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Abstract

The theory of density-corrected density functional theory (DC-DFT) separates the error in any approximate
DFT calculation into a functional-driven contribution and a density-driven error. Practical DC-DFT calculations
often use the Hartree-Fock density instead of a self-consistent DFT density–a method known as HF-DFT–and
reduce energetic errors in several classes of chemical problems. Using principles of DC-DFT, we illustrate several
pitfalls when analyzing HF-DFT errors, including an interpolator for density-driven errors that is chronically
inaccurate, using proxies instead of accurate densities, and conflating common measures of density errors with
those of DC-DFT. We report ideal density-driven errors for one- and two-electron systems, where we can calculate
most properties exactly, illustrating these problems. A simple analysis of benchmarking data shows that proxy
densities proposed in recent literature are too inaccurate to be useful in DC-DFT. Despite recent claims to the
contrary, we show that the success of DC-DFT for barrier heights does not rely on a cancellation of errors, and it
is to be expected that HF-DFT errors can be smaller than functional errors, but we fall short of explaining why
the improvement is so quantitatively systematic.

I. Introduction

Kohn-Sham Density Functional Theory (KS-DFT)1 is a widely
used approach in computational chemistry due to its balance of
accuracy and computational efficiency. Density-corrected DFT
(DC-DFT)2 is a general methodology for separating errors in
any DFT calculation into two well-defined contributions: a
functional error and a density-driven error. Most DFT errors
are dominated by functional errors, so the density does not
matter. But many specific classes of DFT calculations have
been found to have significant density-driven errors. In such
cases, the simple expedient of using the Hartree-Fock (HF)3

density in place of the self-consistent DFT density–referred to
as HF-DFT–often reduces the error, sometimes quite substan-
tially. In fact, the overall performance of the weighted total
mean absolute deviation (WTMAD-2) measure of error on
the GMTKN554 database (general-main group thermochem-
istry, kinetics, and noncovalent interactions) of many standard
functionals is significantly improved by use of HF densities5–9,
when the principles of DC-DFT are applied judiciously.

Such practical successes should not obscure the generality
and power of DC-DFT analysis. DC-DFT does not rely on
HF densities. It applies to every self-consistent KS calcula-
tion ever run. It provides a singular measure of density error
that uniquely quantifies the error in terms of its energetic

∗esim@yonsei.ac.kr

consequences (if errors in densities have negligible energetic
consequences, why worry about them?). Density-driven errors
overlap with, but are not identical to, delocalization errors.

After all, stretched H+
2 is the prototype self-interaction

error,10 but those are functional-driven errors for standard
semilocal approximations, not density-driven. The prototypical
density-driven error is anions, where a truly self-consistent
KS calculation with a semilocal approximation typically loses
about 0.3 electrons.11

Here, the functional error refers to the numerical deviation
obtained by evaluating the approximate functional on the exact
density, whereas the density-driven error denotes the error
arising from the use of the approximate density. The density
error quantifies the deviation of the approximate density itself
from the exact density, and the functional-driven error more
broadly describes the intrinsic inaccuracy of the approximate
functional.

The obvious explanation for the success of DC-DFT us-
ing HF densities in density-sensitive problems is that (a) the
HF density is physically more sound and much closer to the
exact density than the self-consistent DFT density, and (b)
the removal of density-driven errors substantially reduces the
overall error. This behavior has been demonstrated in sev-
eral simple cases.12 However, several recent papers13–16 have
questioned this explanation, especially in the high-profile case
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of transition-state barriers, water clusters, and halogen and
chalcogen complexes. These papers argue that the improved
energy of HF-DFT is due to the use of an overlocalized HF
density, which changes the sign of the density-driven error of
the delocalized approximate functional, causing cancellation
with the functional error. In particular, it would appear that
the density-driven errors of HF densities are much greater
than those of self-consistent densities. This has led to various
speculations and explanations as to the source of the highly
systematic error reductions in HF-DFT.

The current paper shows that these analyses are flawed, and
so illustrates the importance of the exact theory of DC-DFT.
We report the first calculations of ideal density-driven errors,
for which the density-driven errors of DC-DFT are pragmatic
approximations. These ideal density-driven errors are extremely
difficult to calculate in general, but we have managed in a
few one- and two-electron cases. These few examples demon-
strate that density-driven errors on self-consistent densities
are generally good approximations to ideal density-driven er-
rors, but that the density-driven error interpolator, used in
all the ’cancellation’ papers, is entirely unreliable. There is
no credible evidence that HF-DFT has larger density-driven
errors than those of self-consistent densities. In these special
cases, we can actually find the self-consistent density of an
inconsistent evaluation, and show that it is better than the
original self-consistent density.

Another bad habit that has crept into the literature is the
use of proxy densities instead of accurate benchmark densities.
We demonstrate that these are nowhere near accurate enough
to usefully measure typical density-driven errors.

Lastly, we explain why there is little connection between
the errors reported in DC-DFT and various ’natural’ measures,
such as L2 norms, both because DC-DFT is applied to energy
differences, and because of the subtleties of using energy
functionals to quantify density errors.

We use both the principles and the practical results of these
calculations to analyze recent papers that suggest that HF-DFT
relies on an unconventional cancellation of errors. Our analysis
strongly suggests that the estimates of the density-driven error
of HF-DFT are highly inaccurate and a gross overestimate.
Because the density-driven error of HF-DFT (distinct from the
HF density itself) is expected to be much smaller than the
functional error, the observed accuracy cannot be attributed to
any fortuitous error cancellation. From a DC-DFT perspective,
we also provide an indirect explanation of why the HF density
can yield a lower energy error than the exact density. Rumors
of the death of DC-DFT appear to have been exaggerated.

II. Background

II1. Principles

Most ground-state electronic structure methods are primarily
used to extract Ev, the ground-state energy as a functional
of the one-body potential v(r). Chemical reaction energies
are the differences in energies for two different potentials.
Derivatives with respect to nuclear positions determine forces,
vibrations, and equilibrium geometries. Given its importance,
almost all such methods have been tuned to optimize accuracy
in energies. The Rayleigh-Ritz variational principle states17:

Ev = min
Ψ

⟨Ψ|Ĥv|Ψ⟩ (1)

where the minimization is over all antisymmetric wavefunctions
with N electrons, and Ĥv is the electronic Hamiltonian. In
fact, even the density can (in principle) be extracted directly
from a sequence of such calculations via

nv(r) = δEv

δv(r) (2)

for a given N . A KS-DFT calculation writes the variational
principle in terms of the density:

Ev = min
n

Ev[n] = Ev[nv], (3)

where the minimization is over all (Lieb-allowed18) densities
integrating to N and

Ev[n] = TS[n] + U [n] + EXC[n] +
∫

d3r n(r)v(r). (4)

Here TS is the KS kinetic energy, U the Hartree energy, and
EXC is the exchange-correlation (XC) energy, which is approx-
imated in practical calculations. The self-consistent solution
of the KS equations performs precisely the minimization of
Eq. 3. Moreover, at self-consistency, the KS density is exactly
equal to that of Eq. 2, by construction. In reality, all modern
DFT calculations are spin-density calculations19, but we give
formulas in terms of the total density for simplicity. We also
use energy units of Hartrees for one- and two-electrons systems
and for real systems later use kcal/mol. Distances in Å unless
otherwise noted.

With exact density nv(r) and exact ground-state energy
Ev[nv], the (total) energy error (TE) of any self-consistent
DFT calculation is:

∆Ẽv = Ẽv[ñv] − Ev[nv], (5)

where ñv(r) is the self-consistent density of a given approx-
imate functional Ẽv. In DC-DFT this error is split into two
well-defined contributions,

∆Ẽv = ∆ẼF + ∆ẼD. (6)
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The functional error (FE) is

∆ẼF = Ẽv[nv] − Ev[nv], (7)

i.e., the error the approximate functional Ẽv makes on the
exact density nv(r). If the approximate calculation is a KS
calculation with an approximate XC functional, ẼXC[n], its
error is a pure density functional of any density n(r)

∆EXC[n] = ẼXC[n] − EXC[n], (8)

and the FE is just that functional on the exact density:

∆ẼF = ∆EXC[nv]. (9)

The remaining error is defined as the density-driven error
(DDE):

∆ẼD = Ẽv[ñv] − Ẽv[nv]. (10)

Most DFT errors are dominated by the FE, which we call
normal, but sometimes DDEs are significant. Such calcula-
tions were originally labeled abnormal, and could be spotted
by a small HOMO-LUMO gap.2 These were later found to
be sufficient but not necessary conditions. In particular, more
accurate functionals would often have smaller errors, not dom-
inated by gaps, but still significantly reduced by using better
densities. In this work specifically, we refer to Eqs. 7 and 10 as
pragmatic errors. By the variational principle, pragmatic-DDEs
of total energy are always negative.

Several points are worth noting. First, while all these formu-
las have been given for the total energy of a specific moiety,
in practice, they are applied to the energy differences that are
used in chemical and material calculations. A second point
is that the HF density has not been mentioned. These are
general formulas that in principle can be applied to any system,
if the ingredients are available (usually highly accurate energies
and densities). We also note that DDEs are only defined using
the self-consistent density ñv(r) of a given approximate ẼXC,
because the variational principle is hard-wired into their defini-
tion. Finally, we mention that this pragmatic-DDE depends
both on the system and the approximate functional in use.

For any potential v(r) and approximate functional, we define
the following density functional

D̃v[n] = Ẽv[n] − Ẽv[nv], (11)

which matches the pragmatic-DDE if n(r) is the self-consistent
density of Ẽv, and also correctly vanishes if n(r) is the exact
density nv(r). This formula was defined in Ref.20 in Eqs. 18
and 19 under the name "density-driven difference", but has
been used uncritically as if it yields the DDE of a HF-DFT
calculation. For reasons that will become clear, we refer to this
as the naive density-driven error interpolator (NDI)12–16,21.

