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Historical methods of functional development in density functional theory have been largely guided by
analytic conditions that constrain the exact functional one is trying to approximate. Recently, machine-
learned functionals have been created by interpolating the results from a small number of exactly solved
systems to unsolved systems that are similar in nature. For simple cases, using an exact condition,
we find improvements in the learning curves of machine-learned approximations. We also find that the
significance of the improvement depends on the nature of the interpolation manifold of the machine-
learned functional.

1. INTRODUCTION

Density functional theory (DFT) is a popular approach
to electronic structure calculations in both the material
sciences and chemistry [1, 2]. By approximating various
components of the energy of a quantum system with func-
tionals of the density, DFT bypasses the need to solve the
Schrödinger equation for the fully interacting problem. The
utility of DFT calculations are, in turn, critically dependent
upon the quality of the approximations to the energy of a
system as a functional of the density. Almost all modern
calculations employ the Kohn-Sham scheme [3], in which
only the exchange-correlation (XC) energy need be approx-
imated as a functional of the spin-densities.

Within the arena of density functional approximation de-
velopment, there is tension between the desire to derive ap-
proximations from general principles of quantum mechanics
(e.g., PBE [4]) versus fitting to known molecular and ma-
terials data (e.g., Minnesota functionals [5]). Functionals
derived from general principles tend to work well for pre-
dicting most properties of most systems [4, 6, 7], where as
functionals that are entirely or partially fit to empirical sys-
tems tend to perform better for properties o those specific
systems or similar ones [8].

Recently, an entirely new type of approximate functional
has been developed, using algorithms from the general area
of machine learning [9, 10]. Machine-learned density func-
tionals are empirical functionals that work by extrapolating
the exact values of the functional on a handful of densi-
ties (training set) to predict the value of the functional on
new densities (test set). We emphasize that this empiri-
cism is very different from that previously used in DFT.
In ML, the functional is approximated in an intrinsically
non-local fashion, requiring many parameters (up to one
million) [9], but producing approximations with chemical
accuracy on the interpolation manifold, including especially
process which standard semilocal functionals fail at, such as
stretched bonds. Thus a ML non-interacting kinetic energy
remains accurate as a bond breaks [11] (unlike semilocal
counterparts) while an ML XC energy can include strong
correlation, even in the thermodynamic limit [10]. (Besides
finding density functionals, machine learning is more com-

monly used in chemical and material science to make ac-
curate predictions of chemical and physical properties. [12–
21])

This kind of DFT development raises a natural question:
are exact conditions, which are often built in to human-
based functionals, useful in the design of machine-learning
approximations? By manually imposing exact conditions
on machine-learned density functionals, one introduces prior
knowledge to the machine-learned functionals that may fore-
seeably enable easier training. Among the simplest, and
most powerful, exact conditions in KS DFT are those pro-
duced by coordinate scaling. For instance, the exchange
energy functional scales in a simple way when the density is
squeezed or stretched:

EX[nγ ] = γ EX[n], nγ(r) = γ3 n(γr) (1)

where γ is a positive real number. All popular exchange
functionals satisfy this condition, and it determines the local
density approximation up to a constant [22].

So far, ML functionals have been designed without the
use of such conditions, in order to test principles and limita-
tions of ML construction of functionals in their most prim-
itive form. We can now phrase our question very precisely.
If we can impose a condition like Eq. (1) on an ML func-
tional, i.e., construct the functional so that the condition
is automatically satisfied, do we get a more accurate ap-
proximation for a given amount of data? We shall see that
the answer is typically yes, but whether that gain in accu-
racy is significant depends on the nature of the interpolation
manifold.

This papers is organized as follows. Sec. 2 reviews the
formalism of KS DFT and machine learning. In this section,
we also discuss recent progress in applying machine learning
to DFT and standard systems which have been used to test
of novel ideas in DFT. In Sec. 3, we present the theory
behind our approach and motivate it with an example. In
Sec. 4, we explain in detail the methods used to generate
reference densities needed to use our ML formalism. In
Sec. 5, we compare the performance of a traditional ML
functional to one that satisfies an exact scaling condition by
construction. In Sec. 6, we interpret our results and offer an
explanation in terms of a simple model system. In Sec. 7, we
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explain how these results may improve the applicability of
machine learned functionals and discuss possible extensions
of this work.

