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We review the theoretical background for obtaining both quantum defects and scattering phase

shifts from time-dependent density functional theory. The quantum defect on the negative energy

side of the spectrum and the phase shift on the positive energy side merge continuously

at E = 0, allowing both to be found by the same method. We illustrate with simple,

one-dimensional examples: the spherical well and the delta well potential. As an example of a real

system, we study in detail elastic electron scattering from the He+ ion. We show how the results

are influenced by different approximations to the unknown components in (time-dependent)

density functional theory: the ground state exchange–correlation potential and time-dependent

kernel. We also revisit our previously obtained results for e–H scattering. Our results are

remarkably accurate in many cases, but fail qualitatively in others.

I. Introduction

Density functional theory (DFT)1–3 has become popular

for calculating ground-state properties of large molecules; it

replaces the interacting many-electron problem with an effective

single-particle problem that is computationally inexpensive to

solve. Based on rigorous theorems,1,2,4 and a hierarchy of

increasingly accurate approximations, DFT calculations are

common in almost all branches of chemistry.

In principle, all properties, including excitations, are

functionals of the ground-state density, but accurate, general-

purpose approximations to obtain these excitations have yet to

be found. Instead, time-dependent density functional theory

(TDDFT), based on another theorem,5 provides a usefully

accurate approach for many applications.6 In particular,

low-lying single excitations are often well-approximated, and of

great interest in many applications. Moreover, the computational

technology for solving the necessary equations already existed, so

TDDFT was rapidly built into existing codes and has become

popular for calculating excitations. But TDDFT is mostly

used to extract bound–bound transitions, and even then, only

low-lying single excitations. In this Perspective, we review our

work extending TDDFT to higher excitations, including both

Rydberg states and the continuum, i.e., n - N and beyond.
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We begin with a review of the theory of the quantum defect

and scattering phase shift aimed primarily at our electronic-

structure readers. Next, we give some background on

(TD)DFT and how to obtain the quantum defect and scattering

phase shift from a (TD)DFT calculation. We prove that within

TDDFT it is allowed to use the method of obtaining pseudo

continuum states from a hard wall cavity, and thus obtain the

phase shifts from a ‘‘bound’’ state calculation. We show results

for the quantum defect of He and the e–He+ scattering

phase shift.

II. Theoretical background

The theoretical ingredients needed to understand this work

originate from two distinct fields, scattering theory and density

functional theory. While closely related in principle, these

areas are almost mutually exclusive in practice. A reader from

either field might skip the familiar material.

A Scattering theory and Rydberg states

The electronic structure of atoms is understood in a rather

simple way if one of the electrons is in a highly excited state. In

that case we consider the system as consisting of the excited

electron in a local potential, originating from the nucleus and

all other (tightly) bound electrons. This local potential is a

long-ranged Coulomb potential for neutral and positively

charged atoms and a shorter ranged potential for negatively

charged atoms.

An atom with a highly excited electron in a long-ranged

atomic potential is also known as a Rydberg atom. Such atoms

are highly studied and an overview of their properties can for

example be found in ref. 7 and 8, and references therein. Since

Rydberg atoms can be regarded as one electron in an effective

local potential, they are similar to the hydrogen atom. The

difference between Rydberg atoms and hydrogen atoms is

expressed in terms of the quantum defect, which we introduce

in the next section.

The infinite Rydberg series merges into the continuum at the

ionization limit of the system; it is this boundary between the

finite states and the continuum that we explore in detail in this

paper. If the electron resides in a continuum state instead of a

Rydberg state, it scatters from the resulting ionic core. We

explain this further in section IIA2.

1 The quantum defect and its smoothness. For any spherical

one-electron potential that decays as �1/r at large distances,

the bound-state transitions form a Rydberg series. The high-

energy levels of such a system are given by the Rydberg

equation, which in atomic units reads,

Ei
n ¼ I � 1

2ðn� miÞ2
; ð2:1Þ

where i = (nl) and Ei
n is the excitation energy to a state of

principal quantum number n and angular momentum l, and

I is the ionization energy of the system studied. We use

atomic units throughout. The quantum defect, mi, is purely

determined by that part of the potential that differs from �1/r.
As is shown in eqn (2.1), the quantum defect behaves

differently for different angular momentum states. For high

angular momentum the quantum defect is generally small,

since the shielding effect of the core is mostly maintained. The

existence of a quantum defect requires the atomic potential to

decay like �1/r, producing a Rydberg series, but its value is

determined by the interior region of the potential.9

In Fig. 1 we show the exact quantum defects from high level

wave function calculations,10 fitted to a smooth function as

explained below, and we compare them with the experimental

values.11 We notice that both in the singlet and in the triplet

case the quantum defect is a smooth function of energy, so we

fit it to the following expansion,

mðpÞðEÞ ¼
Xp
i¼0

miE
i; E ¼ o� I : ð2:2Þ

In Fig. 1, the fits are given by m(1)(E) = 0.1395 � 0.0655E for

singlet and m(1)(E) = 0.2965 � 0.0811E for triplet. In previous

work12–14 we showed that in (TD)DFT this fit works well and

we only need two or three coefficients to describe all the data

accurately. The reason for fitting the quantum defect is that it

is hard to calculate the higher Rydberg states. If we have a way

to fit the lower quantum defects accurately, we instantly have a

way to obtain the values of all higher lying Rydberg states, up

to the continuum. The coefficients for the helium atom can be

found in the references above and are not repeated in

this paper.

2 Potential scattering and the phase shift. The quantum

defect, discussed in the previous section, is not only an

important quantity for studying bound Rydberg states, but

it is also relevant for scattering states. Seaton’s theorem16 tells

us that the quantum defect is a smooth function of energy as

E - 0, and it merges continuously with the phase-shift

(relative to pure Coulomb scattering),

dl(0) = pml(0). (2.3)

We illustrate this in Fig. 2 for the case of the helium atom. In

this Figure, and all that follow, we plot pml instead of the

quantum defect itself. In this graph we also show a continuous

fit of the points. Since the positive energy part is more curved

than the QDs alone, we need more coefficients for an accurate

fit. The fits are given by, 0.1399 � 0.0528E + 0.0358E2 for the

singlet case and 0.2967 � 0.0764E + 0.0167E2 for the triplet

case. Together with these fits we also show the straight line fit

Fig. 1 Accurate quantum defects for the He atom from ref. 10 (exact)

and experimental data from NIST.11
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of Fig. 1. It is clear that this fit is good for negative and very

small energies, but diverges for larger energies. Eqn (2.3) is

only relevant if there is a quantum defect to consider, i.e. if

we consider an atom with a long-ranged potential. Such a

long-ranged atomic potential can in general be decomposed

into a pure Coulomb (�1/r) and a short-ranged part,

vsrðrÞ ¼ �
1

r
� vðrÞ: ð2:4Þ

But to understand its scattering properties, we must first

review elementary scattering from a spherical potential.

