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Correlation in time-dependent density-functional theory
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The exact time-dependent correlation energy in time-dependent density-functional theory is shown
to sometimes become positive, which is impossible with most present TDDFT approximations. Both
the correlation potential and energy can be strongly nonlocal in time. A new inequality is derived for
the time-dependent exchange-correlation energy. The correlation energy appears to scale to a
constant function of scaled time in the high-density limit. In the linear response regime, the
correlation energy is shown to become purely adiabatic, but the correlation potential is generally
nonadiabatic. The usefulness of the virial theorem as a test of numerical accuracy is demonstrated.
All results are found or inspired by exact numerical solution of a simple model sy$teoke’s

atom), and inversion of the corresponding Kohn—Sham equations20@2 American Institute of
Physics. [DOI: 10.1063/1.1479349

I. INTRODUCTION potential theorerft! a viral theorenf? the relation between
_ . coupling constant and scalif§and the memory formul#
Ground-state density functional theof@FT) has be-  For example, part of the motivation for developing the
come a useful alternative to traditional methods in quantunyjignale—Kohn approximation for the exchange-correlation
chemistry, be_cause of its ability to treat _Iarge numbers Ofearnef? was that the Gross—Kohn approximafibriolated
electrons  with reasonable ac_curécy.T ime-dependent  {he harmonic potential theorem. The present work makes
density-functional theoryTDDFT) is the generalization of = geyeral new exact statements about correlation functionals in

ground-state DFT to includeme-dependengxternal poten-  tppET, many of which araot satisfied by the present gen-
tials on electrons, and its formal validity was establishedg,ation of approximate functionals.

with the Runge—Gross theorefiThe one-to-one correspon- A key focus in this work is on the limitations of adia-

dence between time-dependent densities and time-depend¢ic approximations to correlation functionals. Such an ap-

potentials for a given initial state leads to the time-dependent yimation ignores the temporal nonlocality of the correla-
Kohn—-Sham system, a set of noninteracting fictitious elecs;,n, potential, i.e., its dependence on the history of the

trons moving in a time-dependent Kohn—-Sham potentialyensity. |n the case of linear response, this leads to a real-
TDDFT has now been applied to many problems in atomicy 4 eqd, frequency-independent, exchange-correlation kernel.
molecular and solid-state systems, including optical req,,st (if not all) chemical applications of TDDFf employ
sponse, dynam!c polari;abi!itigs and hyper;_:)oIarizabilit.ies,an adiabatic approximation such as ALISESS but little is
excitation energies, species in intense laser fields and highly,oyn about its reliability or accuracy. Almost all our results
energetic collisions->* Although most of these calculations yomonstratefailures of this approximation; failures that
take place in the linear response regime, TDDFT also appliegely must be addressed if ultimately TDDFT is to achieve

to species in intense fields and is perhaps the only feasiblg,, quantitative accuracy enjoyed by ground-state DFT to-
method to study many-electron dynamics in this regimé? day.

_ The only unknown part ofaTDDfFT_caIcuIatic(begin- The errors made by the adiabatic approximation are
ning in a nondegenerate ground s B)te_s the exchange- cajied dynamical effects, due to history-dependence in the
correlation potentiab xc[n](rt) as a functional of the entire e qependent functionals. A key technique of the present
history of the densityn(rt). In the special case of optical ok is to study the time-dependent correlatienergy as
response, including electronic excitation energies, this igyh0seq to the potential. This is primarily a technical device,
needed only in the vicinity of the ground-state density of theyegjgned to limit the amount of information presented. The
system, and this mformatlo’n IS c,:ontalned in the exchangegme_gependent correlation energy is determined by integrals
correlation kernelfyc[n](r,r",t—t"). Butrelatively litle is o1 the correlation potential, so that poor approximations to
known about these functlonals', partly bepause relatively few,q energy imply poor approximations to the potential. Also,
conditions that the exact functionals satisfy are known. approximations that are poor for the potential point-wise in

Exact conditions have been essential in ground-statg,,ce may produce reasonable approximations for integrated
DFT, both for guiding construction of universally applicable quantities, as is true in the ground-state case. Lastly, the

. 41 . . . . .
functionals,” and in explaining why some approximations ime_derivative of the correlation energy yields the correla-

. 743 ays
work well while others do ndt.-™ Known f6xact conditions  tjon contribution to the power absorbed during the distur-
in TDDFT include Newton's third lav#~® the harmonic

bance.
Our calculations are performed on a time-dependent
¥Electronic mail: phessler@crab.rutgers.edu Hooke’s atom, two electrons in a harmonic Welwith a
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=~ 05 nonlocality in time, depending on the history of the density
= 025 (see Sec. VB Again, any adiabatic approximation fails to
capture this effect. On the other hand, we argue that the
exchange energy fdx electrons, will typically depend only
weakly on the historyfor a two electron singlet, as in our
model, it depends only on the instantaneous density
Notwithstanding a previous study in two-dimensidis,
we show in Sec. V C, that theie a finite dynamical contri-
bution to the correlation potential in this limitlronically,
this doesnot show up in the correlation energy, which can be
proven to be second-order in the strength of the perturbation
-0.08 in general. Even in Hooke’s atom, corrections to an adia-
batic approximation can be important in linear response as
well as in strong fields.
FIG. 1. Correlation energy components as a function of time when the force The behavior of functionals under uniform coordinate

