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Correlation in time-dependent density-functional theory
Paul Hessler,a) Neepa T. Maitra, and Kieron Burke
Department of Chemistry, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854

~Received 20 June 2001; accepted 28 March 2002!

The exact time-dependent correlation energy in time-dependent density-functional theory is shown
to sometimes become positive, which is impossible with most present TDDFT approximations. Both
the correlation potential and energy can be strongly nonlocal in time. A new inequality is derived for
the time-dependent exchange-correlation energy. The correlation energy appears to scale to a
constant function of scaled time in the high-density limit. In the linear response regime, the
correlation energy is shown to become purely adiabatic, but the correlation potential is generally
nonadiabatic. The usefulness of the virial theorem as a test of numerical accuracy is demonstrated.
All results are found or inspired by exact numerical solution of a simple model system~Hooke’s
atom!, and inversion of the corresponding Kohn–Sham equations. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1479349#
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I. INTRODUCTION

Ground-state density functional theory~DFT! has be-
come a useful alternative to traditional methods in quant
chemistry, because of its ability to treat large numbers
electrons with reasonable accuracy.1 Time-dependent
density-functional theory~TDDFT! is the generalization o
ground-state DFT to includetime-dependentexternal poten-
tials on electrons, and its formal validity was establish
with the Runge–Gross theorem.2 The one-to-one correspon
dence between time-dependent densities and time-depen
potentials for a given initial state leads to the time-depend
Kohn–Sham system, a set of noninteracting fictitious el
trons moving in a time-dependent Kohn–Sham potent
TDDFT has now been applied to many problems in atom
molecular and solid-state systems, including optical
sponse, dynamic polarizabilities and hyperpolarizabiliti
excitation energies, species in intense laser fields and hi
energetic collisions.3–34 Although most of these calculation
take place in the linear response regime, TDDFT also app
to species in intense fields and is perhaps the only feas
method to study many-electron dynamics in this regime.35–39

The only unknown part of a TDDFT calculation~begin-
ning in a nondegenerate ground state40! is the exchange-
correlation potentialvXC@n#(r t) as a functional of the entire
history of the density,n(r t). In the special case of optica
response, including electronic excitation energies, this
needed only in the vicinity of the ground-state density of
system, and this information is contained in the exchan
correlation kernel,f XC@n#(r ,r 8,t2t8). But relatively little is
known about these functionals, partly because relatively
conditions that the exact functionals satisfy are known.

Exact conditions have been essential in ground-s
DFT, both for guiding construction of universally applicab
functionals,41 and in explaining why some approximation
work well while others do not.42,43 Known exact conditions
in TDDFT include Newton’s third law,44–46 the harmonic

a!Electronic mail: phessler@crab.rutgers.edu
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potential theorem,47 a viral theorem,48 the relation between
coupling constant and scaling,48 and the memory formula.40

For example, part of the motivation for developing th
Vignale–Kohn approximation for the exchange-correlati
kernel49 was that the Gross–Kohn approximation50 violated
the harmonic potential theorem. The present work ma
several new exact statements about correlation functiona
TDDFT, many of which arenot satisfied by the present gen
eration of approximate functionals.

A key focus in this work is on the limitations of adia
batic approximations to correlation functionals. Such an
proximation ignores the temporal nonlocality of the corre
tion potential, i.e., its dependence on the history of
density. In the case of linear response, this leads to a r
valued, frequency-independent, exchange-correlation ker
Most ~if not all! chemical applications of TDDFT51 employ
an adiabatic approximation such as ALDA,52–55 but little is
known about its reliability or accuracy. Almost all our resu
demonstratefailures of this approximation; failures tha
likely must be addressed if ultimately TDDFT is to achie
the quantitative accuracy enjoyed by ground-state DFT
day.

The errors made by the adiabatic approximation
called dynamical effects, due to history-dependence in
time-dependent functionals. A key technique of the pres
work is to study the time-dependent correlationenergy, as
opposed to the potential. This is primarily a technical devi
designed to limit the amount of information presented. T
time-dependent correlation energy is determined by integ
over the correlation potential, so that poor approximations
the energy imply poor approximations to the potential. Als
approximations that are poor for the potential point-wise
space may produce reasonable approximations for integr
quantities, as is true in the ground-state case. Lastly,
time-derivative of the correlation energy yields the corre
tion contribution to the power absorbed during the dist
bance.

Our calculations are performed on a time-depend
Hooke’s atom, two electrons in a harmonic well56 with a
© 2002 American Institute of Physics
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time-dependent force constant.57 Because the system remain
spherical, the time-dependent Schro¨dinger equation can eas
ily be solved numerically, and the Kohn–Sham equation
verted. The model system isnot intended to represent a
atom or molecule under conditions in present-day exp
ments. But, Hooke’s atom is a Coulomb-interacting ferm
system and so its behavior is governed by the same func
als as for all electronic systems: Atoms, molecules, and
ids. Until recently,48,59 there have been no exact TDDFT ca
culations on any system. These two previous ex
calculations48,59 employ this system: In two-dimensions
Ref. 59 and in three-dimensions in Ref. 48.