If a potential is short-ranged, the differential scattering cross

section is given by ref. 17

ds
dO
¼ jf ðyÞj2: ð2:5Þ

The scattering amplitude is written in terms of partial waves,

f ðyÞ ¼
X1
l¼0

flPlðcos yÞ; ð2:6Þ

where Pl(cos y) is a Legendre polynomial and the partial

amplitude can be expressed in terms of phase shifts:

fl ¼
2l þ 1

k
eidl sin dl : ð2:7Þ

It follows from this equation that if we have the phase shift for

all values of l we can calculate the differential cross section. In

practice the few lowest l values will often be dominant and

almost completely determine the cross section.

For a long-ranged potential the equations are more

complicated. In the case of atoms, we can separate the total

potential into a Coulomb plus a short range part. The

differential cross section is then given by ref. 17

ds
dO
¼ jfCðyÞ þ fsrðy;fÞj2; ð2:8Þ

where fC(y) is the pure Coulomb amplitude and fsr(y,f) is the
additional scattering amplitude as a result of the short-range

part of the potential. This is necessary because fC(y) diverges

as y - 0, making the cross-section itself divergent. Thus,

scattering from a long-ranged potential is qualitatively different

from that of a short-ranged potential. The additional scattering

amplitude of eqn (2.8) does not depend on the angle f and can

again be expanded as eqn (2.6). The partial wave amplitudes

are given by,

fsr;l ¼
2l þ 1

k
eisl eidl sin dl ð2:9Þ

where the sl denote the Coulomb phase shifts and the dl the
phase shifts due to the short-ranged part of the potential. If the

short-range potential is small compared to the Coulomb

potential, the additional amplitude can be calculated using,

for example, a distorted wave Born approximation.17 In the

next section, we explain how we obtain accurate phase shifts in

practice.

3 Continuum states from spherical boxes. A useful method

we recently (re)discovered,18 and which circumvents the

problem of working with continuum states, is to put the system

of scattering electron and target in a spherical box. In that way a

finite number of ‘‘continuum’’ states is obtained exactly, namely

those that have nodes at the radius where we placed the wall,

r= Rb. Assuming one has the liberty to choose any wall radius,

all continuum states can be obtained in this way. Only for very

low-energy continuum states does one need large boxes.

Just as in the previous section, we distinguish two kinds of

potentials, short-ranged potentials that effectively vanish after

some finite radius Rc, and long-ranged potentials that do not.

The first kind we studied in ref. 19 where we investigated

the scattering of an electron by the hydrogen atom. The

(NT + 1)-electron system, H�, is a negative ion with a

short-ranged potential. Its phase shift is obtained from know-

ledge of the spherical Bessel functions as a function of the

energies and the wall radius, explicitly,

tan dnl ¼ �
jlðknRbÞ
nlðknRbÞ

; ð2:10Þ

where jl and nl are the spherical Bessel and Neumann

functions.

As an example, we show the lowest three of such states for a

spherical well in Fig. 3, where the wall is placed at Rb = 10.

The spherical well potential is given by

V(r) = �DY(a � r), (2.11)

Fig. 2 Helium atom negative energy singlet and triplet s-quantum

defects from ref. 10 and positive energy results from ref. 15. The phase

shifts are divided by p so they match with the quantum defects at

E=0. The coefficients corresponding to the fits are reported in the text.

Fig. 3 The lowest three positive energy orbitals for a spherical well

within a box with Rb = 10 (radius 1.2, well-depth 3). The dashed

curves indicate how the continuum functions continue. The curves are

offset for clarity, each zero being marked by a dashed horizontal line.
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where D is the depth of the well, a the radius, and Y the

Heaviside step function. The radius a of the spherical well is

1.2 bohr and the depth D = 3 Hartree. It is clear from this

graph that the orbitals are the continuum functions, except

that they do not continue beyond Rb = 10 and that there is

only a finite number of them.

In this paper we also study electron scattering from He+.

The (NT + 1)-electron system is the neutral helium atom,

which has a long-ranged modified Coulomb potential. We use

the fact that this potential can be separated in a pure Coulomb

potential (�1/r) and a short-ranged potential, i.e. that

vanished at some finite r. All we need to know to obtain the

scattering phase shifts are the Coulomb functions as a function

of energy and wall radius, so eqn (2.10) becomes

tan dnl ¼ �
FlðZ; knRbÞ
GlðZ; knRbÞ

; ð2:12Þ

where Fl and Gl are the regular and irregular Coulomb

functions. The only requirement on the location of the wall

is that it is outside the short-ranged part of the potential. We

can place the wall relatively close to the atom, even though we

are dealing with a long-ranged potential.

As an example, we show the lowest three of such states for

the same spherical well as above, plus a Coulomb potential, in

Fig. 4. The total potential is given by,

VðrÞ ¼ �DYða� rÞ � 1

r
: ð2:13Þ

Again the wall is placed at Rb = 10. It is again clear that the

functions behave exactly like continuum functions.

B Ground-state density functional theory (DFT)

We now review briefly both ground-state and time-dependent

density functional theory. We emphasize throughout the

distinction between exact DFT and the approximations

invariably used in practice.