constant is changed as showh in the top paaklin atom!c unity: Instan- scaling has been an important guide to the construction of
taneous ground-state correlation enefggttom dashed ling true correla-

tion energy(solid line), dynamical part of the correlation energgp dashed ~ Tunctionals in the ground-state theory. A key improvement of
line). the PBE generalized gradient approximatioover the local

density approximation(LDA)®® and the Perdew—Wang
exchange-correlation functiond?W91)°! is that, for a finite
system, it scales correctly to a constant in the high-density

0.08

0.04

E(t)

-0.04

time-dependent force consta¥iBecause the system remains

spherical, the time-dependent Satirger equation can eas- limit, while remaining exact for the uniform electron gas
ily be solved numerically, and the Kohn—Sham equation inlunlike the Lee—Yang—PaliLYP)** correlation functiondl

verted. The model system isot intended to represent an In Ref. 48, the relation between coupling constant and scal-

atom or molecule under conditions in present-day experi!ng within TDDFT was deduced. We demonstrate here that,

ments. But, Hooke's atom is a Coulomb-interacting fermion" the high-density limit, the correlation energy numerically

system and so its behavior is governed by the same functioﬁ—calis,to a consftant_ funct||(|)n of sca:]l_ed tllfnegb?ec. v Ilﬁfor .
als as for all electronic systems: Atoms, molecules, and sol100ke's atom. If universally true, this plausible result wou

ids. Until recently*®*there have been no exact TDDFT cal- MPIY that the Galing—Levy second-order perturbation en-
culations on any system. These two previous eXacgrgy remains finite in TDDFT. In the same way that there has
calculation&®%° employ this system: In two-dimensions in foerenacrllijigtéecem m(tjer::-stt n Orlb'tf‘l;f?ﬁ%?d?hm flf[.ncnonals
Ref. 59 and in three-dimensions in Ref. 48. ground-state —caiculations, e ume-

Our most dramatic result is to show that, due to dynamicder’lendent optimizeld effec;ftjve poten'tiaOEFb sch.em%f.
correlation, the correlation energy can become positive. Irﬁ:OUd be usedsuitably modified to avoid asymptotic diffi-

Fig. 1, we plot the correlation energy of Hooke's atom as aculties with the correlation potentf4) to include correlation.
function of time when the force constant is increased. 'N€ Paper begins with some formal theory and defini-
smoothly from 0.15 to 0.35 during=0—4 and then held tions. We introduce some terms with very precise meanings,

constant, as shown in the top panel. We also plotah®os} including the idea of dynamical contributions to time-

exact correlation energy if the instantaneous density was thd€Pendent guantities. In the third section, we discuss our

ground-state density of some system, E{n(rt)], where numerical algorithm, and the various tests based on the equa-
n(rt) is the time-dependent densitfPrecisely how this is tions of motion, which demonstrate the accuracy of our so-
done is given in Sec. Ill.The difference between the two lutions. Section IV is a discussion of many effects that can be
which we call the dynamical contributioE‘éV”(t), is very seen in the one-electron version of our system: A time-
dependent three-dimensional harmonic oscillator. This is

significant, so much so that the correlation energy even be ded to il h litati body f ¢
comes positive. Clearly, any adiabatic approximation, bein(j‘ee ed to illustrate the qualitative one-body features of our

local in time, can at best approximaB&{n(rt)], and wil electronic system, to be contrasted with the next section,
miss the d’ynamical contribution entirely. ’Such Strongwhere two interacting electrons are introduced and the cor-

exchange-correlation effectaustbe present in any species relation effects summarized above are discussed in detail.

. . 2_ _ _
perturbed by a laser field near a resonance. In the linedptomic units €°=#=m=1) are used throughout, so that all

response formalism, exchange and correlation chang%nerg'es are in Hartree, all distances are in Bohr radii, and all

; i —17
ground-state Kohn—Sham transition frequencies and oscilleﬂmeS are in units of 2.41910"*"s.

tor strengths into exact quantities of the true system. A per-

turbation tuned to a Kohn—Sham transition will cause the

Kohn-Sham system to resonate, but exchange-correlatian THEORY

corrections stop the true system from doing so. L ) ] )
We prove rigorously an inequality relating the dynamic The Schrdinger equation for time-dependent systems is

exchange-correlation energy and the dynamic noninteracting % _ v, Y o

kinetic energy(see Sec. VA We also demonstrate explicitly (T Vext Ved V(O =1 (1), @)

that the correlation potential and energy can have a stronghere T is the kinetic-energy operato?/,ext is the external
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7one-body potential.is the electron—electron repulsion noninteracting system. Exchange is trivial for two electrons,

operator, and a dot implies a derivative with respect to timeEx(t) = —U(t)/2. Correlation contains both kinetic and po-
The Kohn—Sham equations are tential contributions