Our most dramatic result is to show that, due to dynam
correlation, the correlation energy can become positive
Fig. 1, we plot the correlation energy of Hooke’s atom a
function of time when the force constant is increas
smoothly from 0.15 to 0.35 duringt50 – 4 and then held
constant, as shown in the top panel. We also plot the~almost!
exact correlation energy if the instantaneous density was
ground-state density of some system, i.e.,EC

gs@n(r t)#, where
n(r t) is the time-dependent density.~Precisely how this is
done is given in Sec. III.! The difference between the two
which we call the dynamical contributionEC

dyn(t), is very
significant, so much so that the correlation energy even
comes positive. Clearly, any adiabatic approximation, be
local in time, can at best approximateEC

gs@n(r t)#, and will
miss the dynamical contribution entirely. Such stro
exchange-correlation effectsmustbe present in any specie
perturbed by a laser field near a resonance. In the lin
response formalism, exchange and correlation cha
ground-state Kohn–Sham transition frequencies and osc
tor strengths into exact quantities of the true system. A p
turbation tuned to a Kohn–Sham transition will cause
Kohn–Sham system to resonate, but exchange-correla
corrections stop the true system from doing so.

We prove rigorously an inequality relating the dynam
exchange-correlation energy and the dynamic noninterac
kinetic energy~see Sec. V A!. We also demonstrate explicitl
that the correlation potential and energy can have a str

FIG. 1. Correlation energy components as a function of time when the f
constant is changed as shown in the top panel~all in atomic units!: Instan-
taneous ground-state correlation energy~bottom dashed line!, true correla-
tion energy~solid line!, dynamical part of the correlation energy~top dashed
line!.
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nonlocality in time, depending on the history of the dens
~see Sec. V B!. Again, any adiabatic approximation fails t
capture this effect. On the other hand, we argue that
exchange energy forN electrons, will typically depend only
weakly on the history~for a two electron singlet, as in ou
model, it depends only on the instantaneous density!.

Notwithstanding a previous study in two-dimensions59

we show in Sec. V C, that thereis a finite dynamical contri-
bution to the correlation potential in this limit.~Ironically,
this doesnot show up in the correlation energy, which can
proven to be second-order in the strength of the perturba
in general.! Even in Hooke’s atom, corrections to an adi
batic approximation can be important in linear response
well as in strong fields.

The behavior of functionals under uniform coordina
scaling has been an important guide to the construction
functionals in the ground-state theory. A key improvement
the PBE generalized gradient approximation41 over the local
density approximation~LDA !60 and the Perdew–Wang
exchange-correlation functional~PW91!61 is that, for a finite
system, it scales correctly to a constant in the high-den
limit, while remaining exact for the uniform electron ga
@unlike the Lee–Yang–Parr~LYP!62 correlation functional#.
In Ref. 48, the relation between coupling constant and s
ing within TDDFT was deduced. We demonstrate here th
in the high-density limit, the correlation energy numerica
scales to a constant function of scaled time~see Sec. V D! for
Hooke’s atom. If universally true, this plausible result wou
imply that the Go¨rling–Levy second-order perturbation en
ergy remains finite in TDDFT. In the same way that there h
been much recent interest in orbital-dependent function
for accurate ground-state calculations,63–65 the time-
dependent optimized effective potential~OEP! scheme6

could be used~suitably modified to avoid asymptotic diffi
culties with the correlation potential66! to include correlation.

The paper begins with some formal theory and defi
tions. We introduce some terms with very precise meanin
including the idea of dynamical contributions to tim
dependent quantities. In the third section, we discuss
numerical algorithm, and the various tests based on the e
tions of motion, which demonstrate the accuracy of our
lutions. Section IV is a discussion of many effects that can
seen in the one-electron version of our system: A tim
dependent three-dimensional harmonic oscillator. This
needed to illustrate the qualitative one-body features of
electronic system, to be contrasted with the next sect
where two interacting electrons are introduced and the c
relation effects summarized above are discussed in de
Atomic units (e25\5m51) are used throughout, so that a
energies are in Hartree, all distances are in Bohr radii, and
times are in units of 2.419310217 s.

II. THEORY

The Schro¨dinger equation for time-dependent systems

$T̂1V̂ext1V̂ee%C~ t !5 i Ċ~ t !, ~1!

where T̂ is the kinetic-energy operator,V̂ext is the external

e
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7one-body potential,V̂ee is the electron–electron repulsion
operator, and a dot implies a derivative with respect to tim
The Kohn–Sham equations are

$2 1
2¹

21vs~r t !%f i~ t !5 i ḟ i~ t !, ~2!

wherevs(r t) is the Kohn–Sham potential, an effective~one-
body! external potential chosen to make

n~r t !5(
i 51

N

uf i~r t !u2 ~3!

exactly equal the time-dependent density of the interac
wave functionC(t) in Eq. ~1!. In general, the one-to-on
mapping between densities and potentials depends on
initial state ~both for the physical system and the Kohn
Sham system!.2,67 In this paper, we study the evolution of th
system initially prepared in its nondegenerate ground st
so that the initial wave function is a functional of the groun
state density.