Density functional theory is based on the theorem by

Hohenberg and Kohn (HK).1 This theorem states that, for a

given non-degenerate ground-state density of fermions, n(r),

with a given interaction, the external potential that produces

the density is unique (up to an additive constant). Thus, if

the density is known, the external potential is also known,

completely defining the Hamiltonian, i.e., we can obtain all

properties of the system from the density alone. The HK

theorem also holds for degenerate ground-states4 and there

exists an analogous theorem that can be applied to spin

densities.20,21

The power of DFT is in the idea of Kohn and Sham (KS)

to apply the HK theorem to a system of non-interacting

particles. The HK theorem states that the KS potential, which

reproduces the true density of the system, is unique. KS map

the fully interacting problem to a non-interacting one with the

same density. The KS equations are a set of one-particle

Schrödinger equations,

(�1
2
r2 + vS(r))fi(r) = eifi(r), (2.14)

where the fi are the KS orbitals and ei the corresponding

orbital energies. The effective KS potential is given by

vSðrÞ ¼ vextðrÞ þ
R
dr0 nðr

0Þ
jr�r0 j þ vXCðrÞ: ð2:15Þ

The unknown part in this equation, vxc(r), is the exchange–

correlation (xc) potential, that needs to be approximated in

practice. When the exact xc-potential is known, the exact

interacting density of the system can be obtained from the

KS orbitals,

nðrÞ ¼
XN
i¼1
jfiðrÞj

2; ð2:16Þ

where the sum runs over all occupied orbitals.

We illustrate the KS idea in Fig. 5 where we show both the

exact KS potential of the helium atom22 and the external

potential from an accurate wave function calculation. Umrigar

and Gonze22 obtained the exact KS potential from an

extremely accurate quantum Monte-Carlo calculation for the

ground-state of He, calculating the density, and finding the KS

potential by inverting the KS equation for the doubly-

occupied 1s orbital:

vS(r) = e1s � r2f1s(r)/f1s(r), (2.17)

where f1sðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2nðrÞ

p
. The KS potential is quite different

from the external potential. This is because two non-interacting

‘‘electrons’’ in the KS potential reproduce the exact electron

density of the interacting system, by definition. For example,

because electron–electron repulsion pushes density outward,

the KS potential is shallower than the external potential.

The energy of the highest occupied molecular orbital

(HOMO) of the exact He KS-potential is �24.592 eV. This

is exactly minus the ionization energy of the helium atom; an

Fig. 4 Same as Fig. 3, but with �1/r added to the potential.

Fig. 5 Top panel: extremely accurate radial density for the helium

atom found via the QMC method.22 Bottom panel: The external and

KS potentials for the helium atom.
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illustration of the exactness of Koopman’s theorem in DFT.23

This exact relation is a remarkable fact, since the KS system is

a fictitious system, but it follows from the exactness of n(r) as

r - N. In fact, vxc(r) - �1/r as r - N, for all spherical

systems whose density n(r) decays exponentially. Thus, since,

vHðrÞ ¼
R
dr0 nðr

0Þ
jr�r0 j ! N

r
r!1; ð2:18Þ

then vS(r) - �1/r if N = Z, as in Fig. 5, or more rapidly if

N = Z + 1.

In practice, vS(r) is not known exactly. DFT calculations use

approximations to Exc[n], whose derivative yields an approxi-

mation to vxc(r). Many approximate xc-energy functionals

have been developed since the start of DFT. The simplest of

these, the local density approximation (LDA), gives remarkably

good results.2 It is improved by including the gradient of the

density, leading to the generalized gradient approximation

(GGA). Some popular GGAs are BLYP (B8824 for exchange

and LYP25 for correlation) and PBE.26 Hybrid potentials are

popular among chemists because of their improved accuracy

for main-group thermochemistry and transition-state barriers.

These hybrid functionals mix in some fraction of exact

exchange with a GGA. The most widely used hybrid,

B3LYP, contains 3 experimentally fitted parameters,25,27,28

whereas PBE is derived from general principles of quantum

mechanics.26

A less well-known feature to users of ground-state DFT is

that although their favourite approximations often yield very

good energies (and therefore structures, vibrations, thermo-

chemistry, etc.) and rather good densities, they have badly

behaved potentials, at least far from nuclei. The LDA

potential, for example, decays much too fast. We show this

in Fig. 6 for the helium atom. Although the relative energies of

low lying states might be accurate, the high lying Rydberg

states, in which we have particular interest, are poorly

reproduced, if bound at all. In the case of the H� anion, the

LDA even fails to bind this system at all. These errors are

called self-interaction, because EX = �EH and EC = 0 for

one electron, but not with these approximations. Over the

past decade, the technology for treating orbital-dependent

functionals, such as the Fock integral (so-called exact

exchange), has been developed, and such functionals help cure

this problem.29 This is called the optimized effective potential

method (OEP).30–32 The OEP method can handle any

orbital-dependent functional including simple exchange, and

then produces an asymptotically correct vS(r).

C Time-dependent density functional theory

Next we give a concise overview of the basics of time-

dependent density functional theory (TDDFT), focused on

obtaining excitation energies. For a more in-depth review, we

refer to ref. 6, and references therein.

1 General formalism. Ground-state DFT does not produce

the exact transition energies. The reason is that the KS orbital

energies do not correspond to the true bound-state energies.

A popular way to obtain the true transition energies is via

time-dependent density-functional theory (TDDFT). TDDFT

is an in principle exact method based on the Runge–Gross

theorem.5 This theorem states that, for time-dependent

problems, the time-dependent potential, and consequently all

other properties, is a functional of the time-dependent density.

Armed with this theorem, time-dependent Kohn–Sham

(TDKS) equations are defined analogues to eqn (2.14) but

with iqfi/qt on the right. These equations describe a system of

non-interacting electrons that evolve in a time-dependent

Kohn–Sham potential and produce the same time-dependent

density as that of the interacting system of interest, thus

replacing the interacting problem with a much simpler

non-interacting one, as in the ground-state case. One therefore

defines (and needs to approximate) a time-dependent

xc-potential, vxc[n](r,t), as that defined by eqn (2.15).

2 Linear response.Most practical TDDFT calculations use

linear response theory. Within linear response theory, the

TDDFT equations simply reduce to an eigenvalue equation,33

X(�)F(�)
i = o2

iF
(�)
i (2.19)

where the oi are the excitation energies of the system at hand.

The superscript � means that we have one set of equations for

singlet energies, and one for triplet energies. The key quantity

in this equation is obviously the X� matrix, diagonalization

of which, when spin-resolved for a spin-restricted system,

immediately yields the transition frequencies oi:

Oð�Þia;jb ¼ dabdijðea � eiÞ2

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ea � ei
p

K""ia;jb � K"#ia;jb

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
eb � ej
p ð2:20Þ

where the ei,j are occupied Kohn–Sham (KS) orbital energies

and ea,b are unoccupied KS orbital energies, the K matrix

elements are discussed below, m and k specify the spin

orientation. The Kohn–Sham orbitals correspond to a system

of non-interacting electrons, the sum of which, in an exact

DFT calculation, gives the true density of the system. The first

term of the X(�) is the KS transition energy. The second term

in both matrices corrects the KS result to give the true

interacting result, the singlet and triplet transition energies,

respectively.