{—3V2+u(r)} () =i (1), ) Ec(t)=Tc(t) +Uc(t), (12)
wherev(rt) is the Kohn—Sham potential, an effectii@e- where
body) external potential chosen to make To(t)=T(t)—T4t),
N
_ rpy]2 Uc(t)=Vedt) —U(1)/2. (13
n(r)=2, [4(r0) 3)

This paper will focus almost exclusively on the time-

exactly equal the time-dependent density of the interactinglependent energy components. However, most approxima-

wave function¥(t) in Eq. (1). In general, the one-to-one tions for time-dependent density functional theory have been

mapping between densities and potentials depends on ti8ven dlg%%tg in terms of the exchange-correlation

initial state (both for the physical system and the Kohn- Potential™>**"defined as

Sham s;lls_t(.al)mz'67 In this paper, we study the evolution ofthe | (rt) =y ((rt) — v o (rt) — o y(rt), (14)

system initially prepared in its nondegenerate ground state, . . _

so that the initial wave function is a functional of the ground-Wherev(rt) is the time-dependent Hartree potential

state density. n(r't
For two electrons in a spin-singlet, we decompose the vH(rt)=f d3r’|r_r,|

Kohn—Sham orbital as
H(rt)=A(rt)exg(i a(rt)) We can extract time-dependent energy components from any
’ approximation to the potential, via two results proved using
n(rt)=2|¢(rt)|?, (4)  equations of motion in Ref. 48: The time-dependence of the
energy

. (15

whereA anda are real. Insertion of Eq4) into Eq. (2), and

the requirement that the resulting potential be real leads to t 3 .
Exc(t): Exc(0)+ dt, d rvxc(rt/)n(rt’), (16)
0

_1V?n 1|Vn)? 1IV 2 dar -
"4n 8 nZ 2" T a and the virial theorem
where
1 19 Tc(t):_Exc(t)_f dsrn(l’t)r-VvXC(rt). (17)
n
-Va+-=Va-Vn+ —-—=0. .
V-Va nva vn n gt 0 © Thus time-dependent energy components encapsulate global

information about potentials.

In the special case of a spherical system . . .
A very useful formal device is to consider, at some in-

1(n) n" 1(n\> 1 _ stant in time, the density(rt) as theground-statedensity of
UsTo F) tan 8ln] Tzt D some system, even though the wave function at this time is
typically not the ground state afny potential. For any en-
where ergy component, e.g., the correlation energy, we then define
1 r the dynamicalcontribution as
a’=—7f n(r't)r'2dr’, (8) §
n(ror=Jo E&Tn]()=Ednl(H)~EEn(r1)], (18)
and the prime denotes a derivative with respeat to where EZ{n(rt)] is the ground-state correlation energy

Oncevg(rt) has been found, we define energies in thefynctional evaluated on the time-dependent density. For
same fashion as for the ground state: The Kohn—Sham nory  approximate  functional, Edcy“[n](t):Eacpp"”{n](t)

interacting kinetic energy is —E2PPO%9Bn(rt)], where EPP9n] is the approximate
ground-state energy of density, evaluated fronEZ"f n].
Ts[n](t)=f d’r[Ve(rt)|?, (9 Any adiabatic approximation, e.g., ALDA, h&§¥"=0. Such
) dynamical effects appear as memory effects: The energies
the Hartree energy is have a nonlocal dependence in time on the density. Note,

n(ro)n(r't) however, that the dynamical component as defined here may

1
u[n](t)= §d3rf d3r’ , (10 exist even for static densities if the underlying wave function

r=r'| is an excited state. Provided we begin in the ground-state of
and the external potential is some potential, the dynamical contribution vanishes if the
external potential is static, or for any problem in which it is
Vexl[n](t):f ABrvertyn(rt). (11)  varied infinitely slowly.

Functionals that are truly local in time, such as the Har-
The exchange and correlation contributions are given as diftree energy, have no dynamical component. We know this
ferences between quantities evaluated on the interacting amtynamical component for one nontrivial case. From .
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for the noninteracting kinetic-energy functional for one elec-
tron (or two paramagnetic electrons in the same spatial)state

B [Vn(rt)|? lis(rt)[?
Ts[n](t)—fd3r—8n(rt) +fd3r (D)

wherej(rt)=Va(rt) is the Kohn—Sham current density

(19

Eo+Tc

1
Js(r)=—{¢" (r)Ve(rt) = ¢(r) Ve (rt);. (20

The first term in Eq(19) is the ground-state contribution to
the noninteracting kinetic energy densitgin]. The second
term is thereforf & Tn], and is semilocal in time, since the