For two electrons in a spin-singlet, we decompose
Kohn–Sham orbital as

f~r t !5A~r t !exp~ ia~r t !!,

n~r t !52uf~r t !u2, ~4!

whereA anda are real. Insertion of Eq.~4! into Eq.~2!, and
the requirement that the resulting potential be real leads

vs5
1

4

¹2n

n
2

1

8

u¹nu2

n2 2
1

2
u¹au22

]a

]t
, ~5!

where

¹•¹a1
1

n
¹a•¹n1

1

n

]n

]t
50. ~6!

In the special case of a spherical system

vS5
1

2r S n8

n D1
n9

4n
2

1

8 S n8

n D 2

2
1

2
a822ȧ, ~7!

where

a852
1

n~rt !r 2 E
0

r

ṅ~r 8t !r 82dr8, ~8!

and the prime denotes a derivative with respect tor.
OncevS(rt ) has been found, we define energies in t

same fashion as for the ground state: The Kohn–Sham
interacting kinetic energy is

TS@n#~ t !5E d3r u¹f~rt !u2, ~9!

the Hartree energy is

U@n#~ t !5
1

2
d3r E d3r 8

n~r t !n~r 8t !

ur2r 8u
, ~10!

and the external potential is

Vext@n#~ t !5E d3rvext~r t !n~r t !. ~11!

The exchange and correlation contributions are given as
ferences between quantities evaluated on the interacting
Downloaded 11 Jul 2002 to 128.6.1.17. Redistribution subject to AIP 
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noninteracting system. Exchange is trivial for two electro
Ex(t)52U(t)/2. Correlation contains both kinetic and po
tential contributions

EC~ t !5TC~ t !1UC~ t !, ~12!

where

TC~ t !5T~ t !2TS~ t !,

UC~ t !5Vee~ t !2U~ t !/2. ~13!

This paper will focus almost exclusively on the tim
dependent energy components. However, most approx
tions for time-dependent density functional theory have b
given directly in terms of the exchange-correlatio
potential,49,68,69defined as

vXC~r t !5vS~r t !2vext~r t !2vH~r t !, ~14!

wherevH(r t) is the time-dependent Hartree potential

vH~r t !5E d3r 8
n~r 8t !

ur2r 8u
. ~15!

We can extract time-dependent energy components from
approximation to the potential, via two results proved us
equations of motion in Ref. 48: The time-dependence of
energy

EXC~ t !5EXC~0!1E
0

t

dt8E d3rvXC~r t8!ṅ~r t8!, ~16!

and the virial theorem

TC~ t !52EXC~ t !2E d3rn~r t !r•¹vXC~r t !. ~17!

Thus time-dependent energy components encapsulate g
information about potentials.

A very useful formal device is to consider, at some i
stant in time, the densityn(r t) as theground-statedensity of
some system, even though the wave function at this tim
typically not the ground state ofany potential. For any en-
ergy component, e.g., the correlation energy, we then de
the dynamicalcontribution as

EC
dyn@n#~ t !5EC@n#~ t !2EC

gs@n~r t !#, ~18!

where EC
gs@n(r t)# is the ground-state correlation energ

functional evaluated on the time-dependent density.
an approximate functional, EC

dyn@n#(t)5EC
approx@n#(t)

2EC
approx,gs@n(r t)#, where EC

approx,gs@n# is the approximate
ground-state energy of density,n, evaluated fromEC

approx@n#.
Any adiabatic approximation, e.g., ALDA, hasEC

dyn50. Such
dynamical effects appear as memory effects: The ener
have a nonlocal dependence in time on the density. N
however, that the dynamical component as defined here
exist even for static densities if the underlying wave functi
is an excited state. Provided we begin in the ground-stat
some potential, the dynamical contribution vanishes if
external potential is static, or for any problem in which it
varied infinitely slowly.

Functionals that are truly local in time, such as the H
tree energy, have no dynamical component. We know
dynamical component for one nontrivial case. From Eq.~9!,
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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for the noninteracting kinetic-energy functional for one ele
tron ~or two paramagnetic electrons in the same spatial st!

TS@n#~ t !5E d3r
u¹n~r t !u2

8n~r t !
1E d3r

u jS~r t !u2

n~r t !
~19!

wherej s(r t)5¹a(r t) is the Kohn–Sham current density

jS~r t !5
1

i
$f* ~r t !¹f~r t !2f~r t !¹f* ~r t !%. ~20!

The first term in Eq.~19! is the ground-state contribution t
the noninteracting kinetic energy density,TS

gs@n#. The second
term is thereforeTS

dyn@n#, and is semilocal in time, since th
continuity equation

ṅ~r t !52¹• j ~r t !, ~21!

implies that~for spherical systems at least! ṅ uniquely deter-
mines the current

j ~rt !5 j• r̂5E
r

`

dr8ṅ~r 8t !. ~22!