An approximation to solving the above eigenvalue equation

is the small matrix approximation (SMA), where we only

include diagonal elements of the X(�)-matrix.34,35 This leads

to a singlet triplet splitting but it does not allow different

transitions to mix with each other. The SMA is useful for

understanding results, but usually is not applied to obtain the

transition energies for practical systems.
Fig. 6 KS potentials for the helium atom: LDA, exchange only

(EXX), and exact.
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We illustrate how the transition energies evolve from

KS to SMA to full TDDFT in Fig. 7, where we consider the

1s - 2s and 1s - 3s transitions in the helium atom. From a

ground-state KS calculation we obtain just the KS orbital

energy differences, which are somewhere in-between the exact

values. The next step is to use the small matrix approximation

(SMA), where we see that especially the singlet values still

overestimate the exact values. The final step is to include the

full matrix, allowing full mixing of all states. The full TDDFT

results are close to the exact values, but do not match them,

because we used an approximate kernel (see below). Of course,

all this information, and much more, is beautifully condensed

into the quantum-defect plots throughout this paper. For

example, the exact results in Fig. 7 are represented by the

leftmost points of Fig. 1.

3 XC Kernels. The K matrix elements in eqn (2.20) are

given by,

K ss0
ia;jbðoÞ ¼

R R fisðrÞfasðrÞfbs0 ðr0Þfjs0 ðr0Þ
½r�r0 � drdr0

þ
R R

fisðrÞfasðrÞf ss0
xc ðr; r0;oÞfbs0 ðr0Þfjs0 ðr0Þdrdr0:

ð2:21Þ

where we used s, s0 to indicate spins and i,j indicate occupied

orbitals and a,b virtual orbitals. The first term in this equation

is the Hartree term, which is only dependent on the ground-

state KS orbitals. From eqn (2.20) we see that this term cancels

in the triplet case (minus combination). The second term

contains the xc-kernel,

fxcss0 ðr; r0; t� t0Þ ¼ dvxcsðr; tÞ
dns0 ðr0; t0Þ

ð2:22Þ

whose Fourier transform is simply f ss
0

xc (r,r0,o). The xc-kernel

is the only part in this expression that needs to be approximated,

after the ground-state calculation has been performed. In this

paper we focus on three different kinds of xc-kernels, adiabatic

LDA (ALDA), EXX, and hybrid, and study how they perform

for the bound and continuum states of the helium atom. All

these kernels use the adiabatic approximation, i.e., ignoring

the frequency dependence of the xc-kernel.

The simplest xc-kernel is the adiabatic local density approxi-

mation (ALDA). The ALDA xc-kernel is given by

f ALDA
XCss0 ½n0�ðr; r0; t; t0Þ

¼ dð3Þðr� r0Þdðt� t0Þ d
2eunifXC

dnsdns0

�����
ns¼n0sð;rÞ

;
ð2:23Þ

where eunifxc is the xc-density of the uniform electron gas. The

time Fourier-transform of this kernel has no frequency-

dependence and via a Kramers–Kronig relation, this implies

that it is purely real.36

Even though finite systems like atoms and molecules are far

from representing the homogeneous electron gas, the ALDA

is a good approximation in practice. There are systems,

though, where the ALDA fails completely. For example the

polarizability of long chain molecules is strongly over-

estimated by the ALDA.37 A solution to this problem is

to use orbital dependent functionals,38,39 or to solve the

time-dependent current DFT equations with the current

dependent Vignale–Kohn functional.40

In this paper we study the helium atom, in the special case of

a two-electron system we can make some other simple choices

for the xc-kernel. For two-electrons we can treat exchange

exactly, the kernel is simply minus half of the Hartree kernel,

f EXX
Xss0 ¼ �

dss0
jr� r0j : ð2:24Þ

This kernel can be improved by combining with the

correlation part of ALDA. This results in the so-called hybrid

xc-kernel,

f hyb
XCss0 ¼ �

1

2

dss0
jr� r0j þ

1

2
f ALDA
Css0 ; ð2:25Þ

which improves on EXX for the helium atom.41

III. One-dimensional illustrations

In this section we treat potentials of finite range in one

dimension, i.e., v(x) = 0 beyond some a. We restrict ourselves

to symmetric potentials (v(�x) = v(x)), where the analogy to

3D scattering theory is most plain. These examples are not

meant as models of real atoms or molecules, but simply

illustrate the general principles.

A Potential scattering: NT = 0

We divide the illustrations into two cases, to make as clear as

possible the distinct physical principles involved. We first treat

potential scattering, i.e., a single-particle scattering from a

potential, and show how box calculations yield the exact result.

Thus NT = 0, where NT is the number of particles in the target.

In the next section, we treat the more complex interacting case,

analogous to electron scattering from H, where NT = 1.

1 Phase shifts in 1D. For a symmetric 1D potential, parity

plays a role analogous to the partial waves in 3D. Thus, there

are only two channels, symmetric and antisymmetric. Careful

analysis allows definition of two phase shifts:42

e2id
�
= t � r. (3.26)

Fig. 7 The first two transitions for He. Exact KS orbital energy

differences, SMA singlet–triplet excitation energies and full TDDFT

(ALDA) excitation energies (both evaluated for the exact ground-state

KS potential), and the exact values.
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The + sign corresponds to an even continuum solution and

the � sign to an odd solution. The amplitudes t and r are

defined for scattering boundary conditions, i.e., the asymptotic

wave functions are,

fkðxÞ ! eikx þ re�ikx r! �1

! teikx r!1:
ð3:27Þ

The amplitudes r and t are related to the reflection and

transmission coefficients, R and T,

R = |r|2, T = |t|2. (3.28)

A useful result from this analysis is

t = ei(d
+
+d�)cos D, (3.29)

where D = d+ � d�, showing that resonances occur when D/p
is an integer.