II2. Practicalities

If DC-DFT always required using the exact density, it would
not be very useful. In most practical DC-DFT calculations, the
(unrestricted) HF density is employed as a pragmatic choice for
implementing density correction, since it is generally assumed
to be more reliable than the self-consistent density in abnormal
situations.22 In fact, one usually finds that HF densities do
little harm in normal calculations, so one can often use them
everywhere.7 Such calculations are dubbed HF-DFT. They pre-
date DC-DFT, but largely because originally DFT was tested
on HF densities23–26, assuming DDEs were irrelevant. While
they significantly improve energetics for abnormal calculations,
they have the practical drawback of violating the Hellmann-
Feynman theorem, and so need additional terms to calculate
forces.26,27 Moreover, if the UHF calculation is highly spin
contaminated, that suggests its density is not accurate, and
restricted open-shell HF (ROHF) densities are used instead.7

Almost all DC-DFT calculations reported have been for
molecular systems. Specific examples include reaction bar-
rier height25,26, torsional barrier28, halogen and chalcogen
bonds29,30, anions31, most stretched bonds11,32, water sim-
ulation33–40, and many other chemical properties27,41,42. A
practical criterion to assess abnormality in DC-DFT is to com-
pute the density sensitivity,43 which is defined as the difference
in energy obtained by evaluating the approximate functional
on two qualitatively different densities—typically those from
HF and the local density approximation (LDA):

S̃ =
∣∣∣Ẽ[nLDA] − Ẽ[nHF]

∣∣∣ (12)

A DFT calculation is considered density-sensitive if S̃ >

2 kcal/mol, suggesting that density-correction may change
the energetics. Conversely, if S̃ < 2 kcal/mol, the system
is deemed density-insensitive, and the choice of density has
minimal impact on the energy. Which reactions are density
sensitive depends on the choice of approximate functional.
This metric helps identify cases where density correction is
likely to be important, and works reasonably well for small
molecules, but other criteria have been suggested for other
cases44,45. Of course, it is irrelevant if one has access to the
exact functional and density, as then the DDE itself can be
calculated directly.

An important aspect of DC-DFT is that the accuracy of the
density is measured soley in terms of energy. Because density is
a function, one can construct infinitely many different measures
of the accuracy of a density.46 But if errors in densities do
not translate into significant errors in energy, they are of little
practical importance in DFT calculations.43 By measuring
accuracy in terms of energies, one can automatically see the
relevance to DFT applications. Despite its name, applications
of DFT mostly involve reports of energies as a function of
nuclear coordinates. Thus, an important concept introduced
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by DC-DFT is the idea of measuring density errors in terms of
the actual energy errors reported in calculations. This is the
conceptual cornerstone of the theory, and has also been the
key to its practical success.

A crucial part of this paper will be the question: What is the
DDE of a HF-DFT calculation? A plausible estimate is simply
to apply the NDI to the HF density. Some of us even carelessly
used that in Fig. 4 of Ref.12, without carefully distinguishing
it from a proper DDE. But this is NOT the correct formula for
DDE of HF-DFT. To see this, write the HF-DFT energy as

ẼHF−DFT
v = EHF

v + ẼXC[nHF] − EHF
X [nHF]. (13)

Insert this in Eq. 2 to find:

nHF−DFT(r) = nHF(r) + δ(ẼXC[nHF
v ] − EHF

X [nHF
v ])

δv(r) . (14)

There is a complicated correction to the HF density that is
impractical to calculate, and is omitted if using the interpolator.
The results of the present work imply that using the NDI on
the HF density instead of the correct Eq. 14 yields hopelessly
inaccurate estimates, undermining all conclusions based on
such calculations.

An important, abstract concept for understanding HF-DFT
is to imagine an approximate XC functional which, at self-
consistency, yields the exact same energy as HF-DFT for every
system. Let us call this HF-DFT-XC and imagine we have an
explicit formula for it. Because it yields the HF-DFT density
of Eq. 14 self-consistently, the definition of pragmatic DDE
can be applied, and should yield a good estimate of its ideal-
DDE. We call this the self-consistent density of an inconsistent
evaluation. In our one-electron examples, we find the self-
consistent densities of inconsistent evaluations, and they are
very different from the density the functional is evaluated on.

III. Theory

III1. Ideal density-driven errors

Here we (re)-introduce20,43 the concept of the ideal density-
driven error (ideal-DDE), which is even better than the
pragmatic-DDE of DC-DFT, but more difficult to calculate.
For any potential v(r), it is a density functional defined as:

∆E∗
D[n] = Ev[n] − Ev[nv]. (15)

Like the pragmatic definition, because it is energy-based, it
fits just as well with the aims of DC-DFT. But it has two
key advantages relative to the pragmatic definition: (a) it is
a measure for any density considered as a trial density for
a given system, no matter what its origin, and (b) it does

not use an approximate functional for its evaluation. The
pragmatic definition applies only to self-consistent densities
of KS calculations, and uses the approximate functional in its
evaluation. The energetic measure of the size of the pragmatic-
DDE depends crucially on the accuracy of the approximate
functional for that density. The ideal-DDE does not have
this flaw, and is a simple metric for measuring the energetic
distance of any approximate density for a given potential.

This concept was introduced in Ref.43, but just as an ab-
straction, and a few of its formal properties were then listed
in Ref.20. However, it has not previously been calculated.
Two exact properties are useful here. First, the ideal-DDE of
the total energy is never negative, by the variational principle.
This is the mirror image of the negativity of the pragmatic-
DDE. The difference in sign is due to the exact functional
being used. (We will see below that, for good approximations,
∆E∗

D[ñv] ≈ −∆ẼD[ñv]). The ideal-DDE is also convex, i.e., if
nλ(r) = (1 − λ)n0(r) + λn1(r), then

∆E∗
D[nλ] ≤ (1 − λ)∆E∗

D[n0]+ λ∆E∗
D[n1], 0 ≤ λ ≤ 1. (16)

Moreover, if n1(r) is the exact density, the second term van-
ishes.

For example, consider every reaction energy in every refer-
ence database currently in use in chemistry. For every single
one, in principle, if we know the exact XC functional, we
can calculate this ideal-DDE for any approximate functional’s
density. All tests of approximate functionals could include
both the error in TE and the ideal-DDE, providing an absolute
ranking of the accuracy of each functional’s density.

However, it is very difficult to calculate this ideal-DDE for
most electronic systems because we don’t know the exact
functional EXC. Given an approximate density, one must guess
the one-body potential (which typically is not Coulombic) for
which this is a ground-state density, and find its ground-state
energy. The only real-space case in which such calculations
were done is Ref.47, which is a one-dimensional simulacrum
of a four H-atom chain. So, such interacting inversions are
impractical.

Here, we report such calculations in two special cases where
they are feasible. The first is any one-electron system, where
we can easily invert the Schrödinger equation for a trial density,
and the second is the two-site Hubbard model with 2 fermions,
which is used to mimic two-electron systems and illustrate
basic theory in DFT.47

How does this ideal-DDE compare to the pragmatic defi-
nition of Eq. 10? We show in the illustrations in this paper
that often a good approximate functional has a pragmatic-
DDE that is close to the negative of the ideal-DDE. (The sign
flip is simply because the reference functional has changed
from the approximate to the exact.) We give a condition that
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Table 1: Summary of symbols, acronyms, definitions, equations, and equation numbers throughout this paper.

symbol acronym definition equation eq.#
∆E∗

D[n] ideal-DDE ideal density-driven error Ev[n] − Ev[nv] Eq. 15
∆ẼD pragmatic-DDE pragmatic density-driven error Ẽv[ñv] − Ẽv[nv] Eq. 10
D̃v[n] NDI naive DDE interpolator Ẽv[n] − Ẽv[nv] Eq. 11
ẼD[nproxy] Proxy-DDE density-driven error with proxy density Ẽv[ñ] − Ẽv[nproxy] Eq. 20
∆EXC[n] XC energy deviation exchange-correlation energy deviation ẼXC[n] − EXC[n] Eq. 8
∆ẼF FE functional error ẼXC[nv] − EXC[nv] Eq. 7
∆Ẽv TE total error Ẽv[ñv] − Ev[nv] Eq. 5

guarantees this, and most approximations in most calculations
seem to meet this condition. When that condition is met,
the difference between the FE and the ideal-DDE yields ap-
proximately the TE. Table 1 provides a summary of errors
in symbols, acronyms, definitions, equations, and equation
numbers discussed in this paper.

III2. Measuring density errors

DDEs (pragmatic or ideal) involve a finite difference of a given
functional on two (presumably) very similar densities. These
energy differences are typically smaller than the energy errors
made by density functional approximations for chemical energy
differences. Determining if methods are sufficiently accurate,
and have been sufficiently well-converged with respect to a ba-
sis set, is highly non-trivial. Many of these issues are discussed
in detail in Ref.12.

As noted in a previous section, highly accurate methods such
as coupled-cluster have been developed to yield accurate energy
differences between configurations of atoms. We know of no
systematic study that checks the accuracy of the corresponding
density (and what would one check it against, anyhow?).
Throughout the present work, we assume that the CCSD
or CCSD(T) densities for small systems is sufficiently accurate
as to introduce negligible error in calculating DDEs.

As a practical implementation of DC-DFT, HF densities
are commonly used as proxies for the exact density. Here,
we refer to such densities as practical proxies, meaning that
their computational cost is not typically much higher than,
e.g., a hybrid DFT calculation itself. The recent literature
has suggested several other densities that are used in place
of accurate densities, to test the efficacy of DC-DFT. We
call these proxy benchmark densities. Clearly, to be useful
in DC-DFT at all, these benchmark proxy densities should
introduce errors in DDEs that are significantly smaller than
the DDEs themselves. Ideally, they should have errors much
smaller than the ideal-DDE of HF and self-consistent densities.
We shall see that this is an extremely difficult standard to meet
in practice (see section V1).

As has already been mentioned, DC-DFT provides just one
of infinitely many ways of measuring errors in densities. But
because chemical reaction energies are in fact energy differ-
ences of different configurations of nuclei, DDEs are typically
only reported for such differences. In many such calculations,
total energies of the individual moieties are unlikely to be well
converged, as differences converge much faster with respect to
the basis set. But most other measures of density error that
appear in the literature apply only to the density of a given
moiety, not the density difference when nuclei are rearranged.
Measures that apply only to densities, and not differences of
densities, are difficult (if not impossible) to relate directly to
the efficacy of DC-DFT. From a different perspective, this is
one of the huge benefits of the DC-DFT DDE construction -
that it can be applied directly to the energy differences that
are all important in applications.

