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Time-dependent density functional theory (TDDFT) is increasingly popular 

for predicting excited state and response properties of molecules and clusters.  
We review the present state-of-the-art, focusing on recent developments for 
excited states. We cover the formalism, computational and algorithmic aspects, 
and the limitations of present technology. We close with some promising 
developments. Extensive reviews on many aspects of TDDFT exist 1 2 3 4 5, and 
no pretence at comprehensive coverage is made here; instead, we rely heavily 
on our own work and that of our collaborators. 
 

BACKGROUND 
 

Standard (i.e., ground-state) density functional theory (DFT) is derived from 
traditional wavefunction-based quantum mechanics. The Hohenberg-Kohn (HK) 
theorem is a simple rewriting of the Rayleigh-Ritz variational principle 6.  Time-
dependent DFT is based on a different theorem 7, which is a simple 
consequence of the time-dependent Schrödinger equation. For a given initial 
wavefunction and particle interaction, a time-dependent one-electron density ρ(r 
t) can be generated by at most one time-dependent external (i.e., one-body) 
potential.  By starting in a non-degenerate ground-state, the dependence on the 
initial wavefunction can be absorbed into the density dependence, by virture of 
HK. 
 

We define a set of time-dependent Kohn-Sham (TDKS) equations that 
reproduce ρ(r t), from a unique time-dependent Kohn-Sham (KS) potential.  This 
consists of the external potential, the Hartree potential, and the unknown time-
dependent exchange-correlation (XC) potential vxc[ρ](r t). This is a much more 
sophisticated object than the ground-state vxc[ρ](r), as it encapsulates all the 
quantum mechanics of all electronic systems subjected to all possible time-
dependent perturbations. 
 

ELECTRONIC EXCITATIONS 
 

To extract electronic excitations, apply a weak electric field, and ask how the 
system responds, as in standard perturbation theory.  We don't need the entire 
vxc[ρ](r t), but only its value close to the ground state. This is captured in the XC 
kernel, fxc(r r '; t-t')=δvxc[ρ](r t)/δρ(r' t'). This is a new functional introduced by the 
time-dependence. Its Fourier transform, fxc(r r '; ω),  reduces to the ground-state 
value as ω→ 0. The standard adiabatic approximation ignores the frequency 
dependence, and uses the second-derivative of the ground-state XC energy 
functional. Typical examples are the local density approximation (LDA), 
generalized gradient approximation (GGA) and hybrids, such as B3LYP. 
 

Several practical routes have been adopted for extracting excitation energies 
from TDDFT response theory. In 1995, Casida converted the optical response 
problem into the solution of an eigenvalue problem (EVP) 2 whose indices are the 
single-particle transitions of the ground-state Kohn-Sham potential: 
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The matrices A and B are the Hessians of the electronic energy.  The dominant 
contributions to the A matrix are the Kohn-Sham transition frequencies along the 
diagonal. The transition vectors (Xn Yn) correspond to collective eigenmodes of 
the TDKS density matrix with eigenfrequencies Ωn. The Hartree and XC kernels 
produce both diagonal and off-diagonal contributions to A and B, correcting the 
transitions between occupied and unoccupied levels of the ground-state KS 
potential into the true transitions of the system. If the different Kohn-Sham 
transitions do not couple strongly to one-another, a useful approximation is to 
take only the diagonal elements of A. One can view the KS transition as being 
corrected by an integral over  fxc(r r ' ; ω) on the transition matrix elements, and the 
KS oscillator strengths will be good approximations to the true ones 8. 
 
Alternatively, many physicists propagate the TDKS equations in real time, usually 
on a real-space grid inside a large sphere. They calculate the time-dependent 
dipole moment of their system, whose Fourier-transform yields the optical 
response. 
 

COMPUTATIONAL ASPECTS 
 
The response theory outlined above can be re-cast in variational form 9. To 

this end, one defines a Lagrangian L which is stationary with respect to all its 
parameters at the excited state energies. L depends on the ground state KS 
molecular orbitals (MOs), on the excitation vector; and three Lagrange 
multipliers. This is convenient for excited state property calculations, because the 
Hellmann-Feynman theorem holds for L. The LCAO(linear combination of atomic 
orbitals)-MO expansion reduces the computation of excited state energies and 
properties to a finite-dimensional optimization problem for L, which can be 
handled algebraically. The stationarity conditions for L lead to the following 
problems which have to be solved subsequently in an excited state calculation. 