An example of a short-ranged central potential is the delta

well potential, v(x) = �Zd(x). The free space example can be

easily calculated, and the amplitudes t and r are given by

t ¼ 1

1þ Z=ik
; r ¼ t� 1: ð3:30Þ

From this it follows that

e2id
þ ¼ 1� Z=ik

1þ Z=ik
; ð3:31Þ

and we find for the phase shift

tan dþ ¼ Z

k
: ð3:32Þ

The odd phase shift d� = 0. (This is special to the delta

potential, but is not true in general.)

2 Scattering solution in a box. Now consider putting the

potential inside an infinite well, with walls located at x= �L/2.
Since the potential is placed in a box, the states are discrete

and there is only a discrete set of allowed values for the

eigen-energies E�n , n = 1,2,. . .. By comparing wavefunctions

beyond the range of the potential, one finds the phase shifts

corresponding to the even and odd solutions are given by

d� ¼ p
4
� k�n L

2
� p

4
; ð3:33Þ

with k�n ¼
ffiffiffiffiffiffiffiffiffi
2E�n

p
.

The even solution to the Schrödinger equation in a box with

boundaries at x = �L/2 is

fþn ðxÞ ¼ A sin kþn
L

2
� jxj

� �
; ð3:34Þ

with normalization constant

A ¼
ffiffiffiffi
2

L

r
1� sin kþn L

kþn L

� ��1=2
: ð3:35Þ

The discrete allowed k+n values satisfy

kþn ¼ Z tan
kþn L

2
: ð3:36Þ

(For the derivation, see for example ref. 43.) Taking the

tangent of eqn (3.33), we obtain for the phase shift,

tan dþ ¼ cot
kþn L

2
¼ Z

kþn
: ð3:37Þ

Eqn (3.32) and (3.37) are identical, but eqn (3.37) can only be

evaluated at a finite number of energies k+n . In Fig. 8 we show

both a continuum scattering state and a box state for the delta

well potential at the same energy. From the Figure it is clear

that they are identical within the box, and therefore have the

same phase shift.

The odd solution is

f�n ðxÞ ¼
ffiffiffiffi
2

L

r
sin k�n x: ð3:38Þ

These are simply the particle-in-a-box wave functions; the

delta potential has no effect on the odd states. The corresponding

energies are the particle in a box energies,

k�n ¼
2np
L

ð3:39Þ

where n = 1,2,3,. . . This corresponds to a phase shift d�= 0.

3 DFT treatment. It is now instructive to see how this

one-electron example should be treated with (TD)DFT. The

first step in any linear-response TDDFT calculation is to find

the KS ground-state potential of the (NT + 1)-electron system.

The ground-state KS potential is given by

vKS(x) = vext(x) + vHxc(x). (3.40)

For one electron (N= 1), vX(r) = �vH(r) and vC = 0, and the

KS potential is just the external potential. The KS orbitals for

positive energies are equal to the scattering states we obtained

above in the exact case (with or without the box).

Next one usually calculates the TDDFT correction

corresponding to the excitation of the electron into one of

Fig. 8 Solid line: even continuum state for a delta function with

strength Z = 2 at k = 4.2748, corresponding to the first state of

positive energy when walls with L = 2 are imposed. Symbols: bound

state for the same potential at the same energy in a box with walls at

x = �L/2 = �1.
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the positive energy states. Again, for a one-electron system,

vHXC(r,t) = 0, and thus fHxc(r,r
0,o) = 0. From eqn (2.20) and

(2.21) it follows that the true excitation energies are equal to

the KS orbital energy differences. The TDDFT scattering

phase shift is therefore equal to the exact phase shift in this

trivial case. This also tells us the condition needed for any

TDDFT treatment to recover the exact results for this case:

both the ground-state potential and the TDDFT kernel must

be self-interaction free for one electron.

B Interacting case: NT = 1

The case in the previous section was a trivial one for

(TD)DFT, but checked that our methodology worked in that

limit. Now we study a case that is not trivial. We consider two

fermions, one of which resides in the bound state of the delta

potential well and the other scatters from this target. The two

electrons interact through a delta potential repulsion. We

show in this section that, with exact functionals, the TDDFT

results reproduce the exact results.

1 Exact solution. The Hamiltonian of this problem is given

by ref. 44

Ĥ ¼ � 1

2

d2

dx21
þ d2

dx22

� �
� Z dðx1Þ þ dðx2Þ½ �

þ ldðx1 � x2Þ

ð3:41Þ

The two electrons interact via a delta-function repulsion

potential, scaled by l. In ref. 45 the scattering amplitudes

for both the exact and (TD)DFT case were derived to

first-order in l. They found the transmission amplitude for

the exact case.45 For triplet scattering, the bound electron has

no effect, and

ttrip ¼ t0 ¼ ik

Z þ ik
ð3:42Þ

identical to eqn (3.30). But the singlet has a correction due to

the interaction:

tsing ¼ t0 1� 2ilk
Z2 þ k2

� �
: ð3:43Þ

Our methods should be able to reproduce this leading

correction.

2 Exact ground-state KS potential. To reproduce this

result with TDDFT, first the ground-state KS problem

must be solved. The ground-state KS potential of the

(NT + 1)-electron system is given by

vs(x) = �Zd(x) + l|fs(x)|
2 (3.44)

to first-order in l. It is possible to solve the corresponding

self-consistent Schrödinger equation exactly, finding

fsðxÞ ¼
ffiffiffiffi
Z
p

e�Zjxj

þ l

8
ffiffiffiffi
Z
p Ze�3Zjxj þ e�Zjxjð4Zjxj � 3Þ

h i
ð3:45Þ

To first order in l, the KS potential is therefore

vs(x) = �Zd(x) + lZe�2Z|x|. (3.46)

Transmission through this potential can easily be calculated

using the distorted-wave Born approximation, which is

exact to leading order in l, producing the KS transmission

amplitude,45

ts ¼ t0 1� ilk
Z2 þ k2

� �
: ð3:47Þ

The transmission through the KS potential is exactly midway

between singlet and triplet scattering. In Fig. 9, we plot

both the exact and KS transmission functions for Z = 2 and

l = 1/2 to first order in l.