2. BACKGROUND

A. DFT

The main implementation of all modern DFT calculations
is the Kohn-Sham (KS) scheme [3]. To solve an N electron
system in an external potential v(r) using the KS scheme,
one considers a system of N non-interacting electrons. This
system is described by a set of orbitals, {φi}, that may be
attained by solving the Kohn-Sham equations:(

−1

2
∇2 + vs[n](r)

)
φi(r) = εiφi(r), (2)

where vs[n](r) is the Kohn-Sham potential. We have writ-
ten this equation in atomic units where ~ = me = e = 1,
and will continue to use these units throughout the rest of
the paper. The Kohn-Sham potential is chosen so that the
density of this non-interacting system,

n(r) = 2

N/2∑
i=1

|φi(r)|2 , (3)

matches that of the fully interacting system. For simplicity,
we have assumed the system is spin unpolarized. This allows
one to write the energy of the fully interacting system as

E[n] = Ts[n] + U [n] + EXC [n] +

∫
d3r n(r)v(r), (4)

where we have defined

Ts[n] = −
N/2∑
i=1

∫
d3r φi[n](r)∇2φi[n](r) (5)

U [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(6)

and EXC [n] is defined by Eq. (4). Many successful ap-
proximations to EXC [n] have been constructed, enabling a
self-consistent solution to Eq. (2) and the functional deriva-
tive of Eq. (4) [4, 6, 7].

Orbital-free DFT is a methodology that predates KS (in
fact, goes back to the Thomas-Fermi theory [23, 24] of
1927) that removes the need to solve for the eigenfunctions
of the Kohn-Sham equation. To make KS DFT orbital free,
one can construct an approximation to Ts[n], which removes
the dependence of Eq. (4) on the Kohn-Sham orbitals.
Orbital-free calculations hold the promise of by-passing the
bottleneck of solving the KS equations. In the special case
of one electron, or two spin-unpolarized electrons, the exact
non-interacting kinetic energy functional is given by the von
Weisacker form:

TVWs [n] =
1

8

∫ ∞
−∞

dx

(
n′(x)2

n(x)

)
. (7)

Modern XC functional approximations mostly fall on Ja-
cob’s ladder [25], where an increasing number of ingredi-
ents are aimed to produce higher accuracy. The most com-
monly used approximations are the local density approxima-
tion (LDA), which applies the exact XC functional for the
uniform electron gas to all systems. LDA is a local approxi-
mation, meaning that it depends only on the density at each
point. Higher up on Jacob’s ladder are generalized gradient
approximations (GGA) and meta GGAs, which introduce a
dependence on the gradient and laplacian, respectively, of
the density. Above these are hybrid functionals, which in-
corporate some amount of exact exchange energy.

B. Machine-learned functionals

The machine learning approximations are of a very dif-
ferent kind [9, 10, 26, 27]. Machine-learned functionals do
not possess a convenient closed form, and typically are not
intended to accurately describe general systems. Instead,
they fit a function to a dataset of densities for which the
exact value of the functional has already been determined
through other means, known as the training set.

Kernel ridge regression (KRR) [28] is a non-linear form
of regression that uses the kernel trick. For this work, we
choose a gaussian kernel function. To model a functional

T
ML(σ,λ)
s [n] using kernel ridge regression, we write

TML(σ,λ)
s [n] =

m∑
i=1

αie
−|n−ni|2

2σ2 , (8)

where m is the number of training data and {ni} is the set
of densities for which Ts[n] is known. The inner product
must be a measure of the similarity between densities, and
here is defined by

|n− n′|2 =

∫
d3r (n(r)− n′(r))

2
. (9)

The {αi} are determined so that the loss function

J(α) =

m∑
i=1

(
TML(σ,λ)
s [ni]− Ts[ni]

)2
+ λαTKα (10)

is minimized. Here, α is a vector of weights defined by
αi = αi and K is the kernel matrix defined by

Kij = e−
|ni−nj |2

2σ2 . (11)

The minimization of Eq. (10) may be done analytically,
yielding

α = (K + λI)
−1

Ts, (12)

where, I is the m×m identity matrix, and Ts is an m× 1
vector such that Tsi = Ts[ni].