(i) Ground state KS equations in a finite basis; results are the ground state 
KS MOs and their eigenvalues. Computational strategies to solve this 
problem have been developed over decades, e.g., direct SCF (self-consistent 
field), RI (resolution of the identity), and linear scaling methods. Efficient 
excited state methods take advantage of this technology as much as 
possible. 
(ii) The finite-dimensional TDKS EVP (Casida's equations) 10 11; results 
are the excitation energies and transition vectors. They are used (a) to 
compute transition moments and (b) to analyze the character of a transition in 
terms of occupied and virtual MOs. Complete solution of the TDKS EVP for 
all excited states leads to a prohibitive O(N6) scaling of CPU time and to 
O(N5) I/O (N is the dimension of the one-particle basis). In most applications 
only the lowest states are of interest; iterative diagonalization methods such 
as the Davidson method are therefore the first choice 12 13 14. In these 
iterative procedures, the time-determining step is a single matrix-vector 
operation per excited state and iteration, which can be cast into a form closely 
resembling a ground state Fock matrix construction 15. In this way, a single-
point excitation energy can be computed with similar effort as a single-point 
ground state energy. Block algorithms lead to additional savings if several 
states are computed at the same time 16. Sometimes, the Tamm-Dancoff 
approximation is used 3, which amounts to constraining Y to zero in the 
variation of L. 
(iii) The “ Z-vector equation” ; results are the TDKS “relaxed” excited state 
density and energy weighted density matrices. Excited state properties such 
as dipole moments and atomic populations can be computed from the excited 
state density matrix; analytical gradients of the excited state energy with 
respect to the nuclear positions require the energy weighted density matrix as 
well. Using iterative methods similar to those above, the cost for computing 
the Z-vector is again in the range of the cost for a single-point ground state 



energy. Geometry optimizations for excited states are therefore not 
significantly more expensive than for ground states. 
 
Flexible Gaussian basis sets developed for ground states are usually suited 

for excited state calculations. The smallest recommendable basis sets are of split 
valence quality and have polarization functions on all atoms except H, e.g., 
SV(P) or 6-31G*. Especially in larger systems, these basis sets can give useful 
accuracy, e.g., for simulating UV spectra (see below). However, excitation 
energies are typically overestimated by 0.2-0.5 eV, and individual oscillator 
strengths may be qualitatively correct only. A useful (but not sufficient) indicator 
of the quality is the deviation between the oscillator strengths computed in the 
length and in the velocity gauge, which approaches zero in the basis set limit. 
Triple-zeta valence basis sets with two sets of polarization functions, e.g., cc-
pVTZ or TZVPP, usually lead to basis set errors well below the functional error; 
larger basis sets are used to benchmark. Higher excitations and Rydberg states 
may require additional diffuse functions. 

 
PERFORMANCE  

 
Vertical excitation and CD spectra – So far, simulation and assignment of 
vertical electronic absorption spectra has been the main task of TDDFT 
calculations in chemistry. Most benchmark studies agree that low-lying valence 
excitations are predicted with errors of ca. 0.4 eV by LDA and GGA functionals 10 

17 18. Hybrid functionals can be more accurate, but display a less systematic error 
pattern. Traditional methods such as time-dependent Hartree-Fock (TDHF) or 
configuration interaction singles (CIS) often produce errors of 1-2 eV at 
comparable or higher computational cost. Bearing in mind that UV-VIS spectra of 
larger molecules are mostly low-resolution spectra recorded in solution, and in 
view of the relatively low cost of a TDDFT calculation, errors in the range of 0.4 
eV are acceptable for many purposes. 
 