3 TDDFT corrections. The next step in a TDDFT

calculation is to correct the KS transmission for both singlet

and triplet scattering, using the Hartree-exchange (Hx) kernel

as correlation effects are higher order in l. Because we

are treating both singlet and triplet scattering, we must

use spin-TDDFT. This has no effect on the closed shell

ground-state, but the exact spin-dependent kernel is, to first

order in l,34

f ss0HX = ld(x � x0)(1 � dss0) (3.48)

where s indicates the spin.

Using this kernel the following amplitudes are obtained, by

applying a distorted-wave Born approximation directly to

the Dyson-like equation relating the true and KS response

functions:45

tsing ¼ ts � l
ik2

ðk� iZÞ2ðkþ iZÞ

¼ t0 1� 2ilk
Z2 þ k2

� � ð3:49Þ

ttrip ¼ ts þ l
ik2

ðk� iZÞ2ðkþ iZÞ
¼ t0 ð3:50Þ

These equations are identical to the exact eqn (3.43) and

(3.42). This illustrates that TDDFT reproduces the exact

answer.

C NT = 1 in a box

We are finally ready to perform the most important test of our

methodology. We use TDDFT with exact ground-state and

Fig. 9 Real and imaginary parts of the exact (solid lines) and KS

(dashed lines) transmission amplitude for the delta potential well with

contact interacting electrons. In this plot Z = 2 and l = 0.5.

4444 | Phys. Chem. Chem. Phys., 2009, 11, 4437–4450 This journal is �c the Owner Societies 2009



time-dependent functionals and with box boundary conditions

to reproduce the exact interacting scattering results above.

1 KS ground-state in box. To begin, we need first solve the

ground-state KS problem in the box. Now, the KS potential,

eqn (3.46), is not zero beyond some radius R, but extends

out toN. But since it is exponentially decaying, we can choose

L c 1/Z, and have only exponentially small corrections to the

free results. Then the KS potential inside the box is simply

given by eqn (3.46). For the even states, we can use the

eigenstates eqn (3.34) to zero-order in l, and then apply

first-order perturbation theory. The zeroth-order eigenstates

simplify to,

fþn ðxÞ ¼
ffiffiffiffi
2

L

r
sin kþn

L

2
� jxj

� �
; ð3:51Þ

i.e., the normalization constant of eqn (3.35) simplifies, by

using the allowed values of k+n and the condition L c 1/Z.

Note there is no assumption concerning the relation between

k+n and L.

We next treat the interaction potential as a perturbation.

The energies of the scattering states in the box can be

expressed as,

e = en + den (3.52)

where en are the energies of the delta potential well without

interaction. The perturbed energy is given by

den = hn|dv|ni = 2lZ
R
L/2
0 dxe�2Z|x||fn(x)|

2. (3.53)

An elementary integration yields:

den ¼
l
L
� 1

1þ Z2=k2n
ð3:54Þ

for either odd or even states, using eqn (3.35) and L c 1/Z.

Now, since dk = de/k,

Ldkn ¼ L
dvn
kn
¼ l

kn
� 1

1þ Z2=k2n
: ð3:55Þ

Finally, inserting these into eqn (3.33) for the corrections to

the phase shifts, and then calculating the corresponding

transmission amplitude from eqn (3.29), we obtain for

the KS transmission amplitude for two contact interacting

electrons in a delta well potential,

ts ¼ t0e�il=knð1þZ
2=k2nÞ ¼ t0 1� ilkn

Z2 þ k2n

� �
ð3:56Þ

agreeing with the exact result, eqn (3.47).

2 TDDFT corrections in box. Last, we need to show that

the TDDFT corrections for the box yield the exact results. We

start from the O-matrix of eqn (2.20) and (2.21). We first make

the small matrix approximation (SMA) that assumes that only

diagonal elements of this matrix contribute to the excitation

energies. For the singlet excitations, we can then write the

O-matrix in short-hand notation,

O+
q = oq + hq|fHX|qi, (3.57)

where q = (0,n) indicating that we only consider transitions

from the ground-state. Writing en = Oq � I, where I is the

ionization potential, we find:

den = 2hq|fHX|qi, (3.58)

where

hq|fHX|qi = 2lZ
R
L/2
0 e�2Z|x||fn(x)|

2 dx, (3.59)

i.e., the same as den from eqn (3.53). We then immediately

obtain for the transmission coefficient,

fkðxÞ ! eikx þ re�ikx r! �1

! teikx r!1:
ð3:60Þ

The same as in the continuum case eqn (3.49). In the triplet

case fHX = 0 and the equations we obtain are identical to the

continuum case, i.e. ttrip = t0.

Thus exact TDDFT in the box precisely reproduces both the

TDDFT results without the box, and the exact results from

wavefunction theory, as shown in Fig. 10.

IV. Computational details

Here we describe the details of the numerical calculations for

real atoms and ions. We obtain the positive KS orbital

energies (necessary to evaluate the phase shift in eqn (2.12))

from a well-established fully numerical spherical DFT code.46

This code includes many approximate xc-potentials, including

the standard LDA and GGAs, and also the optimized effective

potential method (OEP) for exact exchange calculations. The

program does not use a basis set like most quantum chemistry

codes, but instead works with a radial logarithmic grid. Both

the KS orbital energies and the potentials are optimized in a

self-consistent way. The code is supplemented by the option

to insert a hard-wall at a distance Rb from the origin. We

always use a large number of grid points, 41500, to ensure

convergence with the number of grid points.

The TDDFT excitation energies are calculated with our

own code that solves the radial TDDFT equations. Since we

are dealing with small systems, we can exactly diagonalize the

O-matrix of eqn (2.20) without regard to computational cost.

The TDDFT code reads in the grid points, ground-state

Fig. 10 Real and imaginary parts of the KS transmission amplitude

and of the interacting singlet and triplet amplitudes for the delta

potential well with contact interacting electrons. In this plot Z=2 and

l = 0.5. For the results from the box (symbols) we used L = 5.

This journal is �c the Owner Societies 2009 Phys. Chem. Chem. Phys., 2009, 11, 4437–4450 | 4445



orbitals, and ground-state orbital energies from the DFT

calculation. The number of states included in the O-matrix

are always chosen large enough for the transition energies to

have reached convergence.

Since we want to assess the performance of TDDFT kernels,

we use a highly accurate ground-state xc-potential for the

helium atom, obtained from very accurate wave functions,

by Umrigar et al.22 We regard this as the essentially exact

xc-potential. This potential is spline-fitted onto the grid points

and imported into the code.