20 40 60 80 100 120
t

continuity equation FIG. 2. Atest of accuracy of the solution of the time-dependent system for
. . the truncated run(T) (see Table )L k(t) is shown in the top paneE.
n(rt)=—-Vv-j(rt), (21 + T and the virial of the correlation potential are plotted. The vifiEshed

implies that(for spherical systems at least uniquely deter- line) lies about on top oEc+ T indicating a highly accurate solution.

mines the current

. o o ciently fine grids in space and time are used. Figure 2 gives
jirt)=j-f= fr dr'n(r't). (22 an example of this, showing that the virial theorem for cor-
relation is satisfied at each time step. Note the magnitude of
ThusTYMis a functional of the density which is semilocal in energies involved. The spatial grid used for the Crank—
time, but highly nonlocal in space. However, as a functionaNicolson algorithm was typically steps of 0.0025 and the
of both the density and current, it is local in both space andime grid was 0.0001both in atomic units
time. The local approximation foFs would be to ignorer®" Considering the time-evolving two-electron density at
and to approximat&Z® by the Thomas—Fermi contribution. timet as the ground-state density of some static potential is
very useful in analyzing the interacting system. For our
IIl. ALGORITHM choice of time-dependent potential, the density closely re-
. tains its Gaussian-type shape throughout the modulation of
The time-dependent Schdimger equation was solved in the external frequency. This suggests that the time-
Ref. 48 by expanding the wave function in a basis set anthdependent potential which has a ground-state density
solving the partial differential equation in time using the matching our instantaneous density, is very close to that of a
Runge—Kutta method. In Fig. 4 of Ref. 48 the virial of the static Hooke’s atom of a certain effective force constant
correlation potentialright-hand-side of Eq(17) excluding  which we shall denote.s. Comparisons to this instanta-
the exchange contributipndeviates from E¢(t)+Tc(t)  neous ground state will be made throughout this paper.
aroundt=1.6. If the virial andE(t) +T¢(t) do not agree, The ground-state quantities that were used for this com-
the wave function generated by the algorithm is inaCCUI’at®arison were produced by matching the Hartree energy from
beyond this point in time. This illustrates the usefulness ofthe exact Kohn—Sham calculation to one in a table of
Eq. (17) as a stringent test of the numerical accuracy of aground-state values for Hooke’s atdhiThe energies for that
solution of the time-dependent Kohn—Sham equations. Notground-state Hooke’s atom with force constaqf, were
that a standard test of accuracy in the ground-state problernfaken as approximations 8%, T, etc. This process was
that of making small changes in densities and checking thaiepeated by matching values ©f), and again by matching
the corresponding change in an energy is accurately reprzajues ofTs. All three matching procedures produced essen-
duced by integrating its potentiaffunctional derivativé tjally identical ground-state results and the Hartree energy

times the density change is not available for time-dependerwas chosen as the matching parameter for all runs.
problems. The time-dependent potentials are not typically

functional derivatives of the time-dependent enerdid2os-

sible sources of error in Ref. 48 are the fourth-order Runge—lv' ONE ELECTRON
Kutta method or an insufficient number of levels in the basis  Before studying correlation effects, it is necessary to un-
set to accurately construct the wave function after the waveerstand the noninteracting system, a nontrivial task for most
function was sufficiently excited by the perturbation. In thetime-dependent systems. Much about the dynamics of the
present paper, the Crank—Nicolson method is used to solvateracting two-electron density can be understood from the
the Schrdinger equation. For this method, we first constructdynamics of one electron in the same time-dependent poten-
the ground-state wave function for a given external potentialtial, V(t) =k(t)r?/2.

The wave function is transformed onto a grid and propagated The quantum time evolution in the 3dHO is generally
forward in time. The normality of the wave function is guar- related to the 1dHO when we begin in the ground state of
anteed at each time step because Crank—Nicolson employssach att=0 because of the separability of the time-
unitary operator(unlike Runge—Kutta For all calculations dependent Schdinger equation in Cartesian coordinates.
with this algorithm, we have found that we can satisfy theExpectation values of observables are then simply related to
virial theorem of Eq.(17) to arbitrary accuracy once suffi- the one-dimensiondllD) case, €.9.{r%)sq=3(x?)14.
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TABLE I. Table of figures and their run parameters.

Run parameters and figures

Type K ) € Duration Figures
NonresonantNR) 0.25 0.75 0.1 entire run 6 and 7
NonresonanfWNR) 0.25 0.75 0.05 entire run 3and 9
Linear responséLR) 0.25 0.75 <0.025 entire run 8
ResonantR) 0.25 1.0 0.05 entire run 4 and 5
Truncated(T) 0.25 0.75 0.1 %oscillation 1, 2, and 10

The time-dependent force constant used in all our calcuthe opposite extreme is “sudden switching,” in which the

lations is force constant is instantly changed from one value to an-
= other. The wave function is not an eigenstate of the new
k(t)=k— e cosot. (23 potential, and evolves accordingly. In such cases, the change

are given in Table I. In the one-electron case, this is théscale of our perturbation is in between these two extremes.