ThusTS
dyn is a functional of the density which is semilocal

time, but highly nonlocal in space. However, as a functio
of both the density and current, it is local in both space a
time. The local approximation forTS would be to ignoreTS

dyn

and to approximateTS
gs by the Thomas–Fermi contribution

III. ALGORITHM

The time-dependent Schro¨dinger equation was solved i
Ref. 48 by expanding the wave function in a basis set
solving the partial differential equation in time using th
Runge–Kutta method. In Fig. 4 of Ref. 48 the virial of th
correlation potential~right-hand-side of Eq.~17! excluding
the exchange contribution! deviates from EC(t)1TC(t)
aroundt51.6. If the virial andEC(t)1TC(t) do not agree,
the wave function generated by the algorithm is inaccur
beyond this point in time. This illustrates the usefulness
Eq. ~17! as a stringent test of the numerical accuracy o
solution of the time-dependent Kohn–Sham equations. N
that a standard test of accuracy in the ground-state prob
that of making small changes in densities and checking
the corresponding change in an energy is accurately re
duced by integrating its potential~functional derivative!
times the density change is not available for time-depend
problems. The time-dependent potentials are not typic
functional derivatives of the time-dependent energies.70 Pos-
sible sources of error in Ref. 48 are the fourth-order Rung
Kutta method or an insufficient number of levels in the ba
set to accurately construct the wave function after the w
function was sufficiently excited by the perturbation. In t
present paper, the Crank–Nicolson method is used to s
the Schro¨dinger equation. For this method, we first constru
the ground-state wave function for a given external poten
The wave function is transformed onto a grid and propaga
forward in time. The normality of the wave function is gua
anteed at each time step because Crank–Nicolson emplo
unitary operator~unlike Runge–Kutta!. For all calculations
with this algorithm, we have found that we can satisfy t
virial theorem of Eq.~17! to arbitrary accuracy once suffi
Downloaded 11 Jul 2002 to 128.6.1.17. Redistribution subject to AIP 
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ciently fine grids in space and time are used. Figure 2 gi
an example of this, showing that the virial theorem for c
relation is satisfied at each time step. Note the magnitud
energies involved. The spatial grid used for the Cran
Nicolson algorithm was typically steps of 0.0025 and t
time grid was 0.0001~both in atomic units!.

Considering the time-evolving two-electron density
time t as the ground-state density of some static potentia
very useful in analyzing the interacting system. For o
choice of time-dependent potential, the density closely
tains its Gaussian-type shape throughout the modulatio
the external frequency. This suggests that the tim
independent potential which has a ground-state den
matching our instantaneous density, is very close to that
static Hooke’s atom of a certain effective force consta
which we shall denotekeff. Comparisons to this instanta
neous ground state will be made throughout this paper.

The ground-state quantities that were used for this co
parison were produced by matching the Hartree energy f
the exact Kohn–Sham calculation to one in a table
ground-state values for Hooke’s atom.71 The energies for tha
ground-state Hooke’s atom with force constantkeff , were
taken as approximations toEC

gs, TC
gs, etc. This process wa

repeated by matching values of^r 2&, and again by matching
values ofTS. All three matching procedures produced ess
tially identical ground-state results and the Hartree ene
was chosen as the matching parameter for all runs.

IV. ONE ELECTRON

Before studying correlation effects, it is necessary to u
derstand the noninteracting system, a nontrivial task for m
time-dependent systems. Much about the dynamics of
interacting two-electron density can be understood from
dynamics of one electron in the same time-dependent po
tial, V(t)5k(t)r 2/2.

The quantum time evolution in the 3dHO is genera
related to the 1dHO when we begin in the ground state
each at t50 because of the separability of the tim
dependent Schro¨dinger equation in Cartesian coordinate
Expectation values of observables are then simply relate
the one-dimensional~1D! case, e.g.,̂r 2&3d53^x2&1d .

FIG. 2. A test of accuracy of the solution of the time-dependent system
the truncated run~T! ~see Table I!. k(t) is shown in the top panel.EC

1TC and the virial of the correlation potential are plotted. The virial~dashed
line! lies about on top ofEC1TC indicating a highly accurate solution.
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 11
TABLE I. Table of figures and their run parameters.

Run parameters and figures
Type k̄ v e Duration Figures

Nonresonant~NR! 0.25 0.75 0.1 entire run 6 and 7
Nonresonant~WNR! 0.25 0.75 0.05 entire run 3 and 9
Linear response~LR! 0.25 0.75 <0.025 entire run 8
Resonant~R! 0.25 1.0 0.05 entire run 4 and 5
Truncated~T! 0.25 0.75 0.1
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The time-dependent force constant used in all our ca
lations is

k~ t !5 k̄2e cosvt. ~23!

The values of the control parametersk̄, e, v for each figure
are given in Table I. In the one-electron case, this is
Mathieu oscillator~see, for example, Ref. 72!.