III3. Functional interpolation

For any given approximate XC functional, we can imagine a
one-dimensional family of XC approximations:

ẼXC,a[n] = (1 − a) ẼXC[n] + aEXC[n]. (17)

For 0 ≤ a ≤ 1, this interpolates between the approximate (a = 0,
ẼXC) and exact (a = 1, EXC) functionals. Solving the KS
equations with this functional yields an approximate density
na(r) parameterized by a. If we extend the construction to any
real value of a, this defines a one-dimensional line in density
space, and the interpolation is the line segment where a runs
from 0 to 1. For sufficiently accurate XC approximations, one
would expect the density to vary approximately linearly with a

between 0 and 1, but also to always be able to find extreme
values of a where non-linearities are noticeable. For simple
cases (one-electron), we can find the exact XC functional,
but not in practical applications of DC-DFT. Note also that
different approximate XC functionals yield distinct families of
densities, which coincide only at a = 1.
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IV. Results for model systems

IV1. One electron systems

This section reports DC-DFT results for one-electron systems
only. This is because the exact functional is easy to calcu-
late in this case, by simply doing a HF calculation, which is
self-interaction free. This in turn allows us to perform self-
consistent calculations for the functional interpolation (Eq. 17)
of any approximate functional, and output its self-consistent
density na(r). Almost all the DDEs reported here are negli-
gible, so DC-DFT has little practical benefit. But the results
demonstrate general principles that cannot be deduced from
practical calculations.

Figure 1: Energy error curves of H +
2 at equilibrium for

r2SCAN (gray) and exact (black) evaluated on the family of den-
sities (na=0) minimizing the interpolation functional of Eq. 17.
The solid arrows are the total (TE, black, Eq. 5), pragmatic
density-driven (DDE, red, Eq. 10), and functional (FE, blue,
Eq. 7) errors for r2SCAN, with ideal-DDE in green. The red
hollow arrow is D̃[na=1.5], a terrible approximation to (minus)
its ideal-DDE (right green arrow, Eq. 15). Any density with
0 < a < 2 is more accurate than r2SCAN’s, and all 1 < a < 2 have
smaller TEs (right, black) than the FE of the self-consistent
r2SCAN.

Figure 1 is the most important figure of this paper, and
explains a significant fraction of its basic message. These are
energy curves for H+

2 at equilibrium (geometries of one-electron
systems are provided in Table S1), using the r2SCAN48 func-
tional, but are typical of many systems and many approximate
functionals (more examples are shown in the Figs. S1-S5). The
x-axis is a in Eq. 17 and the density at each value is the self-
consistent density (na(r)) with that a. The solid black curve is
the exact energy for each density, with the zero chosen at the
exact energy, and the solid gray curve is the r2SCAN energy.
The black and red arrows on the left (a = 0) denote TE and

DDE, respectively. While the blue arrow in the middle (a = 1)
denotes the FE of r2SCAN.

The first point to note is that the value of the black curve
is the ideal-DDE for each of the densities. To the extent
that these densities are linear in a, this curve must be convex
and typically is close to a simple parabola. Next we note
that ∆E∗

D[ñ] ≈ −∆ẼD. We will show numerous systems and
functionals where this is true to within about 20 %. Figure 2
shows the density errors with respect to exact density, as a
function of a, which are clearly (almost) proportional to 1 − a.
Assuming linearity, this implies that the black-(exact)-curve in
Fig. 1 is convex, as in Eq. 16. Moreover, it must always be
parabolic on a small enough scale around a = 1. The closer
the self-consistent density is to the exact density, the closer
the ideal-DDE curve will be to a parabola.

Figure 2: (a) Density errors of r2SCAN from Eq. 17 and (b)
density errors÷(1 − a) of H +

2 at equilibrium along z-axis.

Next we explain one of the most important aspects of this
work. All densities with a between 0 and (about) 2 are more
accurate than the self-consistent density (a = 0). i.e., they
have smaller ideal-DDEs. In Table 2, we list three fomrulas
for DDEs as a function of a (more examples are shown in
Tables S2-S6). The first is the ideal. The second is the
pragmatic, using the appropriate a-dependent functional for
each value of a, as given by Eq. 10. It tracks the ideal very
well, as expected. But the third uses the original functional
(a = 0) to estimate the DDE at the intermediate points via
Eq. 11, i.e., the NDI. While it is indeed correct at the two
points (a = 0, and 1), it becomes more and more relatively
inaccurate as a approaches 1, and nonsensical for a > 1, as its
estimate of the pragmatic-DDE has the wrong sign!

Consider the functional with a = 0.75 and its associated
density. Its ideal-DDE is much smaller than that of the self-
consistent density, and the r2SCAN functional evaluated on this
density, na=0.75(r), almost exactly reproduces the FE, precisely
as the naive understanding of DC-DFT expects. However, a
more interesting comparison is with a = 1.5. This is still a
much better density than the self-consistent density. But now
the TE r2SCAN makes on this density, na=1.5(r), is even
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Table 2: Ideal- and pragmatic DDEs, and NDI (in mH) of
r2SCAN at densities depending on the mixing parameter a in
H +

2 at equilibrium. In the pragmatic row, the XC functional
changes according to Eq. 17 but, in the naive row, only r2SCAN is
used in Eq. 11.

(mH) value of a

type 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

ideal 0.68 0.37 0.16 0.04 0.00 0.04 0.13 0.29 0.50
prag. -0.63 -0.35 -0.15 -0.04 0.00 -0.04 -0.14 -0.31 -0.53
naive -0.63 -0.58 -0.46 -0.26 0.00 0.32 0.68 1.08 1.52

smaller than the FE (|∆Ẽv[na=1.5]| < |∆EXC[na=1]|). This
is simply because a > 1 and the difference between the two
curves, that is, ∆EXC[na] continues to shrink.

However, suppose we imagined that the NDI (Eq. 11) was an
accurate measure of DDE. Its estimate of the DDE of na=1.5(r)
has the wrong sign, and is a large overestimate (red hollow
arrow upwards in Fig. 1), compared with the tiny green arrow
at a = 1.5. For this density, it appears that the DDE is larger
than that of the self-consistent density, and that its removal
leads to a smaller energy error, a highly fortuitous cancellation
of errors with FE that only gets better as a increases. However,
as we can see, the ideal-DDE is much smaller, there is no
significant cancellation of errors, and it is perfectly natural
to have an energy error smaller than the FE. In fact, it is
unavoidable once a is between 1 and 2.
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Figure 3: Naive density-driven error (DDE) interpolator (NDI)
versus ideal-DDE ratio for r2SCAN in H+

2 at equilibrium. Red
dots are the values of a for each density, and black dashed line is
(1 + a)/(a − 1) curve. The gray horizontal lines denote y = −1.
The x-axis is the same as in Fig. 1.

In Fig. 3, we plot the ratio of the NDI to the ideal-DDE as
a function of a, showing the divergence. Assuming linearity
in the density and parabolic functionals, one finds this curve
has shape (1 + a)/(a − 1), plotted with dashes in the figure.
(The ideal-DDE is proportional to (a − 1)2, and the NDI is
proportional to (a2 − 1).) Thus, for a = 1.5, the overestimate
is a factor of 5. The NDI always overestimates, and the more
accurate the density is, the greater the relative inaccuracy!

Table 3: Ideal- and pragmatic density-driven error (DDE),
functional error (FE), and total error (TE) in mH for H+

2 at
equilibrium. Molecular energy followed by binding energy.

(mH) type r2SCAN50 LC-ωPBE SVWN r2SCAN B3LYP PBE BLYP

total energy

DDE ideal 0.16 0.62 0.66 0.68 0.91 1.25 1.62
prag. -0.15 -0.57 -0.63 -0.63 -0.84 -1.14 -1.47

FE -2.49 -10.68 19.48 -4.97 -6.66 -5.52 -3.06
TE -2.64 -11.25 18.85 -5.60 -7.50 -6.66 -4.53

binding energy

DDE ideal 0.11 0.32 -0.37 0.49 0.51 0.60 0.88
prag. -0.11 -0.29 0.36 -0.45 -0.47 -0.56 -0.81

FE -2.49 -4.69 -2.84 -4.97 -4.59 -6.11 -5.81
TE -2.60 -4.98 -2.48 -5.43 -5.06 -6.67 -6.62

To show that none of these features are specific to this
functional, in Table 3, we listed ideal- and pragmatic-DDEs of
several popular approximate functionals and two proxy func-
tionals in Ref.13–16 (r2SCAN , B3LYP49, PBE50, BLYP51,52,
SVWN53,54, r2SCAN5055, and LC-ωPBE56) on the H +

2 , or-
dered by their ideal-DDEs (CAM-B3LYP57 and PBE058 on
SI). With this measure, we can also say they are ordered in
terms of the accuracy of their densities. We see that in every
case, the size of the ideal-DDE is about 10 % larger than
the corresponding absolute pragmatic-DDE value. Moreover,
ordering with respect to the pragmatic-DDE is almost identical
to that of the ideal-DDE (in Fig. S1 we also illustrate each of
these functionals with curves analogous to Fig. 1, but keep in
mind that the densities being scanned through as a function
of a differ in every case).