Mathieu oscillator(see, for example, Ref. 72 In fact, the quantum dynamics foIIc_)WS directly from the
classical dynamics due to the harmonic nature of the poten-
A. A measure of system response tial. Classically evolving an initial ensemble, distributed in

The dynamics of the density are reflected in the time-hase-space according to the initial quantum ground-state
evolution of the spread of the densify?(t)). In Fig. 3 we (quasi-classical evolution results in phase-space distribu-
p|0t the root-mean-square (rms) variance, rrms(t) tions close to that of the quantum state at later times.
= ‘/<r2(t)>' for two noninteracting electrons in the Mathieu . The SOIld line ||:'| Flg 3-|S the rms variance for the evolv-
oscillator(dashed line in lower paneand compare this with  ing density of the interacting two-electron systésee Sec.
its value had the system remained in the instantaneou¥). We observe how it also displays the response time lag
ground-state of the external potentiapper panél and the overshooting—undershooting pattern present in the

We see how the wave function is initially unchanged,one-electron case. In fact it resembles twice the one-electron
and then compresses far more than an instantaneous grourlue closely in both its amplitude and frequency patterns;
state wave function would. After the slow initial responsethe differences are due to the interaction of the two electrons.
during the first half-oscillation, during the second half- Consequently, the kinetic and potential energies of the inter-

oscillation, the potential broadens again, but the density corActing system, follow similar trendsee Sec. Y.
tinues to compress at first, because the response of the wave Figure 4 shows the same quantities for a differ@aso-
function continues to lag behind the changes in the perturbdiant choice of external spring constant; the response of the
tion. system is rather dramatic. The overshooting—undershooting
In thinking of the time-dependent response of an oscilbehavior is present again, as it is in all our runs; and is
lator, two extreme limits come to mind. In the first, adiabatic, Particularly striking in this case. Note especially the increas-
the potential is turned on infinitely slowly, and the wave ingly extreme compression of the density nearl7 and
function is always in its instantaneous ground-state. In thigeriodically thereafter. Again, the classical result is a very
case, the response to any external potential is immediate. A00d approximation and again, the interacting two-electron

= 2
= —
= =
oy \_/_\/\/\_/\_/\/ o
wg %
o
o 15 ES 1.5

interacting

Trms (t)
rrmslt

2 :
0 5 10 15 20 25 30 35 40 45 50
t t

FIG. 3. Spread of parabolic well in linear response regime as a function ofIG. 4. Spread of parabolic well for Hooke’s atom in resonafiReas a

time for the weak nonresonant ritwNR) (see Table)l The solid line is for function of time. The solid line is for two interacting electrons, the dashed
two interacting electrons and the dashed is for two noninteracting electrondine is for two noninteracting electrons. The top panel shows the rms vari-
The top panel shows the rms variance had the system remained in thence had the system remained in the noninteracting instantaneous ground-
noninteracting instantaneous ground-state of the potential. state of the potential.
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Ec(t)

0 20 40 60 80 100 120 -1

0 5 10 15 20 2‘5 30 35 40 45
¢ ¢

FIG. 5. Top graph: Oscillations in an envelope of a slow beating period forg i 6. Hooke’s atom in resonand®): Eq(t) (solid line and EY(t)
time-dependent Ho_okes atom where the perturbation is turned off after ONfyashed ling match almost exactly demonstrating the importance of the
half-oscillation fork=0.25, w=0.75, e=0.1. Bottom graph: 3DHO with  dynamical component in resonance.

same perturbationw;=0.591 for all runs.

r’gultiplying o in the resonance condition and in the beat

can understand the behavior of the one-electron system u [equency off-resonance, is a consequence of the perturba-

der the various spring constants is explained in the nex{o" Peing quadratic and only connecting states of quantum
subsection number differing by 2.

For largere a full nonlinear analysis needs to be done.
Much has been studied about the parameter regimes of sta-
bility and instability in the Mathieu oscillatdf In the limit
that e—0, it can be showf that the seeds of the unstable

For_ small enougfe,_ perturb_ation theory can _preo_lict the regions are atw=2\/?, \/i and 2\/@3' Only the first
dynamics of the Mathieu oscillatofThe discussion in the gmerges as unstable in our linear response analysis, because

previous subsection suggests that classical perturbatiop, instability of the other cases only occurs at larger
theory on the 1D case can capture most of the behavior of the

fully quantum three-dimension&BD) case, provided Gauss-
ian averaging over initial conditions is performed. It is sim- C. Perturbation of finite duration

case closely resembles twice the one-electron case. How

B. Time-dependent perturbation theory and linear
response

pler to do quantum time-dependent perturbation theiyr In some of our runs, we turn off the perturbation after
the variance in position, we obtain half a cycle. After this time in the harmonic oscillatgr?)
3 3e|cog2wt) r<(25_w)t> oscillates at frequency ax where w; is the frequency in
(r](t))=—+ —| ————+2s5i which the harmonic oscillator is lefsee Fig. % This can be
2w 4k w explained by expanding the wave function in eigenstates of
_ the final oscillator and noting that matrix elementsxéfare
xsin((2w+w)t ( 1 n 1 ’ only nonzero between quantum states differing in quantum
20—0 2wtow number by 2 or 0. In the case of Hooke’s atom, one observes