V. Results

In this section we show our results for e-He+ and e-H

scattering. In case of He we also study the quantum defect.

We study in detail the effect of different xc-potentials and

xc-kernels. We also study the effect of the location of the

potential wall.

A Usefulness of the KS potential

In Fig. 11 we show highly accurate s-QD values (multiplied by

p in this and all following Figures), ms, and s-wave phase shifts,

ds obtained from the literature.10,15 We note, for our DFT

readers, how smooth these curves are, demonstrating the

continuity of eigenstates through E = 0. All eigen energies

of the infinite Rydberg series can therefore be captured by a

single smooth curve, as was already indicated in eqn (2.2). The

fit coefficients corresponding to the continuous curves in this

and all following Figures are available in the ESI.w Comparing

our KS results to the literature data, we see that the KS QD

and phase shifts are in-between the accurate wave function

results. The KS results also mimic the correct shape of the

accurate curves. We note for our non-DFT readers how

much information is contained in the exact ground-state KS

potential of the (NT + 1)-electron system (in this case He). All

we need TDDFT to do is to shift the curve down in case of the

singlet and upward in case of the triplet. Thus, an important

message of this review for non-DFT readers is just how good a

starting point the accurate KS potential is.

B TDDFT corrections

To see how, and if, TDDFT corrects the KS results, we

study the effect of the fxc kernel that appears in eqn (2.21)

by using a sequence of approximations that include more

and more physics. While there is as yet no explicit reverse-

calculation for the exact kernel, we know that, if we had that

exact kernel, it would reproduce the reference curves of

Fig. 11.

In Fig. 12 and 13 we show the difference of the TDDFT

results with the exact results for the s-wave quantum defect

and phase shift of singlet and triplet, respectively. The

difference is calculated by fitting the results to a polynomial

of order 2 or higher, and subtracting the exact values from the

TDDFT values for the quantum defect and phase shift. In case

of the quantum defect we indicate with circles the locations of

the finite Rydberg states. We note again that for fitting just the

QD, i.e. obtaining the mi coefficients, a polynomial of order 2 is

enough, while we generally need a higher order polynomial to

fit the QD and phase shifts together. We now analyze our

results in much detail.

The first step in our analysis is to set the xc-kernel to zero. In

case of the triplet, eqn (2.21) tells us that we are left with just

the KS orbital energy differences, i.e. there is no correction.

For the singlet excitations there is a correction. The approxi-

mation of setting the xc-kernel to zero is called the Hartree

approximation and is also known as the random phase

approximation (RPA) in physics and does not involve any

TDDFT. Fig. 12 shows that the Coulomb kernel corrects the

KS result in the right direction, but overcorrects by about as

much as the original error. We observe that even without an

xc-kernel this methodology splits the bare KS results into

separate singlet and triplet curves.

The next step is to include exchange, which usually

dominates over correlation. Since we are considering a two-

electron system, the exact exchange kernel (EXX) is also

known; it is given by eqn (2.24). We see in Fig. 12 and 13

that the Hartree results are considerably corrected by inclusion

of the exchange kernels. In the triplet case the EXX correction

is in the right direction, but it overcorrects.

Fig. 11 s-Wave phase shift for the He atom. Accurate data from

ref. 10 and 15. All data below the KS result corresponds to singlet

values, all data above to triplet values. For E o 0, we plot p times the

QD, so it merges smoothly with the phase shift.

Fig. 12 Error of calculated singlet s-wave phase shifts with respect to

the reference data from ref. 10 and 15. For E o 0, we plot p times the

QD error, so it merges smoothly with the phase shift error.
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Correlation is included by considering the full ALDA

kernel. The ALDA kernel performs slightly worse than the

EXX kernel in case of the singlet results. In case of the triplet

results the ALDA performs better than EXX, especially at

lower energies. The size of the error in the singlet and triplet

full ALDA curves compared to the reference data is very

similar.

For completeness we also show ALDAx results, which

includes only the exchange part of the ALDA kernel. In the

singlet case, the full ALDA results merge with ALDAx for

higher energies, the full ALDA improving on ALDAx for

lower energies. In the triplet case the ALDAx results are better

than full ALDA for all energies.

The good results of the EXX kernel and the correlation

correction of ALDA, suggests to combine the two. This leads

to the hybrid kernel41 of eqn (2.25). In the singlet case the

hybrid kernel clearly improves the EXX and ALDA kernels

over the entire energy range. One of the conclusions of ref. 41

was that the hybrid kernel improves the (bound–bound)

excitation energies of He in almost all cases. On the continuum

side, we see that the hybrid kernel performs the best of all these

kernels in case of the singlet, and for the triplet it improves

on EXX, but only improves the ALDA for large energies.

Another conclusion of ref. 41 is that the hybrid kernel

improves the bound–bound triplet s excitation energies of

He. Our finding that the ALDA performs better instead is

most probably because the TDDFT calculation of ref. 41 only

includes the lowest 34 unoccupied states of s and p symmetry

in the calculation of the O-matrix, whereas we included over

350 states including the continuum in all cases, notably

improving the numerical accuracy of the TDDFT results.

C Approximate ground-state potentials

Until now we have always used the exact ground-state

potential for our calculations. It is interesting to study the

influence of the ground-state potential on the TDDFT results

as, in practice, only approximate potentials are available.

There is a wealth of such potentials and we cannot cover all

of them in this paper.

For illustrative purposes we therefore limit ourselves to two

potentials: the most simple potential of all, the local density

approximation (LDA), and the orbital-dependent exact

exchange potential implemented within the optimized effective

potential scheme (OEP). We expect little qualitative change

moving from LDA to GGA, or adding GGA correlation to

EXX. We showed these potentials together with the exact

potential in Fig. 6. From the Figure we see that the LDA is

very different from the exact potential. The potential is too

narrow in the interior region, resulting in a bound state of too

high energy, and it is short-ranged, completely missing the

�1/r tail. But the shape of the LDA in the interior region is

typically very good. It is almost equal to the exact potential,

shifted upward by a constant, therefore occupied LDA

orbitals yield a remarkably accurate density, except in the tail

region. This feature can be used to extract a highly accurate

QD from the LDA potential.47

On the other hand, the EXX potential is almost indistin-

guishable from the exact potential; it is very similar in the

interior region and has the correct asymptotic behavior. The

exact potential is slightly deeper than the OEP potential near

the nucleus (see the inset in Fig. 6). We expect the results from

the OEP potential to be very close to the exact results.

