We use black to denote the ground-state PBE XC hole density, while the CP-DFT XC hole at di↵erent reduced temperatures

is depicted in various colors.
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1.2 XC Hole Densities Supp. Mat. for “GGA Made Thermal”

2. EXACT CONDITIONS AT NONZERO
TEMPERATURE

2.1. Coordinate Scaling Inequality

Here we provide additional plots depicting the satisfaction

of the thermal coordinate scaling inequality (Eq. 8 of

the main text) by ltPBE, and violation by KDT16. In

Fig. S5 we plot FXC curves at fixed values of t for ltPBE

and KDT16, illustrating the di↵erences between the two

approximations. The ltPBE enhancement factor, having

inherited the curvature of the ground-state FPBE
XC , naturally

satisfies this exact condition at all temperatures. In contrast

the KDT16 approximation only satisfies this exact condition

when t ! 0, where it recreates PBE, but violates it as

the temperature is increased into the warm dense matter

regime.

FIG. S5. Temperature-dependent XC enhancement factors

plotted as functions of the dimensionless gradient s for

unpolarized systems of various rS values, with each row having

a fixed reduced temperature t. The left column depicts the

ltPBE approximation, while the right column depicts KDT16.

The thermal coordinate scaling inequality mandates these

curves not cross for any t.

2.2. Concavity Condition

Here we show various contour plots depicting the thermal

concavity condition (Eq. 11 of the main text) for ltPBE

and KDT16 at di↵erent s values. Looking at Fig. S6, it is

clear that the ltPBE approximation satisfies this condition,

regardless of the value of s, due to its expression always

being negative. It is also clear that KDT16 satisfies

the concavity condition as s ! 0 (where it reduces to

thermal LDA), but violates the condition as s is increased.

Noting that the density of a system scales according to

n�(r) = �3n(�r), we observe violations for KDT16 for both

moderate/high densities with nonzero s in the warm dense

matter regime.

FIG. S6. Contours of the thermal concavity condition

inequality (Eq. 11) with initial density n = 1. Here we show

both the ltPBE (top) and KDT16 (bottom) approximations,

confirming that the condition is satisfied by ltPBE, but is

violated by KDT16 (red denotes positive).
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