A. A measure of system response

The dynamics of the density are reflected in the tim
evolution of the spread of the density^r 2(t)&. In Fig. 3 we
plot the root-mean-square ~rms! variance, r rms(t)
5A^r 2(t)&, for two noninteracting electrons in the Mathie
oscillator~dashed line in lower panel! and compare this with
its value had the system remained in the instantane
ground-state of the external potential~upper panel!.

We see how the wave function is initially unchange
and then compresses far more than an instantaneous gro
state wave function would. After the slow initial respon
during the first half-oscillation, during the second ha
oscillation, the potential broadens again, but the density c
tinues to compress at first, because the response of the
function continues to lag behind the changes in the pertu
tion.

In thinking of the time-dependent response of an os
lator, two extreme limits come to mind. In the first, adiabat
the potential is turned on infinitely slowly, and the wa
function is always in its instantaneous ground-state. In
case, the response to any external potential is immediate

FIG. 3. Spread of parabolic well in linear response regime as a functio
time for the weak nonresonant run~WNR! ~see Table I!. The solid line is for
two interacting electrons and the dashed is for two noninteracting electr
The top panel shows the rms variance had the system remained in
noninteracting instantaneous ground-state of the potential.
 Jul 2002 to 128.6.1.17. Redistribution subject to AIP 
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the opposite extreme is ‘‘sudden switching,’’ in which th
force constant is instantly changed from one value to
other. The wave function is not an eigenstate of the n
potential, and evolves accordingly. In such cases, the cha
in the wave function is quadratic int for small t. The time
scale of our perturbation is in between these two extrem

In fact, the quantum dynamics follows directly from th
classical dynamics due to the harmonic nature of the po
tial. Classically evolving an initial ensemble, distributed
phase-space according to the initial quantum ground-s
~quasi-classical evolution!, results in phase-space distribu
tions close to that of the quantum state at later times.

The solid line in Fig. 3 is the rms variance for the evol
ing density of the interacting two-electron system~see Sec.
V!. We observe how it also displays the response time
and the overshooting–undershooting pattern present in
one-electron case. In fact it resembles twice the one-elec
value closely in both its amplitude and frequency patter
the differences are due to the interaction of the two electro
Consequently, the kinetic and potential energies of the in
acting system, follow similar trends~see Sec. V!.

Figure 4 shows the same quantities for a different~reso-
nant! choice of external spring constant; the response of
system is rather dramatic. The overshooting–undershoo
behavior is present again, as it is in all our runs; and
particularly striking in this case. Note especially the incre
ingly extreme compression of the density neart517 and
periodically thereafter. Again, the classical result is a ve
good approximation and again, the interacting two-elect

of

s.
the

FIG. 4. Spread of parabolic well for Hooke’s atom in resonance~R! as a
function of time. The solid line is for two interacting electrons, the dash
line is for two noninteracting electrons. The top panel shows the rms v
ance had the system remained in the noninteracting instantaneous gr
state of the potential.
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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case closely resembles twice the one-electron case. How
can understand the behavior of the one-electron system
der the various spring constants is explained in the n
subsection.

B. Time-dependent perturbation theory and linear
response

For small enoughe, perturbation theory can predict th
dynamics of the Mathieu oscillator.~The discussion in the
previous subsection suggests that classical perturba
theory on the 1D case can capture most of the behavior o
fully quantum three-dimensional~3D! case, provided Gauss
ian averaging over initial conditions is performed. It is sim
pler to do quantum time-dependent perturbation theory.! For
the variance in position, we obtain

^r 2~ t !&5
3

2v̄
1

3e

4k̄
Fcos~2v̄t !

v̄
12 sinS ~2v̄2v!t

2
D

3sinS ~2v̄1v!t

2
D S 1

2v̄2v
1

1

2v̄1v
D G ,

~24!

wherev̄5Ak̄. This is a good approximation to the dynam
ics, with the term involving the product of the sines givin
the essential dynamical behavior: Beating at frequency (v̄
2v)/2 superposed on the faster oscillations of freque
(2v̄1v)/2 ~see Fig. 3!. The beating amplitude is approx
mately 3e/(2k̄(2v̄2v)) when v and v̄ are of the same
order, as in our calculations.

On resonance,v52v̄, the oscillator becomes unstab
and we obtain

^r 2~ t !&5
3

2v̄
1

3e

4k̄
Fcos~2v̄t !

v̄
1t sin~2v̄t !

1
2 sin~~2v̄2v!t/2!sin~~2v̄1v!t/2!

2v̄1v
G . ~25!

The middle term in the brackets describes a secular gro
evident in Fig. 4~see also Fig. 5!. Note that the factor of 2

FIG. 5. Top graph: Oscillations in an envelope of a slow beating period
time-dependent Hooke’s atom where the perturbation is turned off after

half-oscillation for k̄50.25, v50.75, e50.1. Bottom graph: 3DHO with
same perturbation.v f50.591 for all runs.
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multiplying v̄ in the resonance condition and in the be
frequency off-resonance, is a consequence of the pertu
tion being quadratic and only connecting states of quan
number differing by 2.