Table 4: Density-driven errors (DDE) in mH of H +
2 at the

equilibrium using naive density-driven error estimate of Eq. 11.
Only diagonals (shaded) are the correct pragmatic-DDEs. The
range refers to the range of naive DDE interpolator (NDI) pre-
dicted by the functionals for a given density. The aug-cc-pV5Z
basis set was used.

density
(mH) r2SCAN50 LC-ωPBE SVWN r2SCAN B3LYP PBE BLYP

fu
nc

tio
na

l

r2SCAN50 -0.15 0.03 0.17 0.03 0.17 0.39 0.62
LC-ωPBE -0.40 -0.57 -0.29 -0.49 -0.50 -0.45 -0.30
SVWN -0.32 -0.35 -0.63 -0.33 -0.37 -0.24 -0.09
r2SCAN -0.46 -0.55 -0.32 -0.63 -0.57 -0.47 -0.38
B3LYP -0.53 -0.77 -0.58 -0.78 -0.84 -0.80 -0.75
PBE -0.63 -1.02 -0.75 -0.99 -1.09 -1.14 -1.09
BLYP -0.74 -1.20 -0.93 -1.22 -1.37 -1.42 -1.47

range 0.59 1.23 1.10 1.25 1.54 1.81 2.09

ideal-DDE 0.16 0.62 0.66 0.68 0.91 1.25 1.62

To show that the poor performance of the NDI is not some-
how an artifact of our special family of densities, Table 4
presents a matrix of different approximate functionals applied
to each other’s self-consistent densities. The diagonals are
the correct pragmatic-DDEs, and all others are (incorrect)
estimates using Eq. 11. From their variation, it is clear that
none are reliable, and r2SCAN50 even producing incorrect
signs, just as we found for a > 1 in our model example. For
this system, we conclude that the pragmatic-DDE is a good
estimate of the ideal-DDE, but the NDI is highly inaccurate
anywhere except at the self-consistent densities.
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Figure 4: Two atypical cases: Exact (black) and DFT (gray, (a)
r2SCAN and (b) PBE) energy functionals for the hydrogen atom,
evaluated on the family of densities minimizing the interpolation
functional of Eq. 17. Points are evaluations, and curves are
parabolas that fit to the curvature at the minimum. The green
(red) arrow shows the ideal (pragmatic) density-driven error, the
blue shows the functional error, and the black denotes the total
error.

Why did we not illustrate our points with the simplest of
all one-electron systems, the H-atom? We did not choose this
because the behavior of two of the most popular functionals
(PBE and r2SCAN) is untypical in this case. However, both
provide nice illustrations of DC-DFT principles. r2SCAN was
chosen with the exact condition (norm) that, on the exact
H-atom density, it yields the exact H atom energy of −1/2 (in
Hartree).59 Despite this, it makes a small error for the H atom,
as its self-consistent density is not a simple exponential (see
Fig. 4(a)), and it is about -0.173 mH lower in energy. True to
its construction, that error vanishes at the exact density, so
its error is entirely density-driven. The ideal-DDE agrees with
the pragmatic-DDE to within about 10%. Thus, evaluation of
r2SCAN on the exact density reduces the error to essentially
zero, i.e., the posterchild of DC-DFT calculations, but hardly
a typical case. On the other hand, the PBE functional shows
a very different atypical behavior (see Fig. 4(b)). It was long
ago shown that, self-consistently, PBE is essentially perfect
for the H atom energy. So this is an example of FE and DDE
canceling exactly. Thus, here, swapping in the exact density
only worsens the energy, and this is not a calculation that is
improved. What DC-DFT does do is tell us that these perfect
results is in fact an accidental cancellation of the two errors.

How does this ideal-DDE connect to (pragmatic) DC-DFT?
The most appealing definitions are Eq. 7 for the FE, and Eq. 15
for the ideal-DDE. But these two do not in general combine
to yield the TE. The answer is simple. We continue to use the
usual (pragmatic) DDE in DC-DFT (Eq. 10), as it is the only
one we can calculate without recourse to the exact functional
on approximate densities, which is rarely available. However,
we consider it typically a good approximation to the ideal,

and assume that is the case for most functionals in common
use (i.e., those yielding useful accuracy for the problem at
hand). Thus, for a given potential, different approximations
will produce different self-consistent densities, with different
DDEs. But if the curvature of the approximation is good, its
DDE is an excellent estimate of its ideal-DDE, and it can be
directly compared, as in Table 3.

Figure 5: Error curves of H +
2 at equilibrium for r2SCAN. ideal-

DDE (∆E∗
D[na], green dots, Eq. 15), pragmatic-DDE (∆ẼD,

filled red dot, Eq. 10), NDI (D̃[na̸=0], hollow red dots, Eq. 11),
FE (∆EXC [na=1], blue arrow, Eq. 7), XC energy deviation
(∆EXC [na], blue dots, Eq. 8), and TE (∆Ẽv[na], gray dots,
Eq. 5). Even at a = 2, where the ideal-DDE matches that of
the self-consistent density, the total error is reduced because the
reduction in ∆EXC is greater than the increase in ∆E∗

D.

Alternatively, there is a formulation of DC-DFT that uses
the ideal-DDE, but combines it with the (equally impractical)
functional error evaluated on the approximate density:

∆Ẽv ≈ ∆EXC[ñv] + ∆E∗
D[ñv] (18)

This formulation also yields the TE but from a slightly shifted
perspective. Figure 5 shows the information in Fig. 1 more
dynamically. Using a density closer to the exact density than
the self-consistent one reduces TE (gray dots) by both lowering
the ideal-DDE (green dots) and narrowing the gap between
approximate and exact functionals at that density point (∆EXC,
blue dots). This explanation describes how, from a total
energy perspective, certain DC-DFT calculations can achieve
smaller errors than FE. The values are in Table 5. But this
description is true when the approximate functional curve lies
below the exact. If the curves have similar minima, or even
if the approximate curve is located above the exact curve
(situation like SVWN in Fig. S1), then as the density becomes
more accurate (closer to a = 1), the TE increases.

Our final discussion of energy curves for our one-electron
cases fills in some details beyond Fig. 1. Figure 6 shows several
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Table 5: Ideal density-driven error (DDE), exchange-correlation
energy deviation (∆EXC[na]), and total error (TE, in mH) of
r2SCAN at densities depending on the mixing parameter a in
H +

2 at equilibrium.

(mH) value of a

type 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

ideal-DDE 0.68 0.37 0.16 0.04 0.00 0.04 0.13 0.29 0.50
∆EXC[na] -6.28 -5.92 -5.59 -5.27 -4.97 -4.69 -4.43 -4.18 -3.94

TE -5.60 -5.56 -5.43 -5.23 -4.97 -4.69 -4.30 -3.89 -3.45

different parabolas, and a purple line connecting their minima.
The gray and the black are the original approximate and exact
functionals, respectively. We consider evaluating the original
approximation on the a = 1.5 density. Its functional is plotted
in green. This is a better density than the self-consistent
density, and yields a smaller error than the FE.

The purple line is the minimizing energy of the family of
functionals given in Eq. 19 and parameterized by a. We draw
a horizontal line to find where its energy matches that of the
inconsistent evaluation, which happens at a = 0.22. The blue
parabola is the energy of that functional. A careful analysis,
assuming curves are parabolic in a and densities are linear,
yields the following equation for b:

b ≃ (a2 − b2) ∆ẼD

∆EXC[ñ] (19)

Note that b is typically small in this scenario (Table 6), because
of the ratio of the energies. Also plotted in the figure is the
result of our formula, both with and without the b2 term. We
assume that the above equation holds provided the minima of
the curves lie approximately on a straight line.

The importance of this result is that, in fact, with the approx-
imations we have made, this density at b is the self-consistent
density of the functional that reproduces the inconsistent result
(ignoring any potential dependence of b in Eq. 19, which is
likely to be small). So this explicitly shows (a) that the den-
sity of the inconsistent calculation is far from the HF density,
nullifying any rationale for using the NDI, (b) that it seems
likely to be quite close to the original self-consistent density,
and (c) it is more accurate than the self-consistent density (its
DDE is smaller). This functional has both better energies and
better densities than the original, i.e., both its FE and DDE
are smaller than the original.

Table 6: The value of b according to a in Eq. 19 with
r2SCAN functional in the H +

2 equilibrium.

value of a

type 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

b 0.0 0.01 0.02 0.06 0.10 0.15 0.22 0.30 0.38

Finally, we close by studying stretched H+
2 , the paradigm of

Figure 6: Energy error curve at a=1.5 in Eq. 17 (green) and
energy error curve at a=1.5 estimated according to Eq. 19 (b
= 0.22, blue). The purple solid line is the spline of the self-
consistent energy error of the Eq. 17 functional according to the
b value estimated through Eq. 19. The purple dotted line is
the linear spline of the self-consistent energy error of the Eq. 17
functional based on the estimated b value obtained by removing
the quadratic term of b from Eq. 19.

Table 7: Ideal- and pragmatic-DDE, FE, and TE in mH for
(top) H +

2 at 5Å and (middle) H atom. The bottom is the
contribution to the binding energy.

(mH) type r2SCAN50 LC-ωPBE SVWN r2SCAN B3LYP PBE BLYP

H +
2 at 5Å total energy

DDE ideal 4.60 3.46 5.11 5.56 2.42 1.16 2.08
prag. -4.66 -3.52 -5.18 -5.41 0.35 -1.18 -1.97

FE -63.39 -63.52 -74.25 -75.18 -49.23 -31.69 -28.35
TE -68.05 -67.04 -79.43 -80.60 -48.88 -32.87 -30.32

H atom total energy

DDE ideal 0.04 0.30 1.02 0.19 0.40 0.65 0.74
prag. -0.04 -0.28 -0.99 -0.17 -0.37 -0.57 -0.66

FE 0.00 -5.99 22.32 0.00 -2.07 0.58 2.74
TE -0.04 -6.27 21.33 -0.17 -2.44 0.01 2.09

H +
2 at 5Å binding energy

DDE ideal 4.55 3.16 4.09 5.37 2.02 0.52 1.34
prag. -4.62 -3.23 -4.19 -5.24 0.72 -0.60 -1.31

FE -63.39 -57.53 -96.57 -75.18 -47.16 -32.28 -31.09
TE -68.01 -60.77 -100.76 -80.42 -46.44 -32.88 -32.41

self-interaction error10. We take the bond length to be 5 Å
(Table 7), almost five times of equilibrium bond length. At this
distance, any approximate functional with a self-interaction
error makes a large error in the energy, because it is inaccurate
for the 1/2-electron densities localized on each proton. As
the bond length is stretched to infinity, the energy does not
approach that of a single H atom, as it should.

But this is not density-driven. This is plain to see in Table 7.
Whether looking at the molecular energy or the contribution
to the binding energy, the DDE is a small fraction of the
FE. The densities are reasonably accurate, and the error is
functional-driven. Thus, while DC-DFT is a useful tool for
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studying systems with strong self-interaction errors, not all
such errors are density-driven. This result is associated with
the fact that DC-DFT, as described earlier in Fig. 5, causes
error reduction not only through ideal-DDE but also through a
decrease in ∆EXC. Analogously, DC-DFT can be a useful tool
for many other kinds of density errors, not just those caused
by self-interaction. This distinction sometimes seems lost in
the literature.