a slow beating on top of the fast oscillation in Fig. 5. Unlike
(24) . . . ) )

the harmonic oscillator, the eigenenergies of Hooke’s atom
wherew= \/f This is a good approximation to the dynam- are not quite equally spaced so that the terms in the wave
ics, with the term involving the product of the sines giving function expansion no longer all oscillate at the same fre-
the essential dynamical behavior: Beating at frequenay (2 quency. The slight difference between the frequencies gives
—w)/2 superposed on the faster oscillations of frequencyise to a fast oscillation close to that of the harmonic oscil-
(2w+ w)/2 (see Fig. 3. The beating amplitude is approxi- lator but contained within a slow envelope.

mately 3¢/(2k(2w—w)) when o and @ are of the same

order, as in our calculaﬂons. ' V. TWO ELECTRONS
On resonancep=_2w, the oscillator becomes unstable
and we obtain In this section, we present results for the time-dependent

Hooke’s atom. The overall trends of the dominant contribu-
tions are guided by the shape of the density which is similar
to that in the one-electron case as shown in Figs. 3, 4, and 5.
Now, however, we have correlation effects.

2 sin(2w — »)t/2)sin((2o + w)t/2) We shall be comparing the exact energies to those ob-
+ (25  tained from an almost exact ground-state approximation, as

described in Sec. Il and Ill. Dynamical contributions to the

The middle term in the brackets describes a secular growtlenergy componentdEqg. (18)] can be significant even when
evident in Fig. 4(see also Fig. b Note that the factor of 2 the potential becomes static, as shown in Fig. 1 for the cor-

5 3 3e|coq2wt) o
(re(t))= —+ —| —— +tsin(2wt)
20 4k )

20+w
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andE%(t) is the energy of the ground-state whose density is
\/V\M the instantaneous density at tinte Then it follows that

E®Y(t)=0, and hence

rrms(t)
- N W

00t EIMt)=—T1). (26)

We have used the fact that for two electrons in the same
= 002 spatial stateEy(t) = —U(t)/2 has no dynamical component.
o /\ A _/\ In the generaN-electron case, the relation is

0
~ E(0)= TN, (27)
-0.02 Note that the right-hand-side of these inequalities is always
less than or equal to zero by the ground-state variational

5 = 3 = 10 principle for the Kohn—Sham kinetic energy. Thus we have
: proved thaIEdCy“(t) is always greater than a negative number
—TYt). Whether the stronger statement of positivity of
FIG. 7. A measure of the nonlocality &f; with respect to time for the Egy”(t) is generally true remains an open question.
nonresonant rufNR): Contrast the very similar density profiles implied in We also found in all our runs théfc(t)>0, ie., T(t)

the top panel near timets=4.8'an_d 28.9 With_the very different valueseé >T4(t), much like in the ground-state case. Whether this is
there in the graph above. Similar comparisons may be madetreaB5 .
andt=243. true in general also has yet to be proved.

. i ) o B. Nonlocality in time
relation energy, because the time-evolving density is not

static. Because the evolving wave function is not generally a  Little is known about the importance of nonlocal effects
ground-state of any potentiéxcept att=0), any calcula- " ime in TDDFT. These are completely lost by any adia-

tion of its correlation energy based on a ground-state funcbatic approximation Whic_h considers only the density at the
tional will be erroneous. This is demonstrated by the qualiPresent time. The dynamical effects can be very large as seen
tatively different behavior of the time-dependent correlation2P0Ve. To what degree does our system remember the past?

energy(see next section How far back in time do_ we need to know the density in
- _ _ order to evaluate the various energy components?
A. Positive correlation energies In Ref. 48 equations of motion for various energy com-

In ground-state DFT calculations, it has always beerponents were derived. For exampld,s=— [d3m(rt)
found that Ec+Tc<0. The unusual positive behavior of xupg(rt) andExc=fd3fﬁ(ft)vxc(rt)- Integrating the right-
Ec+ Tc of this time-dependent system was first reported inhand-side of these from 0 togives T«(t) and Exc(t), re-

Ref. 48. Here we show th&(t) can itself be positive. This spectively, but these do not imply that the density along the
differs dramatically from the ground-state problem whigge  entire history from 0 td is required to evaluate the energy
is a negative quantity as a consequence of the variationgomponent at timé Certainly it is not if the integrand is the
principle. Thus, anyadiabaticapproximate ground-state cor- exact time-derivative of some function. This is the case for
relation energy functional will fail to capture this behavior T at |east for two electrons in the same spatial state where
(@s can be seen in Figs. 1, 5, andbgcause they are con- j=j . ConsequentlyT(t) is semilocal in time: It depends
structed from ground-state functionals evaluated on the timegnly onn(rt) andn(rt) [see Eq(19)].