In KRR, λ and σ are hyperparameters of the model. Op-
timal choice of hyperparameters prevents overfitting and
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helps the model generalize well on out-of-sample data. They
are determined by cross-validation, a process where part of
the training set, known as the validation set, is hidden from
the model during training. In this work, we perform leave
one out cross validation, meaning that, for a training set of
NT densities, we train on a set of NT − 1 densities, and
the remaining density forms the validation set. We pick
the pair of λ and σ that produce the lowest error on the
validation set. Then, we rotate the data point being used
in the validation set, eventually forming a set of NT best
values for λ and σ. We then pick the median value of each
to parameterize our model, and retrain the model using the
full training set.

KRR functionals are entirely non-local. Thus, they can
describe effects due to non-local behavior of the exact func-
tional that are unable to be reproduced by semilocal func-
tionals. For example, KRR approximations to F [n] are able
to reproduce the dissociation curve of H2 [10], whereas ap-
proximations to F [n] that use a semilocal EXC approxima-
tion are unable to reproduce this result.

C. Progress with ML-DFT

Most of the work, like that reported here, involves
the non-interacting kinetic energy functional. The non-
interacting kinetic energy functional, defined in Eq. (5),
typically requires one to solve the Kohn-Sham equation be-
fore evaluation. However, nearly every KS DFT calcula-
tion performed solves the Kohn-Sham equations and thus
can serve as data to train a machine-learned kinetic en-
ergy functional, which would enable later calculations to be
orbital-free.

D. 1D model systems

In this work, we will use two model 2-electron 1D systems
to test the basic idea of using exact conditions to improve
machine-learned density functionals.

The first may be denoted the 1D Hooke’s atom. The
regular (3D) Hooke’s atom is two electrons in a harmonic
well, but repelling each other with a Coulomb repulsion.
This has analytic solutions for an infinite discrete set of force
constants, and has been a popular toy model for testing
DFT ideas. The same behavior is also seen in 1D, but
now the interaction is replaced by a delta repulsion (as the
Coulomb interaction is too singular in 1D, and the delta-
repulsion produces an electron-electron cusp that exactly
mimics that of 3D). Thus the Hamiltonian is

H = −1

2

(
d2

dx21
+

d2

dx22

)
+

1

2
ω2(x21 + x22) + λδ (x1 − x2) .

(13)

This Hamiltonian is seperable into a center of mass and
relative coordinate. The first is just a harmonic oscillator,
while the second can be solved numerically [29, 30]. As well
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FIG. 1. (color online) A model density is shown before (red)
and after scaling (blue) by a factor of γ = 1/2.

as a model for electronic structure, these systems are also
important in cold-atom physics.

More recently, an entirely new 1D mimic of electronic
structure has been developed, with the principal aim being
to test ideas of strong correlation. These systems often con-
sists of chains of 1D H atoms which can be accurately and
efficiently solved via density-matrix renormalization group
codes (DMRG) [31]. They are also designed so that stan-
dard density functional approximations, such as LDA, per-
form quantitatively similarly to those in 3D, yielding reason-
ably accurate equilibrium bond lengths and energies, but
also breaking spin symmetry at the Coulson-Fisher point
as a bond is stretched. For this model, we use a simple
exponential for both the attraction to the nuclei and the
repulsion among electrons:

v(x) = A exp (−κ |x|) , (14)

where A = 1.071295, κ−1 = 2.385345. Just as in 3D
reality, the the external potential for two ’proton’s separated
by a distance R is given by

vext(x) = −v(x − R/2) − v(x + R/2), (15)

and the interaction potential is given by

vint(x, x
′) = v(x− x′), (16)

The parameters of the exponentials have been chosen to
best match the soft-Coulomb interaction potential, which
is typically used in 1D calculations, as it captures certain
behaviors of 3D systems [32]. We determine the densi-
ties by solving the fully interacting problem on a grid using
DMRG[31].

3. THEORY

We attempt to improve machine-learning of the kinetic
energy functional TS[n] of non-interacting electrons, by en-
forcing the exact condition:

TS[nγ ] = γ2 TS[n], (17)
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where nγ(x) is defined as in Eq. (1). The effect of scaling
on a density is illustrated in Fig. 1. To enforce the condition,
define the square-width of a 1D density as

l2[n] =

∫ ∞
−∞

dxx2 n(x). (18)

We next define a scaled density:

ñ(x) = nl(x) = l n(lx). (19)

We can write the kinetic energy functional

TS[n] =
1

l2[n]
T̃S[ñ]. (20)

Thus T̃S is a functional that only applies to densities whose
square-width is 1 and any fit to that functional will by con-
struction provide a kinetic energy functional that has the
correct scaling.