Figure 7: Radial densities (a) and radial density difference (b)
of H atom for several functionals.

We close by discussing the relation between plots of density
errors and DDEs. In Fig. 7, we show several densities and their
errors for the H atom. The panel (a) shows how very close all
of them are, and essentially indistinguishable by eye, except
when zoomed in. In (b), we plot the errors in the densities, and
looking at the minima in that figure, we might decide BLYP
is least accurate, followed by PBE, B3LYP, and then r2SCAN .
Consultation of Table 4 then shows that your intuition is good
in this case, and DDEs (ideal or pragmatic) have the same
ordering.

Figure 8: Contour map of density error (n(r) − nHF(r)) of
H+

2 at equilibrium for several functionals in xy-plane. Unit for
density is e/Å3.

But Fig. 8 shows the density errors for several functionals
for H+

2 . By visual inspection, try ordering these 8 plots in
order of their accuracy. Then compare your relative ordering
with the results in Table 4. Chances are high you did not get
them right. We have found no simple way to relate density

error plots (or other metrics of density error) to those of DDE.
We also point out that it is actually the difference between
DDEs that goes into DDEs for reaction differences, such as
the binding energy of H+

2 . It is entirely unclear how to apply
any metric of density error to the error in the difference of two
densities with different external potentials.

IV2. Two-electron systems

To further illustrate the crucial distinctions between ideal- and
pragmatic- DDE, we use the two-site Hubbard dimer model.
The Hubbard dimer is a simplified model of a heteronuclear
diatomic molecule, where electrons can hop between two sites
and interact only when they doubly-occupy a site. The sites
are subject to a potential difference ∆v that establishes a
site-occupation difference n2 − n1. For fixed hopping parame-
ter and interaction strength t and U , the exact two-electron
ground-state energy and density can be produced directly as a
function of the potential. The associated KS quantities and
inversion can be computed exactly, and all functionals can be
plotted as functions of the density E(n1).

The density of the dimer is a number, with more accurate
densities simply being close to that number. However, this is
enough to define two qualitatively distinct types of errors for the
density, and thus the logic of DC-DFT can be applied directly.
The standard density functional approximations typically used
in practice are generally not available for the dimer, but we
demonstrate DC-DFT principles using unrestricted Hartree-
Fock (UHF) and second-order density-functional perturbation
theory (GL2)60.

For the dimer it is simple to evaluate functionals using a
density other than its corresponding self-consistent density.
In fact, it is also possible to evaluate the corresponding self-
consistent density associated to an inconsistent evaluation
of density functional. For example, the GL2 total energy
evaluated with the Hartree-Fock density EGL2(nHF

1 (∆v)). The
derivative with respect to ∆v yields the associated density of
all functionals, including the self-consistent density of the
inconsistent evaluation, as discussed in Sec. II2, which is
plotted in green in Fig. 9.

In the strongly-correlated regime (∆v < U), the UHF density
is closer to the exact, when compared to the GL2 density.
However, UHF is a poorer approximation of the energy, and
thus provides a range of parameters where DC-DFT can be
demonstrated. The density associated to the inconsistent
evaluation of the GL2 functional with the UHF density, the
green curve of Fig. 9, provides a slight improvement over the
GL2 self-consistent density.

Figure 10 is a generalization of Fig. 1, and the exact ground-
state and HF density functionals are evaluated with a self-
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Figure 9: Exact (black), unrestricted Hartree-Fock (red),
second-order Görling-Levy perturbation theory (blue), and incon-
sistent evaluation of GL2 density functional with UHF density
(green).
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Figure 10: Exact (black) and UHF (gray) density function-
als evaluated at density n1,a(∆v), which interpolates between
Hartree-Fock (a = 0) and exact (a = 1).The green and red are
ideal and pragmatic density-driven errors respectively. Both
curves are shifted by their respective "atomic-limit" values, where
hopping t → 0.

consistent density n1,a(∆v), where 0 ≤ a ≤ 1 interpolates
between pure HF exchange (a = 0) and exact total XC (a = 1).
In this interacting case, the pragmatic- and ideal- DDEs are
roughly equal and opposite. This trend continues over the
range of plotted ∆v values. From Fig. 11, at ∆v = 0.4 the
pragmatic-DDE is comparable in magnitude to the ideal. As
∆v increases, the dimer becomes weakly correlated, and for all
plotted parameters, minus the pragmatic-DDE remains within
±10 %.

Figure 12 is analogous to Fig. 6. We observe that the self-
consistent GL2 density is further from the exact (a ≈ 0.7),
and the total error in the energy is roughly -70 mH. The
Hartree-Fock provides a poor approximation to the energy,
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Ideal ±10%

Minus Pragmatic (UHF)

Figure 11: Ideal (black) and minus the pragmatic (red) density-
driven errors plotted for a range of external potentials. The
shaded regions are ±10 % the ideal-DDE. Minus the pragmatic-
DDE is within the shaded regions for many values of strongly-
correlated ∆v < U .

−290.0

−287.5

−285.0

−282.5

−280.0

U = 1.8, ∆v = 0.4

Energy (mH)

Exact
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GL2
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Figure 12: Exact (black), unrestricted Hartree-Fock (red), and
second-order density-functional perturbation theory (blue) en-
ergies, density-corrected (purple). Here self-consistent densities
are denoted with dashed vertical lines. The density-corrected en-
ergy (dotted purple) is the improved prediction of the energy by
substituting the Hartree-Fock density into the GL2 functional.

but the self-consistent UHF density is closer to the exact.
Thus, the density correction provided by the UHF density
reduces the total error slightly by reducing the DDE. We
plot exact and approximate density functionals evaluated with
n1,a(∆v), which interpolates between GL2 (a = 0) and HF
(a = 1). The dashed purple line connects the GL2 and UHF
minima, unlike Fig. 6, and the purple dotted line denotes the
density-corrected energy. The dashed and dotted purple lines
intersect at a ≈ 0.08, which is approximately the minimum of
the true density-corrected density-functional corresponding to
the inconsistent GL2 evaluation.
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IV3. Summary of model systems

This survey has produced several key concepts in DC-DFT.
First, the ideal-DDE is well-defined for every system and de-
pends only on the approximate density, not on an approximate
energy functional. Second, the pragmatic-DDE uses the ap-
proximate functional to estimate the ideal, typically producing
about a 10 % underestimate (and the opposite sign). We
found no cases where it was not a good estimate. Third, the
use of any density other than the self-consistent density in the
NDI almost always fails to give a good estimate of the DDE
(ideal or pragmatic).

V. Practicalities

The previous section was written to demonstrate basic prin-
ciples of DDEs. But it was confined to either one-electron
systems or model two-electron systems. Now we study the
realistic cases that have caused controversy in the literature,
using the insight garnered from the previous sections.

Why are there questions about how DC-DFT performs its
magic? In practice, the HF density often serves as a practical
tool for density-correction. Many studies in the literature,
using various obvious measures of density errors, suggest that
HF densities are less accurate than self-consistent DFT den-
sities.14,15,61 As mentioned above, and studied below, the
difficulty lies in relating those measures to DDEs, especially
for chemical energy differences. We have found no simple
relationship between such measures and DDEs.

A second issue is how to measure the DDE of an HF-DFT
calculation (i.e., an approximate density functional evaluated
on the HF density). An essential problem is that we do not
know the exact density of such a calculation. Its density is
neither the HF density nor the self-consistent density of the
approximate functional. It is given by Eq. 13, but we have no
practical means to calculate this. The results of the model
section yield a better density than the self-consistent one in
that specific case, but that method only works there. Then,
even if we had this density, we cannot calculate the ideal-
DDE without the exact functional, nor can we calculate the
pragmatic-DDE without having the pure density functional for
which this density is a self-consistent minimum. As we shall
discuss, folks have resorted to the NDI, which we have seen
bears no relation to true DDEs.

V1. Proxy benchmark densities, and their pitfalls

For many systems, it can be extremely challenging to evaluate
even the pragmatic-DDE. First, one needs a reliable calcula-
tional method that produces highly accurate densities. Then

one must perform a Kohn-Sham inversion, i.e., find the KS
potential whose ground-state density is the accurate density.
This problem has a long and difficult history.12,28,62–70 Finally,
armed with the KS orbitals, one can calculate the approximate
functional’s energy on the exact density. As this is often not
practical for systems of chemical interest, ways have been
found to bypass these steps.

Recent literature has made use of "proxy densities" as stand-
ins for the exact density when evaluating DDEs for molecules.
For example, Kaplan and others13 present an analysis of DDE
and FE for barrier heights, evaluated against three such proxies:
SX-0.5, SCAN-FLOSIC, and LC-ωPBE. The authors estimate
DDE using a proxy in place of the exact density nv(r), see Eq.
(10):

ẼD[nproxy] = Ẽv[ñ] − Ẽv[nproxy]. (20)

If the proxy were the exact density, this becomes the pragmatic-
DDE. Each of these proxy methods is an approximate KS-DFT
method, and so yields both a density and its corresponding
orbitals, thereby making evaluation of Ẽ[nproxy] simple. But,
as discussed earlier, DDEs are typically much smaller than FEs,
and one needs to be able to rank self-consistent densities of
different functionals. Thus a proxy method needs to be precise
enough to distinguish small differences among already small
numbers.

In the case that nproxy(r) is extremely close to the exact
density, ẼD is a good estimate of the pragmatic-DDE. But in
the absence of more accurate reference densities, it is impos-
sible to determine the efficacy of a proxy (i.e., quantify how
close the proxy is to the exact density). However, if multiple
different proxies are suggested, then some tests of internal
consistency can be performed. First, when evaluating the
DDEs of a set of functionals using the proxies, the ranking of
those functionals (i.e., which has the lowest DDE) should be
consistent among all the proxies used. Second, for the proxies
to be useful, the spread among their estimates of the DDE
should be small relative to the DDE itself. If their spread is a
significant fraction of the DDE, this would render the proxies
dubious as useful estimators.