dependent density. The exchange enerdgy for this case is completely lo-

A striking example of how the exact correlation energy ca|, since it is simply minus half the Hartree energy. We
can differ significantly from any approximation that assumessyspect that even in general it is not strongly nonlocal in time
the system is in its instantaneous ground state, e.g., ALDA, iy the following reasonsEy may be expressed as the clas-
provided by our Hooke’s atom at resonance. Figure 6 plotgjcal Coulomb energy between the charge density and its
Ec(t) andEY(t) for the resonance case=2+k. On this exchange hole ny(r,r’,t),”® Ex=/[d%d%'n(r,t)
scale,E%S(t)[zEC(t)—E‘éy”(t)] would be a relatively flat Xny(r,r’,t)/[r—r’|. The exchange hole satisfies two funda-
line. For most of the run, the full correlation energy and itsmental constraints at each instant in tirfi¢:lts on-top value
dynamical component lie on top of each other, showing thais a local function of the spin-densitiesix(r,r,t)=
Ec(t) is almost completely dynamicdEd(t) ~ —0.04 while  — (ni(r,t) + nﬁ,(r,t))/n(r,t), and(ii) it satisfies the sum-rule
EX(t) can reach~4, causing an error of two orders of [d3rny(r,r’,t)=—1.3These two conditions, which depend
magnitude if a ground-state approximation is made for theonly on the value of the density at the present time, deter-
correlation energy. This error is much greater than desirethine much about the shape of the exchange hole. Conse-
chemical accuracy. quently we may expect that a good approximation to the

In all runs we foundE?;y”(t) to be greater or equal to exact exchange energy can be obtained using only the
zero. Because the instantaneous ground-state minimizes tdensity at the present time. Indeed, a recent calculation of
energy over all wave functions of that instantaneous densitythe exchange kernel in linear response for the uniform elec-
E9t)<E(t). HereE(t) is the energy of the evolving wave tron ga$* was dominated by the frequency-independent
function at timet, E(t)=Tg(t) + Veu(t) + U(t) + Exc(1), contribution.
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In contrast, the correlation enerdse(t) and the corre- 0.1
lation potentialv(rt) appear to have a very nonlocal com- 0.08
ponent, depending on the entire history of the density. Con- 0.06
sider the plot ofE in Fig. 7 together with its density profile 0.04
implied by the rms variance shown above. The figure sug- =
gests thaEc is a very nonlocal functional of the density: The &y 0.02
density profile for a time range centered at titre4.8 and 0
that centered nedr=28.9 are very similar, yet the values of -0.02
E(t) near those times are significantly different. Similarly -0.04
one may contrast the very similar densities in a time range -0.06
centered near=9.35 and neat=24.3 with the very differ- 0 5 10 15 20 25 30 35 40

ent shape oEc(t) in that time range. Then E@16) directly ¢

implies thatv(rt) is a highly nonlocal functional of the FiG. 8. Correlation energy as a function of time for time-dependent Hooke’s
density. atom for the nonresonant ryiNR): Exact quantity(solid line), the ground-
Nonlocality of E. implies nonlocality of the correlation ftt:;edggﬁézx;m;“o“bonom dashed line and the dynamical component

energyEq(t). This is clearly evident in our runs. Consider

theE(t) of Fig. 7 corresponding to the run discussed above.

Again, we contrast the very similar density profiles centeredential, or the kinetic contribution would also vanish. In fact,

at timet=4.8 (or t=9.35 andt=28.9 (or t=24.3, respec- from the virial theorem and the vanishing of the total corre-

tively) with the significantly different values dEc(t) cen- lation energy, we find

tered there. This implies that locéh time) information is

not adequate for a reasonable estimat&gfft). The highly Tdcyn: _f d3rn0(rt)r~Vvdcy”(rt) (29)

nonlocal-in-time nature of correlation must be captured by

the correlation energy and potential functionals for accuratgo leading order ine. Thus a linear term iﬁl’dcyn implies a

results. linear term inv®". However, if the dynamical correlation in
TDDFT scales the same way as the ground-state case in the
low density limit, whereT& vanishes relative t&¥, then

C. Linear response regime T would vanish also.

The most well-studied regime of TDDFT is the linear
response regime, in which the time-dependence of the exte
nal potential is weak relative to the static potential. Elec-  In the case of the ground state, the behavior of various
tronic excitation energiesand oscillator strengthscan be  functionals under uniform scaling of the density, in which
extracted from analysis of this linear response regime. Tha(r) becomes
first TDDFT calculations were in this regim@. s

We present only one basic result in this regime, but one ny(N=y"n(yr), (30
which explains qualitative trends in our data. Writing has proven useful in the construction and analysis of ap-