To illustrate this in a trivial case, consider a single-particle
in a harmonic well of mass 1 and frequency ω:

nω(x) =
(ω
π

)1/2
exp(−ωx2), (21)

whose exact kinetic energy is ω/4. Given a variety of densi-
ties and energies for different values of ω, one could imagine
learning the kinetic energy using the techniques of Sec 2.
But, for each ω, l = (2ω)−1/2, and, independent of ω,

ñ(x) =
1√
2π

exp(−x2/2) (22)

with kinetic energy 1/8. Insertion of these results into Eq.
(20) yields the exact answer. Thus, any single data point
would be sufficient to learn the entire curve.

4. CALCULATIONS

For the 1D Hooke’s atom, the Hamiltonian becomes sep-
arable under the coordinate transformation X = x1 + x2,
u = x1−x2

2 , which yields a system of equations(
−1

4

d2

dX2
+ ω2X2

)
ψ(X) = EX ψ(X) (23)

(
− d2

du2
+

1

4
ω2u2 + δ(u)

)
ϕ(u) = Eu ϕ(u) (24)

and Ψ(u,X) = ψ(X)ϕ(u), where we have set λ = 1 for all
calculations [29, 30]. The first equation is solved analytically
and the second equation is solved numerically. We then
transform Ψ back to the coordinates x1, x2. We find the
density by evaluating

n(x) = 2

∫ ∞
−∞

dx2 |Ψ(x, x2)|2 (25)

and calculate the non-interacting kinetic energy using Eq.
(7). We repeat this process for 200 values of ω linearly
spaced in the interval [.1, 5] to form a set of reference data.
Finally, for convenience, we scale all densities so to have the
same square-width:

γω =

√
l2[n]

l2[nω=5]
, (26)

so that all scaled densities satisfy l2[ñ] = l2[nω=5]. The
exact constant chosen for l2[ñ] only sets the scale of the
problem. Here, this value is chosen so that the scaled and
unscaled systems lie approximately on the same scale to
make plotting convenient.

To create the ML functional, we first choose 50 densities
from the reference data which have equally spaced ω and
that span the interval to form a test set. We do not include
the endpoints ω = .1, ω = 5 in this set. From the remaining
densities, we randomly choose 17 densites and take the first
NT of these to serve as our training set. We then use
KRR to machine-learn the non-interacting kinetic energy.
We then repeat this procedure on the scaled densities using
the same NT densities as before. We then pick another
random set of 17 densities from the densities that have not
been included in the test set, and repeat the procedure.

For the 1D H2 case, we perform the same procedure, but
now we alter the separation between the centers, R, instead
of ω. The densities were found via DMRG as described
above, and the non-interacting kinetic energy was found
using Eq. (7). We chose 50 test densities between R = 3
and R = 8, but do not include the end-points. We train
on the same numbers of training data as before. The scale
factor is chosen so that all scaled densities satisfy l2[ñ] =
l2[nR=8]

For both scaled and unscaled functionals, we calculate
mean absolute errors in the kinetic energies of the test set
for NT = 3...17 (odd) to form a learning curve. We repeat
this process 200 times, redrawing the 17 random densities
to include in the training sets over each trial.

5. RESULTS

In Fig. 2, we plot the median learning curves for the 1D
Hooke’s atom with solid lines. Red indicates the standard
ML approximation, while blue denotes the results with scal-
ing included. Each of the many faint lines in the background
indicate one realization of the randomly chosen training
points. The exact condition has produced learning curves
that are a spectacular order of magnitude better than their
unscaled counterparts, for a given amount of training data!

On the other hand, Fig. 3 is far less encouraging. In this
figure, we show the same result for the functionals trained on
H2 densities. The scaled and unscaled functionals perform
almost identically, with at most a modest gain for imposing
the exact condition. The rest of this paper is devoted to
understanding why performance is so much less in this case.
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FIG. 2. (color online) The learning curves for functionals
trained on scaled (blue) and unscaled (red) densities for the
1D Hooke’s atom. Accuracy of 1 mH is denoted by the dashed
line (black).
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FIG. 3. (color online) Same as Fig. 2, but for H2 densities.