Here we analyze the results reported in Ref.13 for the three
proxies suggested there, for the DDEs of the BH76 set of
barrier heights. We find that in over a third of cases, the
proxies disagree on which functional has the lowest DDE (see
Table S7). Kaplan et al.13 point to the consistency of the
DDE averaged over the reactions of the three proxies, but
this ignores their deviations for each reaction. We stress the
importance of examining the proxies on a case-by-case basis,
revealing significant inconsistencies which can be obscured by
averaging. Figure 13 shows the variations in DDE for their
three different benchmark proxy densities and two different
functionals, PBE and SCAN across the systems of BH76.
The figure should already be alarming, showing some extreme
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SX0.5 LCωPBE SCAN-FLOSIC

(a) PBE (b) SCAN

Figure 13: Reaction-by-reaction breakdown BH76. DDEs for
PBE and SCAN functionals using the three proxies (in kcal/mol)
are plotted on the radial coordinate. The angular coordinate
corresponds to the reaction index. In some (density-sensitive)
cases, the proxies disagree by more than 20 kcal/mol. The spread
of DDEs across the proxies is sensitive to both the functional
used, and the system in question.

variations, especially for SCAN-FLOSIC.

For simplicity, we choose the average of the three DDEs
(evaluated on the three densities) as the best estimate of the
exact DDE, and the spread (max minus min) as an estimate of
its uncertainty (reporting the results for all 76 reactions in the
Table S7). Table 8 lists results averaged over BH76 of DDE
using each of the three proxies and the spread. In fact, the
spreads are significant on the scale of the DDEs themselves.
Furthermore, examining the DDEs of the RKT10 transition
state barrier (Table 9), for which a high-accuracy reference is
available, we see that the proxies are essentially useless, as their
spread is larger than the known DDE itself. Finally, analyzing
the density sensitivities of the BH76 systems (calculated in
Ref.8) shows that the reactions with the widest range of DDEs
across the proxies are generally highly density-sensitive. We
present some of the worst cases in Table 10; and it is precisely
in these cases that the application of the HF density tends to
cure the errors.8

Table 8: Uncertainties due to proxy benchmarks on BH76
dataset, calculated from data presented in the SI of Ref.13:
Mean and mean range of DDE calculated with three different
proxy densities, averaged over BH76. The deviation among the
proxies is comparable to the DDEs themselves.

functional avg. DDE (kcal/mol) avg. range (kcal/mol

PBE -2.37 2.69
B3LYP -0.76 0.63
SCAN -1.24 1.56
BLYP -2.28 1.09

Table 9: DDEs (kcal/mol) for the RKT10 (H · · ·H · · ·F) forward
and reverse barriers using the three proxies 13, and a CCSD(T)
reference 14. The proxies deviate significantly from the reference
(by at least 1 kcal/mol) for each functional.

functional (barrier direction) LC-ωPBE SX0.5 SCAN-FLOSIC CCSD(T)

PBE (forward) -1.31 -4.87 -6.44 -2.20
SCAN (forward) -0.29 -2.52 -3.80 -1.00
PBE (reverse) -1.11 -4.57 -5.45 -2.30
SCAN (reverse) -0.22 -2.31 -3.15 -1.20

Table 10: Average and range of proxy DDEs13 (kcal/mol) of
PBE and SCAN (Eq. 20) for four BH76 systems with significant
disagreement between the proxies.

system PBE (Avg / Range) SCAN (Avg / Range)

OH + N2 → N2OH (ts) −7.7 / 14.5 −5.5 / 11.2
H + F2 → HF2 (ts) −8.3 / 11.0 −3.6 / 5.9
HF + F → HF2 (ts) −8.9 / 11.5 −4.4 / 6.7
H2 + PH2 → RKT12 −8.2 / 21.6 −0.6 / 0.2

V2. Unreliability of naive density-driven error inter-
polator

We now apply the lessons learned from previous sections to
recent practical HF-DFT calculations in the literature which
have led to so much confusion. We focus primarily on barrier
heights, and in particular on H2 + F → H · · ·H · · ·F and an
analog, as these have known densities and KS inversions. This
system was studied in the context of DC-DFT by Kanungo
et al.14, wherein the NDI is used extensively. In this section,
unless otherwise noted, we used CCSD(T) energy as Ev[nv]
while used KS inverted CCSD density as nv(r) to get pragmatic-
DDE by using KS-pies71 code. Although CCSD(T) density
should have been used for better accuracy, it was not done due
to the significant computational cost of generating the density
(Table S8 compares the total energy differences between CCSD
and CCSD(T) densities for several atoms and anions and
functionals, with differences less than 1 kcal/mol).

Begin with the unreliability of the NDI (Eq. 11) when applied
inconsistently. Table 11 shows precisely the same patterns
as we found in Table 4. Essentially any case where the NDI
is applied to a density of a different functional gives a very
wrong answer. To emphasize how dependent the numbers are
on the choice of functional, we report the range (max minus
min) of results for each given density; and we find that these
errors are significant on the scale of the DDEs themselves. We
also boldface the smallest NDI in each row. Again, we find no
relation between the NDI and the true DDEs.

To ensure these are not accidental results of a given re-
action, we repeat the process with H2 + Cl → H · · ·H · · ·Cl in
Table 12. If you look at the values column-wise, we can see
how different approximate functions evaluate the energy differ-
ently for the same density. No NDI consistently predicts the
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Table 11: Matrix of naive density-driven error (DDE) inter-
polator (NDI) of Eq. 11 (in kcal/mol) for H2 + F → H · · ·H · · ·F
reaction transition state, reactant, and barrier height. Green
diagonals are (pragmatic-) DDEs. The range refers to the range
of error predicted by the functionals for a given density. The
bolded numbers indicate the density with the smallest NDI or
for that functional.

density
(kcal/mol) SVWN PBE r2SCAN B3LYP PBE0 r2SCAN50 LC-ωPBE

transition state

fu
nc

tio
na

l

SVWN -9.17 -7.10 -4.36 -5.36 -3.84 4.42 -4.53
PBE -2.41 -4.45 -3.14 -3.64 -2.79 3.33 -2.89
r2SCAN 2.77 -0.51 -1.81 -1.23 -1.42 1.48 -0.83
B3LYP 1.40 -1.43 -1.66 -2.24 -1.80 1.94 -1.74
PBE0 3.85 0.43 -0.85 -0.79 -1.23 1.10 -0.66
r2SCAN50 11.52 6.39 1.74 2.61 0.72 -1.72 2.07
LC-ωPBE 2.24 -0.50 -1.08 -1.56 -1.50 1.48 -2.07
range 20.69 13.49 6.1 7.97 4.56 6.14 6.60

reactant

fu
nc

tio
na

l

SVWN -4.14 -2.37 -0.66 -2.19 -1.25 1.80 -2.24
PBE 0.00 -1.76 -0.84 -1.59 -1.15 1.18 -1.51
r2SCAN 2.89 0.37 -0.56 0.02 -0.36 0.21 0.10
B3LYP 0.66 -1.11 -0.70 -1.29 -0.90 0.91 -1.04
PBE0 2.42 0.17 -0.26 -0.07 -0.46 0.46 0.00
r2SCAN50 5.49 2.52 0.26 1.70 0.40 -0.54 1.82
LC-ωPBE 0.46 -1.17 -0.78 -1.19 -0.99 0.88 -1.44
range 9.63 4.89 1.10 3.89 1.65 2.34 4.06

barrier height

fu
nc

tio
na

l

SVWN -5.03 -4.73 -3.70 -3.17 -2.59 2.62 -2.29
PBE -2.41 -2.69 -2.30 -2.05 -1.64 2.15 -1.38
r2SCAN -0.12 -0.88 -1.25 -1.25 -1.06 1.27 -0.93
B3LYP 0.74 -0.32 -0.96 -0.95 -0.90 1.03 -0.70
PBE0 1.43 0.26 -0.59 -0.72 -0.77 0.64 -0.66
r2SCAN50 6.03 3.87 1.48 0.91 0.32 -1.18 0.25
LC-ωPBE 1.78 0.67 -0.30 -0.37 -0.51 0.60 -0.63
range 11.06 8.60 5.18 4.08 2.91 3.80 2.54

Table 12: Same as Table 11, but with H2 + Cl → H · · ·H · · ·Cl.

density
(kcal/mol) SVWN PBE r2SCAN B3LYP PBE0 r2SCAN50 LC-ωPBE

transition state

fu
nc

tio
na

l

SVWN -5.60 -3.92 -0.88 -3.32 -1.89 3.11 -1.74
PBE -0.74 -2.39 -1.08 -1.99 -1.53 1.84 -0.78
r2SCAN 3.40 0.11 -1.19 0.08 -0.73 0.29 0.46
B3LYP 0.23 -1.60 -0.72 -2.01 -1.38 1.17 -0.81
PBE0 2.78 -0.02 -0.43 -0.26 -0.89 0.48 0.07
r2SCAN50 7.23 2.92 0.11 1.79 -0.05 -1.42 1.22
LC-ωPBE 1.44 -0.73 -0.78 -1.22 -1.49 0.13 -2.47
range 12.83 6.84 1.30 5.11 1.84 4.53 3.69

reactant

fu
nc

tio
na

l

SVWN -4.75 -3.22 -0.21 -3.1 -1.57 2.35 -2.42
PBE -0.43 -1.94 -0.67 -1.74 -1.31 1.19 -1.30
r2SCAN 3.61 0.41 -0.87 0.36 -0.53 -0.13 0.15
B3LYP -0.24 -1.70 -0.65 -1.90 -1.32 0.82 -1.15
PBE0 2.53 -0.02 -0.31 -0.08 -0.66 0.35 0.01
r2SCAN50 6.28 2.30 -0.18 1.83 0.10 -0.93 1.61
LC-ωPBE 0.46 -1.22 -0.88 -1.14 -1.23 0.58 -1.91
range 11.03 5.52 0.70 4.93 1.67 3.28 4.03

barrier height

fu
nc

tio
na

l

SVWN -0.85 -0.70 -0.67 -0.22 -0.32 0.76 0.68
PBE -0.31 -0.45 -0.41 -0.25 -0.22 0.65 0.52
r2SCAN -0.21 -0.30 -0.32 -0.28 -0.20 0.42 0.31
B3LYP 0.47 0.10 -0.07 -0.11 -0.06 0.35 0.34
PBE0 0.25 0.00 -0.12 -0.18 -0.23 0.13 0.06
r2SCAN50 0.95 0.62 0.29 -0.04 -0.15 -0.49 -0.39
LC-ωPBE 0.98 0.49 0.10 -0.08 -0.26 -0.45 -0.56
range 1.83 1.32 0.96 0.24 0.26 1.25 1.24

pragmatic-DDE. Even SVWN density has the smallest NDI
among the 7 densities in some cases. This behavior occurs
because each approximation samples and weights electron den-
sity differently across space, meaning that even visually similar
densities can yield markedly different energies depending on
the approximation employed. Therefore, it is not possible to
infer density similarity from energy agreement, nor to evaluate
the quality of a density based solely on its spatial resemblance
to a reference. Discussing density quality outside the context
of its self-consistent functional is meaningless. Conventional

density metrics based solely on spatial similarity are physically
unfounded and potentially misleading for assessing density
accuracy.