Calculated oscillator strengths may be severely in error for individual states, 
but the global shape of the calculated spectra is often accurate. Because semi-
local functionals often predict the onset of the continuum to be 1-2 eV too low 
(due to the lack of derivative discontinuity), this is especially true for excitations in 
the continuum (excitation energy > |HOMO energy|) 19.  Rotatory strengths which 
determine electronic circular dichroism (CD) spectra can be computed from 
magnetic transition moments in the density matrix based approach to TDDF 
response theory 20. The simulated CD spectra predict the absolute configuration 
of chiral compounds in a simple and mostly reliable way. In particular, TDDFT 
also works well for inherently chiral chromophores 21 and transition metal 
compounds 22 where semi-empirical methods tend to fail. 

 
Successful applications of TDDFT vertical excitation and CD spectra have 

been reported in various areas of chemistry, including metal clusters, fullerenes, 
aromatic compounds, porphyrins and corrins, and many other organic 
chromophores. As an example, we show the simulated and measured CD 
spectra of the chiral fullerene C76 in Fig. 1 16. We used the Becke-Perdew86 GGA 
together with the RI-J approximation and a SVP basis set augmented with diffuse 
s functions; a uniform blue-shift of 0.4 eV was applied to all excitation energies to 
correct systematic errors of the calculation and solvent effects. The computed 
spectrum reproduces the main features of the experimental spectrum, even the 
intensities are in the right range. The absolute configuration of C76 can be 
determined in this way, because the measured spectrum can be assigned to one 
of the two enantiomers whose CD spectra differ by their sign only. The simulated 
spectrum involves 240 excited states; its calculation took 30h on a single 
processor 1.2 Ghz Athlon PC using TURBOMOLE V5-4 23. 
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Figure 1: The simulated CD spectrum of fullerene C76 compared to 
experiment.  

 
Excited state structure and dynamics – An adequate description of most 

photophysical and photochemical properties requires information on excited 
potential energy surfaces beyond vertical excitation energies. Early benchmark 
studies indicated at least qualitative agreement of excited potential surfaces 
calculated using TDDFT and correlated wavefunction methods 24 25. An 
increasing number of excited state reaction path calculations using TDDFT have  
been reported. A limitation of most studies is that the reaction paths do not 
correspond to minimum energy paths (MEPs), i.e., the internal degrees of 
freedom other than the reaction coordinate are not optimized. 

 
Analytical gradients of the excited state energy with respect to the nuclear 

positions are a basic prerequisite for systematic studies of excited state potential 
energy surfaces even in small systems. Implementations have become available 
only recently 26 2 27. While errors in adiabatic excitation energies are similar to 
errors in vertical excitation energies, the calculated excited state structures, 
dipole moments, and vibrational frequencies are relatively accurate, with errors in 
the range of those observed in ground state calculations. The traditional CIS 
method, which has almost exclusively been used for excited state optimizations 
in larger systems, is comparable in cost, but significantly less accurate. 
Moreover, the KS reference is much less sensitive to stability problems than the 
HF reference, which is an important advantage especially if the ground and 
excited state structures differ strongly. 

 
Individual excited states of larger molecules can be selectively investigated 

by pump-probe experiments. The resulting time-dependent absorption, 
fluorescence, IR, and resonance Raman spectra can be assigned by TDDFT 
excited state calculations. First applications show that calculated vibrational 
frequencies are accurate enough to determine the excited state structure by 
comparison with experiment 28. The combination of TDDFT and transient 
spectroscopy methods a promising strategy for excited state structure elucidation 
in larger systems. Computed normal modes of excited states can be used to 
study the vibronic structure of UV spectra within the Franck-Condon and 
Herzberg-Teller approximation 29. For a detailed understanding of photochemical 
reactions beyond MEPs, excited state nuclear dynamics simulations including 
non-adiabatic couplings are necessary. The first steps towards this ambitious 
goal have already been made 30 31. 

 
QUALITATIVE LIMITATIONS OF PRESENT FUNCTIONALS 



 
Next we discuss situations where today’s approximations in TDDFT produce 

much larger errors, or entirely miss important aspects of the optical response. 
 