We show the error in the phase shift obtained using the

EXX ground-state potential in Fig. 14 (using the ALDA

kernel). The LDA results diverge completely and there is

no quantum defect because of the missing Rydberg series,

therefore we do not show these results in the Figure. The EXX

results are shifted a little bit upwards compared to the exact

results, but this error is an order of magnitude smaller than

those due to approximate kernels.

We conclude that using EXX potentials is clearly sufficient

for these calculations. On the other hand, the LDA results

diverge. Thus, without the special handling of ref. 47, standard

approximations (LDA, GGAs, hybrids) are useless here.

D Effect of the wall

In this section, we demonstrate our claim that the infinite wall

can be placed quite close to the atom, as long as the part of the

potential that differs from �1/r is essentially zero beyond the

wall (eqn (2.4)). In Fig. 15, we show the singlet and triplet

s-wave phase shifts for wall distances between 5 and 8 bohr,

and compare the results with Rb = 100 a.u. The smallest

distance is determined by the requirement that the box does

not significantly distort the self-consistent potential in the

Fig. 13 Same as Fig. 12, but for triplet.

Fig. 14 The error in the s-wave phase shifts obtained from the EXX

potential, relative to those from the exact KS potential.
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region of significant density, i.e., occupied orbitals must be

unaffected. The results for the small wall distances

indeed correspond to the correct phase shifts. By varying the

wall distance at small Rb we can fill out the complete

curve, giving an alternative to performing a single calculation

with a very large Rb. This is an important conclusion if

one wants to use finite basis-set methods instead of a

grid based code,48 because the range of finite basis-sets, even

if they include very diffuse functions, is limited to much

shorter radii.

E Different l-values

Until now we focussed on s-wave scattering and s-QDs. Of

course we can also study higher l-values, using the l-dependent

eqn (2.12) for the phase shift. We show the difference between

our p-QD and phase shift (i.e. l = 1) and the reference values

for He in Fig. 16 and 17. In ref. 49, we also showed results for

d-wave scattering.

Adding xc-kernels notably improves the Hartree results just

as in case of the s-QD and s-wave phase shift. For negative and

low energies, the hybrid performs the best of the three kernels,

but for larger energies ALDA performs better, being very

closeto the reference results. The bare EXX kernel does not

perform as well in this case, unlike for s-wave phase shifts.

Thus ALDA is better overall, and can easily be applied to any

system tractable with ground-state DFT.

F Scattering from a neutral system: e–H scattering

When we scatter from a positive ion like He+ as we did

throughout this paper, the (NT + 1)-electron system is a

neutral atom with a long-ranged KS potential. In ref. 19 we

studied another two-electron system, namely electron scattering

from the hydrogen atom. In this case the (NT + 1)-electron

system, H�, is a negative ion with a short-ranged KS potential.

Because of this, there is no Rydberg series or QD and only one

bound state. We now calculate the phase shift using eqn (2.10),

i.e. relative to free potentials.

We show our results in Fig. 18. We see that, just as

for e–He+ scattering, the KS result, which is equal to

triplet Hartree, lies in between both the accurate singlet and

triplet values. ALDA corrects this and the ALDA results

are again very close to the reference data. So TDDFT works

well for electron scattering from both cations and neutral

atoms. For more details on this particular system we refer

to ref. 19.

Fig. 15 Exact KS (middle) and TDDFT-corrected (ALDA) results as

a function of the wall radius. The singlet is above, and the triplet

below, the KS curve.

Fig. 16 Same as Fig. 12, for p-wave.

Fig. 17 Same as Fig. 13, for p-wave.

Fig. 18 s-QD and s-wave phase shift for Hartree and ALDA

compared to accurate data.50 The bottom three curves correspond to

singlet, the top three to triplet.
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VI. Conclusions

Electron scattering from H (as shown in Fig. 18) and electron

scattering from He+ (as outlined in this paper) are

two-electron systems. But our TDDFT methods can also be

applied to elastic electron-scattering for systems with more

than two electrons.

Results for electron scattering from Li can be found

in ref. 49. The (NT + 1)-electron system is Li� and has a

short-ranged potential. The singlet TDDFT p-wave phase

shift in this system suffers from an artifact that appears very

close to zero energy (energies smaller than 1 eV). But for

higher energies the TDDFT values correspond very well to the

available reference data, as do the triplet p-wave and s-wave

phase shifts.

A many-electron system with a long-ranged potential is Be,

corresponding to electron scattering from Be+. Scattering

phase shifts of e–Be+ can be found in ref. 51. In this system

there are a number of low-energy resonances of double excita-

tion character, not captured by our TDDFT method. Such

effects require going beyond the adiabatic approximation of

TDDFT and using a frequency dependent kernel.52 But apart

from missing these resonances, TDDFT again performs well.51

So in general this method is expected to work well for

low-energy electron–atom scattering problems, without

resonances due to multiple excitations, where the (NT + 1)-

electron system is bound. We have not yet addressed the

complications of non-spherical systems or of open-shells.

Another point we have not addressed are the oscillator

strengths that correspond to the TDDFT excitation energies

and how they behave when moving across the continuum. This

situation is studied in ref. 53. It is found that the KS oscillator

strength corresponding to the ionization energy (exactly given

by minus the energy of the KS HOMO) does not correspond

to the exact oscillator strength. But the exact and KS oscillator

strengths do merge at higher energies and several results for

2-electron systems are given in the reference.

In this paper we reviewed our theory and calculations

for obtaining both the quantum defect and electron–atom

scattering phase shifts using TDDFT. We have shown that

our method of putting the system in a finite hard wall cavity in

order to extract the continuum states and phase shifts works

within TDDFT. In our previous work we showed that the

method works well for the short-ranged potential system

e–H�. In this paper we first illustrated our box method on a

(relatively) simple toy problem, in which the answer was

known exactly. Next, we showed that the method works

equally well for the long-ranged helium atom and e–He+

scattering. We also showed that the TDDFT quantum defect

and phase shifts transition smoothly across the zero energy

boundary, in accordance with Seaton’s theorem.

Our final conclusion is that TDDFT works well for

high-lying excitations in neutral atoms and cations. To

infinity, and beyond!
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