Figure 14: Contour maps of density errors (e/Å3) for the
H · · ·H · · ·F transition state, using CCSD as the reference. On
this scale, CCSD and CCSD(T) appear identical (see Fig. S6).

Figure 15: Same as Fig. 14, with F replaced by Cl (see Fig. S7).

Figure 14 is a density error contour map of the H · · ·H · · ·F
transition state in the xy plane, while Fig. 15 repeats this for
Cl in place of F. Visually, the HF, SVWN, PBE, r2SCAN , and
B3LYP densities appear to be more different from the reference,
while the densities of PBE0, r2SCAN50, and LC-ωPBE appear
to be less different. In Refs.14,46, and61, they insist that the
HF density is inaccurate because it looks spatially different
from the density of the coupled-cluster methods. However,
as noted in Ref.43, spatial differences in electron density do
not directly imply improved accuracy, nor is the relationship
between density errors and energy errors straightforward.
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V3. Proxy errors related to NDI errors

We have already seen that proxy benchmark densities intro-
duced in the literature produce such a range of values that
it undermines their credibility as proxies. We have also just
documented how poorly the NDI performs when applied to
any density other than its own self-consistent density, when
it yields the DDE. In this section, we show that these two
phenomena are intrinsically linked.

Table 13: Relationship between proxy DDE and the NDI,
shown numerically for the forward RKT10 barrier height. Ẽ
values for LC-ωPBE were obtained from Ref.13 (also presented
in Table 9). Unit in kcal/mol.

functional nproxy D̃[nproxy] Ẽ [nproxy] DDE

PBE LC-ωPBE -1.38 -1.31 -2.69
PBE r2SCAN50 2.15 -4.85 -2.69
SCAN LC-ωPBE -0.95 -0.29 -1.24
SCAN r2SCAN50 1.28 -2.50 -1.24

The proxy DDE ẼD and the naive interpolator D̃ follow an
exact relationship. For a given proxy density, and approximate
functional, adding together Eqs. 11 and 20 gives:

ẼD[nproxy] = ∆ẼD − D̃[nproxy] (21)

This is illustrated in Table 13. But the interpretation is very
interesting. If the proxy benchmark were close to the exact
density, D̃[nproxy] would be much smaller than DDE, and ẼD

would be close to DDE. We clearly see that this is not true for
the crucial case of H2 + F → H · · ·H · · ·F, the one case where
a sufficiently accurate density was found and inversion could
be done. In every case, the benchmark proxy density yields a
terrible estimate of the DDE. We can now relate the failure
of proxy benchmarks to the overestimates of NDI. If a proxy
benchmark density is close to the exact density, its ideal DDE
is very small, and vanishes quadratically as the exact density
is approached. But our formula has D̃[nproxy] instead, which
is linear in the difference, and much larger than the ideal DDE.
But the larger it is, the more inaccurate the proxy density is
for estimating the DDE. The benchmark proxies would need
to be extremely close to exact in order to make this difference
negligible, and none of those suggested or being used in the
literature meet this criterion.

V4. Analysis in terms of total energies

In this last section, we work backwards and decompose the
errors in chemical reaction energies into their total energy
components, such as the transition state and the reactants
in the case of a barrier height. Although density functional
approximations often yield large absolute errors in total energies
due to intrinsic limitations when their functional forms are
applied to core electrons, they are nonetheless highly effective

in predicting relative quantities such as reaction energies and
barriers. The errors in total energies are often much larger
than the energy difference itself, and vary enormously among
different approximate functionals. The reliability for energy
differences largely stems from a systematic cancellation of FEs:
when the energetic errors of the reactants and products are
of comparable magnitude, their difference–the relative energy–
remains accurate even if the respective errors are significant.

As stated repeatedly above, unfortunately, we cannot di-
rectly measure the HF-DFT’s DDE, or even have a good
estimate. What we can do is calculate the pragmatic DDE
of self-consistent functionals when we can calculate accurate
densities and perform sufficiently accurate KS-inversions. Fig-
ure 16 presents the distribution of the ratio of the product
DDE divided by the reactant DDE for 103 benchmark reactions.
(See Table S9 for a complete list of reactions selected based
on whether they were small enough to allow CCSD density
calculations in the GMTKN55 and Bauzá3072 datasets.) If
the DDE of the reactant and product are similar, their values
in the energy difference will cancel each other out and will
not affect the overall error. In the density-insensitive case, the
distribution of ratios is relatively clustered around 1. However,
in the density-sensitive case, the ratios are distributed far from
1. It is clear that the difference in error between reactant
and product mentioned affects DDE as in Table 11. A few
outliers far from 1 in density-insensitive cases may look quite
strange, but this occurs only because the reactant DDE in
the denominator is very small (see the number next to the
marker).

V5. Relationships between density-driven errors and
standard metrics of density errors

Quantitatively assessing the accuracy of an electron density is
inherently challenging. The DFT literature is full of density
error plots and many different metrics to measure density dif-
ferences. In fact, one can devise infinitely many such measures,
and different ones are used to make different points. Some
show self-consistent densities to be preferable, others find HF
densities better.

An important point to note is that, for spatially open-shell
cases, there is freedom in the orientation of the orbitals, which
must be accounted for when calculating the error. This occurs
for some commonly used metrics, such as the L2 norm or
differences in Coulomb self-energy. For systems with degener-
ate electronic configurations, the orientation and occupation
of atomic or molecular orbitals can vary arbitrarily without
affecting observable properties such as energies. Figure 17
illustrates this point: Due to the degeneracy of the O atom’s
2p orbitals, electron densities computed using the same func-
tional (e.g., PBE) may differ in shape. In such cases, direct
comparison of real-space densities becomes unreliable, even
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Figure 16: Distributions of the ratio of density-driven error (DDE) between product and reactant for 103 benchmark reaction
energies (see Table S9 for the full list). Reactions are categorized as density-sensitive (red) or density-insensitive (green). The number
below each box indicates the number of reactions included in that category. White diamond markers denote the mean DDE ratio
within each box. For cases where the ratio exceeds 2.5, the corresponding value in parentheses indicates the DDE of the reactant (in
kcal/mol). In density-insensitive reactions, the DDE ratio is generally clustered around 1, indicating similar DDE contributions
from both reactants and products. In contrast, density-sensitive reactions exhibit larger deviations from 1, suggesting significant
differences in DDE between reactant and product. These results support the view that DDE contributes to energy errors primarily
in density-sensitive cases, highlighting a link between DDE magnitude and density sensitivity.

when the densities are obtained using the identical method,
unless this ambiguity is removed. As a result, spatial features
of the electron density may differ in ways that are not physically
significant, thereby confounding numerical comparisons. This
degeneracy-related variability in real-space density distributions
can lead to misleading conclusions when comparing electron
densities across different calculations or methods.

To avoid spatial ambiguities—such as the orbital occupation
variability illustrated in Fig. 17—a subset of 36 reactions was
selected from the 103 benchmark reactions in Table S9 (see the
reaction index that marked with an asterisk in Table S9). Only
reactions involving closed-shell or non-degenerate open-shell
species were included, allowing for reliable correlation analysis
between DDE and real-space density metrics. This subset
avoids artifacts arising from arbitrary orbital occupations in
degenerate systems. Figure 18 presents the relationship be-
tween DDE and the L2 norm of the density difference for
this subset, evaluated across nine approximate functionals
and HF. As previously noted, establishing a clear and quan-
titative relationship between real-space density features and
DDE remains challenging. Indeed, little to no correlation is
observed between DDE and density error metrics such as the
L1, L2 norms, Shannon entropy73, Fisher information74, and
Coulomb self-energy (see Figs. S9–S18). Despite extensive
attempts, we failed to find any such correlation, nor have we
identified any in the literature.

VI. Discussion and recent literature

To explain the significance of our findings to work in the
literature, we consider specifically the barrier height of H2 +
F → H · · ·H · · ·F (and its backward reaction) as it plays a crucial
role in propagating confusion about DDEs. An earlier paper
appeared to show, using proxy densities and the NDI, that there
were larger DDEs in HF-DFT than DFT, hence suggesting a
cancellation of errors between DDE and FE is responsible for
the improved performance of HF-DFT for barrier heights. In
Ref.14, one specific case was targeted for finding an accurate
density and KS inversion, as a check on the value of the
proxies.

Table 1 of that work reports barrier heights for that reaction,
both forwards and backwards. We already showed in Sec. V1
that the proxy densities are far too inaccurate to be useful
for these purposes (see Table 8). We also note that all the
reports of DDEs for HF-DFT should be discarded, as these are
actually NDIs on non-self-consistent densities. It is unknown
how large the DDE for those calculations is.