For largere a full nonlinear analysis needs to be don
Much has been studied about the parameter regimes of
bility and instability in the Mathieu oscillator.72 In the limit
that e→0, it can be shown72 that the seeds of the unstab

regions are atv52Ak̄, Ak̄ and 2Ak̄/3. Only the first
emerges as unstable in our linear response analysis, bec
the instability of the other cases only occurs at largere.

C. Perturbation of finite duration

In some of our runs, we turn off the perturbation aft
half a cycle. After this time in the harmonic oscillator,^r 2&
oscillates at frequency 2v f where v f is the frequency in
which the harmonic oscillator is left~see Fig. 5!. This can be
explained by expanding the wave function in eigenstates
the final oscillator and noting that matrix elements ofx2 are
only nonzero between quantum states differing in quant
number by 2 or 0. In the case of Hooke’s atom, one obser
a slow beating on top of the fast oscillation in Fig. 5. Unlik
the harmonic oscillator, the eigenenergies of Hooke’s at
are not quite equally spaced so that the terms in the w
function expansion no longer all oscillate at the same f
quency. The slight difference between the frequencies g
rise to a fast oscillation close to that of the harmonic os
lator but contained within a slow envelope.

V. TWO ELECTRONS

In this section, we present results for the time-depend
Hooke’s atom. The overall trends of the dominant contrib
tions are guided by the shape of the density which is sim
to that in the one-electron case as shown in Figs. 3, 4, an
Now, however, we have correlation effects.

We shall be comparing the exact energies to those
tained from an almost exact ground-state approximation
described in Sec. II and III. Dynamical contributions to t
energy components@Eq. ~18!# can be significant even whe
the potential becomes static, as shown in Fig. 1 for the c

r
ne

FIG. 6. Hooke’s atom in resonance~R!: EC(t) ~solid line! and EC
dyn(t)

~dashed line! match almost exactly demonstrating the importance of
dynamical component in resonance.
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relation energy, because the time-evolving density is
static. Because the evolving wave function is not general
ground-state of any potential~except att50!, any calcula-
tion of its correlation energy based on a ground-state fu
tional will be erroneous. This is demonstrated by the qu
tatively different behavior of the time-dependent correlat
energy~see next section!.

A. Positive correlation energies

In ground-state DFT calculations, it has always be
found that EC1TC,0. The unusual positive behavior o
EC1TC of this time-dependent system was first reported
Ref. 48. Here we show thatEC(t) can itself be positive. This
differs dramatically from the ground-state problem whereEC

is a negative quantity as a consequence of the variati
principle. Thus, anyadiabaticapproximate ground-state co
relation energy functional will fail to capture this behavi
~as can be seen in Figs. 1, 5, and 8! because they are con
structed from ground-state functionals evaluated on the ti
dependent density.

A striking example of how the exact correlation ener
can differ significantly from any approximation that assum
the system is in its instantaneous ground state, e.g., ALDA
provided by our Hooke’s atom at resonance. Figure 6 p

EC(t) andEC
dyn(t) for the resonance casev52Ak̄. On this

scale,EC
gs(t)@5EC(t)2EC

dyn(t)# would be a relatively flat
line. For most of the run, the full correlation energy and
dynamical component lie on top of each other, showing t
EC(t) is almost completely dynamical.EC

gs(t)'20.04 while
EC

dyn(t) can reach'4, causing an error of two orders o
magnitude if a ground-state approximation is made for
correlation energy. This error is much greater than des
chemical accuracy.

In all runs we foundEC
dyn(t) to be greater or equal to

zero. Because the instantaneous ground-state minimize
energy over all wave functions of that instantaneous den
Egs(t)<E(t). HereE(t) is the energy of the evolving wav
function at time t, E(t)5TS(t)1Vext(t)1U(t)1EXC(t),

FIG. 7. A measure of the nonlocality ofĖC with respect to time for the
nonresonant run~NR!: Contrast the very similar density profiles implied i

the top panel near timest54.8 and 28.9 with the very different values ofĖc
there in the graph above. Similar comparisons may be made neart59.35
and t524.3.
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andEgs(t) is the energy of the ground-state whose density
the instantaneous density at timet. Then it follows that
Edyn(t)>0, and hence

EC
dyn~ t !>2TS

dyn~ t !. ~26!

We have used the fact that for two electrons in the sa
spatial state,EX(t)52U(t)/2 has no dynamical componen
In the generalN-electron case, the relation is

EXC
dyn~ t !>2TS

dyn~ t !. ~27!

Note that the right-hand-side of these inequalities is alw
less than or equal to zero by the ground-state variatio
principle for the Kohn–Sham kinetic energy. Thus we ha
proved thatEC

dyn(t) is always greater than a negative numb
2TS

dyn(t). Whether the stronger statement of positivity
EC

dyn(t) is generally true remains an open question.
We also found in all our runs thatTC(t).0, i.e., T(t)

.TS(t), much like in the ground-state case. Whether this
true in general also has yet to be proved.