Fig. 4 shows the densities of the 1D Hooke’s atom in
our set, both before and after scaling. It is apparent that
the densities become much more similar once they have
been scaled. The appearance of the double peak is a strong
correlation effect, in which the two electrons are trying to
avoid one another. But the decay of the scaled density at
large |x| is the same for all cases. To reinforce this, we plot
l as a function of ω for each density, and TS (both with
and without scaling) as a function of ω. Clearly the scaled
functional varies less and is easier to learn.

To quantify this, we plot in Fig. 5 the value of γ for
each ω, versus 1/

√
2ω. The curve is close to a constant

(as it would be for the non-interacting case) and only varies
strongly from that as ω becomes small and the system be-
comes more strongly correlated. Lastly, in Fig. 6, we plot
both the unscaled and scaled KS kinetic energies for the 1D
Hooke’s atom. If the density were not changing shape, i.e.,
truly non-interacting, the unscaled energy would be linear,
and the scaled kinetic energy would be constant, as in our
toy example.
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FIG. 4. (color online) The Hooke’s atom densities with differ-
ent ω are plotted before scaling (top) and after scaling (bot-
tom). The color of each line indicates the value of ω. Notably,
the densities appear “more similar” to each other after scal-
ing.
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FIG. 5. We plot γ, defined in Eqn. (26), as a function of ω
for the Hooke’s atom.

Now let us examine the same sequence of plots for the
1D H2 molecule as a function of R. Fig. 7 shows the
densities (both unscaled and scaled) for the sequence of
H2 densities, as a function of R. Now the reverse appears
true: The unscaled densities appear to change less (or no
more than) the scaled densities. As R increases, the scaled
densities change considerably. Moreover, even when the
densities are essentially indistinguishable from the sum of
atomic densities, the scaled density continues to shrink in
extent around the two centers as R increases, i.e., the scaled
densities continue to change with R, even when R is very
large.

Of course, appearances are not definitive proof, so we
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FIG. 6. (color online) The Hooke’s atom non-interacting ki-
netic energy is plotted as a function of ω for the densities
before (red) and after scaling (blue).
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FIG. 7. (color online) The H2 densities considered are plotted
before scaling (top) and after scaling (bottom). The color
each line indicates the separation, R. The densities do not
appear to be made more similar by scaling.

quantify this effect. Fig. 8 shows γ for different values of
R. Comparing to Fig. 5, we see that γ appears to vary
linearly with R as R increases, instead of approaching a
constant. When we plot the unscaled and scaled kinetic
energies in Fig. 9, we see that, in sharp contrast to Fig. 8,
now the scaled kinetic energy varies more over the range of
densities than the unscaled one. Thus, it is not surprising
that scaling is little or no help in this case.
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0.4
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0.6

0.7

0.8

0.9
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R

γ

FIG. 8. We plot the scaling function, γ, as a function of R
for the H2 densities.
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FIG. 9. (color online) The non-interacting kinetic energies as
a function of the atomic separation, R, before scaling (red)
and after scaling (blue) for the set of H2 densities. Small dif-
ferences in unscaled kinetic energies are exacerbated by scal-
ing, particularly at large R.

6. DISCUSSION

We see that, for the contact interacting one-dimensional
Hooke’s atom described above, it is advantageous to ma-
chine learn the scaled non-interacting energy and use exact
conditions to relate this to the unscaled non-interacting ki-
netic energy, rather than machine learn the unscaled non-
interacting kinetic energy directly. Furthermore, this re-
sult does not extend to set of one-dimensional H2 densities,
where both methods of machine learning the non-interacting
kinetic energy have relatively similar performance.

To understand the system-dependence of the improved
performance, we analyze the densities plotted in Fig. 4 and
Fig. 7. We see that, for the Hooke’s atom, the densities in
the reference data set are approximately scaled versions of
each other. Explicitly, as ω increases, the peaks in the den-
sity shift away from the origin and become broader. Scaling
the densities reverses the effect of this trend, creating new
densities that may be more meaningfully compared. In con-
trast, for H2, the densities in the reference data set do not
resemble scaled versions of each other. As R increases, the
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peaks in the density shift away from the origin, but they do
not broaden. As such, scaling these densities will make the
densities more similar by aligning the peaks of the densities,
but will artificially make them more dissimilar by broade-
nening or narrowing the width of the peaks.