But there is a crucial trend not pointed out in the paper.
For every single case (7 functionals times two barrier heights),
the change in barrier height from the self-consistent result
to the HF-DFT result is in the same direction as the change
from self-consistent to exact. Compare this with our Fig. 1 for
one-electron systems, parameterized by a. Here, we do not
have all densities along one line. The HF density is in some
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Figure 17: Electron densities and their differences between
two independent PBE calculations (1st and 2nd) for the OH
radical (top row) and the OH– anion (bottom row). The OH
radical exhibits substantial density variations due to degeneracy-
induced random orbital occupations resulting from different self-
consistent field convergence paths, whereas the closed-shell OH–

anion shows minimal differences. Yellow and cyan isosurfaces
indicate positive and negative density differences, respectively.
The isosurface level is set to 0.7 for individual molecular densities
and 0.03 for the density differences. Quantitative comparisons
of the 1st and 2nd densities for each molecule using known
real-space density metrics yield the following values (in the
order of OH radical, OH– anion): L1 = (1.2, 2.0 × 10−6), L2 =
(0.32, 4.0 × 10−7), Shannon entropy = (2.0, 6.0 × 10−6), Fisher
information = (12.6, 2.0 × 10−5), and Coulomb self-energy =
(0.06, 3.0 × 10−13). (See Figs. S9–S18 for the definitions of each
metric.)

other ’direction’ in density space. But the results are perfectly
consistent with Fig. 1. It looks like the HF-DFT density is
much closer to the exact density than the self-consistent one
is, which suggests strongly that its DDE, if we could measure
it, would be smaller in magnitude than that of each of the
functionals. Note that it would change from one functional to
the next, but should be far less than the numbers reported in
the paper. Lastly, we note that the FE for each functional is
typically larger in magnitude than the TE on the HF density,
which excludes the naive interpretation of DC-DFT.13–16,75

But this is just like Fig. 1, on the right. There’s a range
of densities that are more accurate than the self-consistent
density, but with errors less than the FE. Both the DDE and FE
are reduced by moving to the HF density. This is an automatic
consequence of the (near) parabolic shape of the approximate
functional with minimum at the self-consistent density. The
naive explanation applies to the left hand side, but the right-
hand side exists also. Thus, the tremendous improvement in
barrier height with HF-DFT does not contradict the principles
of DC-DFT. The real question is whether the DDE of such a
calculation is bigger or smaller than that of the self-consistent
calculation, a question we are currently unable to answer.

Table 14 gives a list of appearances of the three major
sources of confusion introduced in the recent literature about
DC-DFT: using NDI to decide the DDE of HF-DFT calcula-
tions, use of proxies as benchmark densities when they are not

Figure 18: Relation between density-driven error (DDE) and
L2 norm differences for the 36 selected reactions (listed in Ta-
ble S9), evaluated across various density functionals. CCSD
densities are used as the reference. (See Figs. S9–S18 for ad-
ditional comparisons using other density metrics, including L1
norm, Shannon entropy, Fisher information, and Coulomb self-
energy.)

sufficiently accurate, and the idea that ’natural’ metrics, such
as the L2 norm, for density errors can somehow be correlated
with the measures used in DC-DFT.

Table 14: Appearance in recent literature of the naive density-
driven error interpolator (NDI), proxy benchmark densities, and
scalar measures of density differences.

NDI
Nam 202012 Fig. 2, Fig. 4
Kaplan 202313 Eq. 11, Table 5
Kanungo 202414 Eq. 4, Table 1, Table 2
Kaplan 202415 Eq. 11, Fig. 1, Fig. 3, Fig. 4, Fig. 5
Pangeni 202516 Eq. 4, Table 2

proxy benchmark densities
Kaplan 202313 Eq. 10, Eq. 11, Table 5
Kanungo 202414 Table 2
Kaplan 202415 Eq. 6

metrics of density difference
Medvedev 201746 Fig. 1, Fig. 2, Table 1
Dasgupta 202234 Eq. 9 ,Fig. 7
Shahi 202561 Eq. 1

VII. Conclusions

There are many lessons to be drawn from the results presented
here, lessons that are important for understanding how DC-
DFT works. First, any work using the naive density-driven error
(DDE) interpolator (NDI) yields essentially no quantitative
information about DDEs, and our results suggest it likely
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hugely overestimates DDEs. As far as we know, there are
no reliable estimates of DDEs for HF-DFT (apart from those
here), and there is no evidence in the literature that the HF
density is less accurate than a typical self-consistent density
(using the only measure that is relevant to DC-DFT). Claims of
unusual or unexplained cancellations of errors between DDEs
and functional errors (FE) should be discounted. Our results
suggest that actual DDEs of HF-DFT densities are likely much
smaller than those reported, leaving no significant cancellation
of errors. Moreover, the densities of HF-DFT calculations
may be quite different from HF densities themselves. Finally,
our results show that under typical circumstances, it is not
surprising that often the energy error using the HF density is
lower than the energy of the exact density (the FE), and that
such cases can easily occur even when the HF density is more
accurate than the self-consistent density.

Two further points are worth emphasizing. First, one must
be extremely careful before using proxies in place of benchmark
densities. In general, if the proxy does not come from a
self-consistent KS calculation, we have no reliable way to
estimate its density-driven error. Even if it does, and we
can calculate its DDE, this is not a definitive yardstick for
comparing one functional’s density to another’s, as the DDE
depends on the functional chosen. For reasonably accurate
functionals, our examples show that these are usually good
proxies for ideal-DDEs, which can be compared directly (but
require knowledge of the exact functional to calculate directly).
Even a very small pragmatic-DDE cannot be taken as definitive
evidence that the density is intrinsically accurate, and proxy
densities may be too unreliable for estimating ideal-DDEs or for
preserving the correct relative ordering of DDEs across standard
functionals. Second, there are endless interesting measures of
the ‘accuracy’ of a density, from L2 norms to kinetic energies
to Shannon entropies. We have searched hard, and found
none that correlate with the DDEs defined in DC-DFT. There
are two simple reasons for this. First, DC-DFT is applied
to the energy differences that are the relevant quantities in
materials and quantum chemistry. There is rarely an obvious
route to applying some norm over a density to differences in
densities. Second, DDEs depend on the entire functionals in
an extremely complex way, so that it is unsurprising that their
patterns are difficult to capture by focusing on just one single
measure. Thus it seems always a mistake to conflate small
density errors by one of these metrics with small ideal DDEs.

Calculation of (pragmatic-)DDE for a given self-consistent
DFT calculation and energy difference is straightforward when
a benchmark energy and density is available, provided they are
sufficiently accurate. But this requires that the functional be
applied self-consistently, which is not the case for HF-DFT.
To find out if the HF density is more accurate by the measure
of DC-DFT, requires evaluation of the exact functional on
an approximate density. In general, this is impossible with

present computational techniques, except for the simple cases
presented here. Thus, for practical cases such as barrier heights,
we cannot definitively quantify the DDE of the HF density.
But we can say that all previous attempts to do so, based on
the NDI, should be discounted, leaving no evidence that the
HF density is less accurate than the self-consistent density in
cases where it matters (density-sensitive cases). In any event,
the discussion is largely misplaced, as the density of HF-DFT
is not the HF density.

However, what is clear is that the case of barrier heights
does not fit the same mold as other known successes of HF-
DFT. For example, for dissociation curves, it has been shown
that the density-driven error dominates in the large separa-
tion limit, and that the HF density is far better than the
self-consistent density in that limit, and so almost entirely
eliminates the error.8 Neither of these statements apply to
barrier heights (and perhaps other situations, too). Both ex-
isting literature13–16,75 and our own calculations clearly show
that density driven errors of self-consistent calculations do not
dominate the errors in barrier heights, and that the improve-
ments typically rendered by HF-DFT are significantly larger in
magnitude than the density-driven error. It is plausible that
the true density of an HF-DFT calculation (which is not the
HF density) is more accurate (i.e., has a lower ideal DDE than
the self-consistent density), as in our one-electron examples
of Sec. IV1. But that would not alter the fact that the domi-
nant improvement is in the functional-driven error, which is
consistently significantly smaller than its self-consistent coun-
terpart. When exact density (here, CCSD or CCSD(T)) is
evaluated on approximate functionals, the (pragmatic-)DDE
vanishes, leaving only the FE. Our DC-DFT analysis explains
how HF-DFT can achieve lower errors than functional errors,
but not why it so consistently improves barriers. Given the
mild increase in multireference character of the transition state
relative to reactants, it also cannot be ruled out that CCSD
yields densities (not energies) that are insufficiently accurate
on the scale needed for DC-DFT analysis.

The bottom line of this work is that we have corrected
several errors in the literature, and performed a thorough DC-
DFT analysis of the case of barrier heights, to the extent
that is currently possible. Almost all existing evidence in the
literature for the size of DDEs of HF-DFT and significant
cancellations of errors between FE and DDE is marred by the
use of the unreliable DDE interpolator (or use of proxies),
and all conclusions based on those numbers about the sizes
of DDEs of HF-DFT should be discounted. Moreover, the
success of HF-DFT for barrier heights (and other cases) can
still be understood within DC-DFT, by noting that an energy
error in HF-DFT that is less than the FE is not unexpected.
Regardless of the relative accuracy of the HF density (which
depends mightily on how you measure it), the density of an
HF-DFT calculation is not the HF density. In the one case
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where we could easily find that density, the corresponding
functional has both smaller DDE’s and FE’s than the original.
This explains how HF-DFT can yield smaller errors than the
FE of the original functional, but sadly does not explain why
it reduces most FEs of most semilocal functionals by so much.
It seems likely that further insight, combined with DC-DFT
analysis, is needed.

Computational Details

The aug-cc-pV5Z76 basis set is used for every energy and den-
sity calculations. All HF, DFT, and coupled-cluster calculations
in this paper were done by PySCF77,78 2.9.0 version, except
Figs. 8, 14, and 15, which used ORCA79–81 6.0.1 version and
Multiwfn82,83 to draw density contour map. Figure 17 is drawn
by VESTA84. We set NoFrozencore option for coupled-cluster
calculation in ORCA. For Kohn-Sham inversion, we use the
Zhao-Morisson-Parr (ZMP)62 algorithm in KS-pies71 package
and set 1024 for maximal λ and used Fermi-Amaldi (FA)85

for the guiding potential.

Supporting Information

Geometries for one-electron systems, Energy curves of one-
electron systems, Error distribution of DFT and HF-DFT for
103 benchmark reactions, Table of energy difference between
CCSD and CCSD(T) densities, Table of subset, systems, and
stoichiometry information for the 103 benchmark reactions,
Table of reaction indices of the 36 selected non-degenerated
reactions, Table of ideal-DDE, pragmatic-DDE, and NDI of
one-electron systems, Figures of density difference contour
map between CCSD and CCSD(T), Figures of relationship
between DDE and real-space density metrics, Raw data of
density-sensitivity, DFT, HF-DFT, coupled-cluster, and total
energies for whole density-functional combinations (in XLSX).
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