B. Nonlocality in time

Little is known about the importance of nonlocal effec
in time in TDDFT. These are completely lost by any ad
batic approximation which considers only the density at
present time. The dynamical effects can be very large as s
above. To what degree does our system remember the p
How far back in time do we need to know the density
order to evaluate the various energy components?

In Ref. 48 equations of motion for various energy com
ponents were derived. For example,ṪS52*d3rṅ(r t)
3vS(r t) andĖXC5*d3rṅ(r t)vXC(r t). Integrating the right-
hand-side of these from 0 tot gives TS(t) and EXC(t), re-
spectively, but these do not imply that the density along
entire history from 0 tot is required to evaluate the energ
component at timet. Certainly it is not if the integrand is the
exact time-derivative of some function. This is the case
ṪS, at least for two electrons in the same spatial state wh
j5 jS. Consequently,TS(t) is semilocal in time: It depends
only on n(r t) and ṅ(r t) @see Eq.~19!#.

The exchange energyEX for this case is completely lo
cal, since it is simply minus half the Hartree energy. W
suspect that even in general it is not strongly nonlocal in ti
for the following reasons.EX may be expressed as the cla
sical Coulomb energy between the charge density and
exchange hole nX(r ,r 8,t),73 EX5**d3rd3r 8n(r ,t)
3nX(r ,r 8,t)/ur2r 8u. The exchange hole satisfies two fund
mental constraints at each instant in time:~i! Its on-top value
is a local function of the spin-densitiesnX(r ,r ,t)5
2(na

2(r ,t)1nb
2(r ,t))/n(r ,t), and~ii ! it satisfies the sum-rule

*d3rnX(r ,r 8,t)521.73 These two conditions, which depen
only on the value of the density at the present time, de
mine much about the shape of the exchange hole. Co
quently we may expect that a good approximation to
exact exchange energy can be obtained using only
density at the present time. Indeed, a recent calculation
the exchange kernel in linear response for the uniform e
tron gas74 was dominated by the frequency-independe
contribution.
license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In contrast, the correlation energyEC(t) and the corre-
lation potentialvC(r t) appear to have a very nonlocal com
ponent, depending on the entire history of the density. C
sider the plot ofĖC in Fig. 7 together with its density profile
implied by the rms variance shown above. The figure s
gests thatĖC is a very nonlocal functional of the density: Th
density profile for a time range centered at timet54.8 and
that centered neart528.9 are very similar, yet the values o
ĖC(t) near those times are significantly different. Similar
one may contrast the very similar densities in a time ra
centered neart59.35 and neart524.3 with the very differ-
ent shape ofĖC(t) in that time range. Then Eq.~16! directly
implies thatvC(r t) is a highly nonlocal functional of the
density.

Nonlocality of ĖC implies nonlocality of the correlation
energyEC(t). This is clearly evident in our runs. Consid
theEC(t) of Fig. 7 corresponding to the run discussed abo
Again, we contrast the very similar density profiles cente
at time t54.8 ~or t59.35! and t528.9 ~or t524.3, respec-
tively! with the significantly different values ofEC(t) cen-
tered there. This implies that local~in time! information is
not adequate for a reasonable estimate ofEC(t). The highly
nonlocal-in-time nature of correlation must be captured
the correlation energy and potential functionals for accur
results.

C. Linear response regime

The most well-studied regime of TDDFT is the line
response regime, in which the time-dependence of the e
nal potential is weak relative to the static potential. Ele
tronic excitation energies~and oscillator strengths! can be
extracted from analysis of this linear response regime.
first TDDFT calculations were in this regime.54

We present only one basic result in this regime, but o
which explains qualitative trends in our data. Writing3

n~r t !5n0~r !1en1~r t !1¯ , ~28!

wheree is a small parameter to be taken to zero at the en
the derivation, we first note that, by construction, dynami
quantities are at least first-order ine. Secondly, we note tha
ṅ also has no zero-order component. Clearly then, from
~16!, the dynamical contribution to the correlation energy
at leastsecond-order in e. This means that, in the limit o
weak time-dependent potentials,TC

dyn'2UC
dyn. This effect

can be seen at the start of most runs where the system ha
yet responded to the full strength of the perturbation. In F
9, we plot the dynamical contribution to the kineti
correlation and total correlation energies for two values
small e, differing by a factor of 2. We see that the kinet
contribution scales linearly, while the dynamical correlati
energy scales quadratically withe.

These results shed more light on those of Ref. 59, w
argue that the dynamic contribution to the exchan
correlation potential vanishes in linear response. This
clearly true for exchange, which dominates weakly intera
ing systems. While we find it to be true for the correlati
energy, our results show this not to be the case for the
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tential, or the kinetic contribution would also vanish. In fac
from the virial theorem and the vanishing of the total cor
lation energy, we find

TC
dyn52E d3rn0~r t !r•¹vC

dyn~r t ! ~29!

to leading order ine. Thus a linear term inTC
dyn implies a

linear term invC
dyn. However, if the dynamical correlation in

TDDFT scales the same way as the ground-state case in
low density limit, whereTC

gs vanishes relative toEC
gs, then

TC
dyn would vanish also.