We can understand the poor performance of the exact
condition for stretched H2 as follows. Consider a model of
two disjoint atomic densities. We model an atomic density
as a gaussian:

nA(x) =
1√
2π

exp (−x2/2) (27)

and consider densities of the form

n(x) = nA

(
x+

R

2

)
+ nA

(
x− R

2

)
, (28)

where R is large enough so that overlap can be neglected.
Solving for the square-width of this density yields

l[n] =

√
2 +

R2

2
. (29)

Then, for R � 1, Eq. (7) yields TS → 1/4, independent
of R. So in principle, one could machine learn Ts[n] for
all densities of sufficiently large R with a single training
example. On the other hand, the scaled kinetic energy does
not simplify in this limit. For large R, l[n] ≈ R/

√
2. Thus,

T̃s[ñ] ≈ R2Ts[n]/2 = R2/8 (see the large R behavior in
Figs. 8 and 9). This non-trivial dependence upon R makes
it at least as difficult to learn the scaled kinetic energy as it
is to learn the unscaled kinetic energy.

We believe that this insight allows us to infer how our
results generalize to more realistic systems. If the set of
reference densities is made more similar by scaling, then we
suspect that machine learning T̃s[ñ] and using the exact
scaling condition will be more data efficient, as was seen in
the case of the Hooke’s atom. On the other hand, if the
set of reference densities is not made more similar by scal-
ing, then we suspect that either method of machine learning
Ts[n] and T̃s[ñ] will yield similar performance. It is worth
noting that, even when the functionals produce similar er-
rors, T̃s[ñ] may still be considered superior, as using this
functional to calculate Ts[n] will satisfy the exact scaling
condition, Eq. (17), by construction. This is in contrast
to directly machine learning the functional Ts[n], which will
only approximately satisfy the exact scaling condition within
the training manifold and will violate this condition outside
of the training manifold.

In fact, we can see the stretched case as a conflict be-
tween two exact conditions. The first is coordinate scaling,
while the second is size-consistency: Once two densities stop
overlapping, any functional should be equal to or tending to-
ward the sum of its values on the two separated densities.
Our imposition of the first condition made it more difficult
to learn the second.

7. CONCLUSIONS

In this paper, for two simple model systems (each in-
teracting 2-electron systems in 1D), we have imposed an
exact condition (quadratic scaling with coordinates) on the
machine learned Kohn-Sham kinetic energy functional. We
find that typically results are improved, but much more so
in the case of a harmonic trap than in the case of a bond
being stretched.

We can make intelligent guesses as to what is going on,
and how such findings might generalize in the real world.
The Hooke’s atom example should behave very similarly to
the sequence of two-electron ions as a function of nuclear
charge. Thus we expect imposing of the exact condition
would greatly improve accuracy. But one could reasonably
ask, what use is an ML kinetic energy functional for just
2-electrons in such a limited situation?

A more interesting situation would be the sequence
of neutral atoms, possibly including also anions and
cations. Here the densities are confined, and they must
(weakly) approach the Thomas-Fermi solution for large
(non-relativistic) values of Z, the nuclear charge. We sus-
pect that, once again, the energy would be much more ac-
curately learned with the imposition of the exact condition.

But in the simple case of stretching a diatomic bond, the
changes in shape of density continue as long as the bond
is stretched, and little is gained in accuracy on the interpo-
lation manifold by imposing the condition. It suggest that,
in some sense, that scaling of any density on the manifold
moves one in a direction away from the manifold, yielding
no additional information on the manifold itself. This would
therefore appear to be the most difficult case in which to
improve learning, and probably a different exact condition
(such as separating to isolated atoms) would be more bene-
ficial to the learning process. We note also that all semilocal
functionals fail in this limit. Finally, we note that if we are
interested in more than a simple stretch along a bond, such
as vibrational and rotational motion in 3D, we can expect
better performance enhancement from imposing the exact
condition. This difficulty is likely related to the difficulties
encountered in stretching 1D H chains in Ref. [10].
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