_ proximate functionals. In particular, the ground-state correla-

N(rt)=no(r)+eny(r)+---, @8 tion energy follows no simple rule when scaled, but is known
wheree is a small parameter to be taken to zero at the end ofo scale to a finite negative constant in the high-density
the derivation, we first note that, by construction, dynamicalimit;
guantities are at least first-order én Secondly, we note that
h also has no zero-order component. Clearly then, from Eq. Edn,]-ECN], vy (3D
(16), the dynamical contribution to the correlation energy isThis property isnot satisfied by LDA, but is built in to most
at leastsecondorder in e. This means that, in the limit of modern generalized gradient approximatiéhs.
weak time-dependent potential62"~—U®". This effect As shown in Ref. 48, the relevant density scaling for the
can be seen at the start of most runs where the system has nivhe-dependent theory is
yet responded to the full strength of the perturbation. In Fig. B
9, we plot the dynamical contribution to the kinetic- Nyye(rt)= YOy v, (32)
correlation and total correlation energies for two values ofand so the expected analog of E§1) would be
small €, differing by a factor of 2. We see that the kinetic 2
contribution scales linearly, while the dynamical correlation EC[n’/v’/z](t)_)E(C)[n](yzt)’ Y (33
energy scales quadratically with However, the proof from the ground-state case does not eas-

These results shed more light on those of Ref. 59, whdly generalize, as there is no minimum principle for the time-
argue that the dynamic contribution to the exchangedependent theory. We therefore numerically implement this
correlation potential vanishes in linear response. This iscaling, to see if Eq(33) appears to be satisfied. Just as
clearly true for exchange, which dominates weakly interactearlier in the paper, it is technically difficult to scale the
ing systems. While we find it to be true for the correlationdensity, as the potential becomes nonharmonic. Instead, we
energy, our results show this not to be the case for the pasimply scaled the force constant, writirg,= y*k, which

P. High-density limit
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VI. CONCLUSIONS

In all the data presented in this paper, comparisons be-
tween the exact correlation energy and a ground-state ap-
proximation are made. In a truly adiabatic system where the
system has time to adjust to the external perturbation, a
ground-state approximation will work well. But in any nona-
diabatic case there are important dynamical effects present in
the exact correlation energy that must be captured by any
approximate functional.

We found that the dynamical effects can be very large
and lead to qualitatively different behavior of the functionals

t than that predicted by any ground-state approximation. The
FIG. 9. E¥" scales quadratically with respect toin the linear response  MOSt Str'K|ng example of th'§ s the. correlation energy,
regime whileTY" scales linearly(LR) (see Table)l Ec(t), which can become positive unlike any ground-state

approximation. It has been seen in all runs tE@'” was
always a positive quantity so the adjustment from the
ground-state values havaisedthe value of the correlation

causes the density to scale approximately, #iod some €nergy. We proved th‘;dcyn(t) is always bounded below by
quantitie3 becomes equivalent to density-scaling in the high-2 negative number-Tg", but whether the stronger state-
density (i.e., noninteracting limit. The energiesVe,(y?t)  Ment of positivity is always true remains to be proved. We
and T(¥%t) of the system approach twice those of the time-found thatE(t) andv(rt) are very nonlocal functionals of
dependent 3dHO with the same time-dependent external pé€ density in time, and cannot be accurately predicted from
tential, as they should. Figure 10 indicates that the correla@nly the density at recent times.

tion energyE( y%t) becomes independent gfas the system In the ground-state casg: is always positive, which
is scaled to high densities. follows from a ground-state variational principle. In the

To see this in detail, note that the valuetatO is the time-dependent cas&c(t) was also found to be positive in
ground-state correlation energy for each system, and itall our runs, but we found no proof that this is true generally.
variation with y is a measure of both how close the 1/4 We proved in the linear response regime, that although
Hooke’s atom is to the high-density limit arito a lesser the dynamical correlation enerd8®"(t) vanishes, the corre-
exten} the error in our approximate scaling procedure. Thudation potential vc(rt), and therefore, the exchange-
the fact that, out to aboug?t=36, the differences between correlation kernefyc(r,r’,t—t’), has a nonzero dynamical
curves become no larger thantat0, while undergoing sig- Piece. This piece is completely missed by the commonly
nificant changes as a function 9ft, shows thatnumeri- used adiabatic approximation fbxc [e.g., the adibatic local
cally), Eq. (33) is satisfied. density approximatioALDA ), or any adiabatic generalized

This will only hold for a finite amount of time, not the gradient approximatiofGGA)].
entire run. As the system is scaled to higher densities, the ~Future work remains in many areas. Our runs were
effective electron—electron interaction becomes we#ker, Mmostly in the moderate to high density regime. The low-
For large but finitey, the difference in the time evolution of density properties of our system remain to be investigated.
the interacting and Kohn—Sham systems eventually becomédd1e study of the dynamics when the initial state is other than

significant. For the conditions of the run shown above, thighe ground-state of the system must be explored. These re-
appears to occur at aboytt=t,, wheret, is about 24. sults must be compared to approximate calculations made at

the present time with adiabatic approximations. An approxi-
mate functional which includes the nonlocal effects dis-
cussed in Sec. V must be constructed and tested. We believe
that ensuring the satisfaction of the exact statements shown

in this paper will lead to the development of more accurate
0.01 functionals.
S 0.02
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