D. High-density limit

In the case of the ground state, the behavior of vario
functionals under uniform scaling of the density, in whic
n(r ) becomes

ng~r !5g3n~gr !, ~30!

has proven useful in the construction and analysis of
proximate functionals. In particular, the ground-state corre
tion energy follows no simple rule when scaled, but is kno
to scale to a finite negative constant in the high-dens
limit: 75

EC@ng#→EC
~2!@n#, g→`. ~31!

This property isnot satisfied by LDA, but is built in to most
modern generalized gradient approximations.41

As shown in Ref. 48, the relevant density scaling for t
time-dependent theory is

ngg2~r t !5g3n~gr ,g2t !, ~32!

and so the expected analog of Eq.~31! would be

EC@ng,g2#~ t !→EC
~2!@n#~g2t !, g→`. ~33!

However, the proof from the ground-state case does not
ily generalize, as there is no minimum principle for the tim
dependent theory. We therefore numerically implement t
scaling, to see if Eq.~33! appears to be satisfied. Just
earlier in the paper, it is technically difficult to scale th
density, as the potential becomes nonharmonic. Instead
simply scaled the force constant, writingkg5g4k, which

FIG. 8. Correlation energy as a function of time for time-dependent Hook
atom for the nonresonant run~NR!: Exact quantity~solid line!, the ground-
state approximation~bottom dashed line!, and the dynamical componen
~top dashed line!.
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causes the density to scale approximately, and~for some
quantities! becomes equivalent to density-scaling in the hig
density ~i.e., noninteracting! limit. The energiesVext(g

2t)
andT(g2t) of the system approach twice those of the tim
dependent 3dHO with the same time-dependent externa
tential, as they should. Figure 10 indicates that the corr
tion energyEC(g2t) becomes independent ofg as the system
is scaled to high densities.

To see this in detail, note that the value att50 is the
ground-state correlation energy for each system, and
variation withg is a measure of both how close thek51/4
Hooke’s atom is to the high-density limit and~to a lesser
extent! the error in our approximate scaling procedure. Th
the fact that, out to aboutg2t536, the differences betwee
curves become no larger than att50, while undergoing sig-
nificant changes as a function ofg2t, shows that~numeri-
cally!, Eq. ~33! is satisfied.

This will only hold for a finite amount of time, not the
entire run. As the system is scaled to higher densities,
effective electron–electron interaction becomes weake48

For large but finiteg, the difference in the time evolution o
the interacting and Kohn–Sham systems eventually beco
significant. For the conditions of the run shown above, t
appears to occur at aboutg2t5to , whereto is about 24.

FIG. 9. EC
dyn scales quadratically with respect toe in the linear response

regime whileTC
dyn scales linearly~LR! ~see Table I!.

FIG. 10. Scaling of the system changes the values only slightly as they g
the 3dHO limit.EC is plotted for scaling factors ofg51, 2, 4, 8 for the weak
nonresonant run~WNR!.
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VI. CONCLUSIONS

In all the data presented in this paper, comparisons
tween the exact correlation energy and a ground-state
proximation are made. In a truly adiabatic system where
system has time to adjust to the external perturbation
ground-state approximation will work well. But in any non
diabatic case there are important dynamical effects prese
the exact correlation energy that must be captured by
approximate functional.

We found that the dynamical effects can be very lar
and lead to qualitatively different behavior of the functiona
than that predicted by any ground-state approximation. T
most striking example of this is the correlation energ
EC(t), which can become positive unlike any ground-sta
approximation. It has been seen in all runs thatEC

dyn was
always a positive quantity so the adjustment from t
ground-state values haveraised the value of the correlation
energy. We proved thatEC

dyn(t) is always bounded below by
a negative number,2TS

dyn, but whether the stronger state
ment of positivity is always true remains to be proved. W
found thatEC(t) andvC(r t) are very nonlocal functionals o
the density in time, and cannot be accurately predicted fr
only the density at recent times.

In the ground-state caseTC is always positive, which
follows from a ground-state variational principle. In th
time-dependent case,TC(t) was also found to be positive in
all our runs, but we found no proof that this is true genera

We proved in the linear response regime, that althou
the dynamical correlation energyEC

dyn(t) vanishes, the corre
lation potential vC(r t), and therefore, the exchange
correlation kernelf XC(r ,r 8,t2t8), has a nonzero dynamica
piece. This piece is completely missed by the commo
used adiabatic approximation forf XC @e.g., the adibatic loca
density approximation~ALDA !, or any adiabatic generalize
gradient approximation~GGA!#.

Future work remains in many areas. Our runs we
mostly in the moderate to high density regime. The lo
density properties of our system remain to be investiga
The study of the dynamics when the initial state is other th
the ground-state of the system must be explored. These
sults must be compared to approximate calculations mad
the present time with adiabatic approximations. An appro
mate functional which includes the nonlocal effects d
cussed in Sec. V must be constructed and tested. We be
that ensuring the satisfaction of the exact statements sh
in this paper will lead to the development of more accur
functionals.
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