Inaccurate ground-state KS potentials – It had been well-known for many 
years that the XC potentials of LDA and GGA are inaccurate. At large distances, 
they decay exponentially rather than as the correct -1/r. This can be a severe 
problem for TDDFT, since the orbital energies can be very sensitive to the details 
of the potential. This is not a problem if only low-lying valence excitations of large 
molecules are required, but the energy of low-lying diffuse states is often 
considerably underestimated, while higher Rydberg states are completely 
missing in the bound spectrum 32.  
 

There now exist several schemes for imposing the correct asymptotic decay 
of the XC potential 33. But such potentials are not the functional derivative of any 
XC energy. While this has no direct effect on vertical excitation energies, other 
excited state properties are not well-defined. Exact exchange DFT methodology 
is developing rapidly (see next section), which does not suffer from this problem. 
Furthermore, when correctly interpreted, even the physicists' TDLDA calculations 
recover the correct oscillator strength despite these difficulties. 
 
Adiabatic approximation  – The frequency-dependence of the XC kernel is 
ignored in most calculations.   A simple approximation is to use the ω-dependent 
XC kernel of the uniform gas 34.  However, any collective motion of the electrons 
that does not deform the density, e.g., an overall boost, should not excite the 
electrons, but a frequency-dependent kernel violates this exact condition 
(whereas adiabatic approximations do not) 35. 
 
Multiple exc itations – In principle, the exact electronic response functions 
contain all levels of excitation.   But Casida’s equations span the space of KS 
single-particle excitations only, and this is unchanged by a frequency-
independent XC kernel, i.e., within the adiabatic approximation.   
 
Extended systems – Unlike ground-state DFT, there are non-trivial 
complications when TDDFT is applied to bulk systems. These arise because the 
XC kernel has long-range contributions, comparable to the Hartree 1/|r-r' |.  
However, our usual local and semilocal approximations yield XC kernels that are 
of the form δ(3)(r-r' ), or derivatives thereof. Thus they have little effect on the 
calculated optical response of extended systems.  
 
Charge transfer problems –  Charge transfer (CT) excitations are notoriously 
predicted too low in energy by up to 1 eV or more 36. In chain-like systems such 
as polyenes, polyacenes, or other conjugated polymers, the error in CT excitation 
energies increases with the chain length 37 38. In the limit of complete charge 
separation, this can be related to the lack of derivative discontinuities in semi-
local functionals 36. To correct CT excitation energies, methods have been 
suggested that estimate the derivative discontinuity from a ∆SCF calculation 36 39.  
The validity of this approach depends on assumptions such as complete charge 
separations that may rarely be justified in real systems. 
 

PROMISING DEVELOPMENTS  
 
Here we discuss several promising paths to overcome present limitations. 
 

Exact exchange:  Many problems are related to spurious self-interaction, which 
affects energies and potentials computed with semi-local functionals. The self-
interaction free exact exchange functional leads to a potential with the correct -1/r 
tail,. greatly improving the description of Rydberg states 40 41. Moreover, the 
absence of self-interaction is a prerequisite for a correct derivative discontinuity, 
as has been demonstrated numerically. The use of exact exchange potentials 
improves the description of optical properties of conjugated polymers. 
Unfortunately, exchange alone is not enough. So far, calculations employing the 



full frequency-dependent exchange kernel have been reported for solids only 42. 
Excitation energies of valence states obtained with exchange-only potentials plus 
ALDA kernel are not systematically better than those from GGA calculations. 
Moreover, the neglect of correlation effects generally leads to an overestimation 
of the energy of ionic states, as is well known, e.g., from TDHF. Adding an LDA 
or GGA correlation potential to the x only potential leads to marginal 
improvements only, because the error compensation between approximate 
exchange and correlation is lost. In practice, one often resorts to hybrid 
functionals, which contain a (relatively small) fraction of exact exchange only. 
Thus, moderately diffuse states and certain CT excitations can still be handled 43. 
A more fundamental solution may require correlation functionals compatible with 
exact exchange. 
 
Beyond the adiabatic approximation:  Higher-order excitations are accounted 
for by dramatic frequency-dependence in fxc, and building it into the kernel allows 
one to recover, e.g., a double excitation close to a single. In fact, the usual 
adiabatic approximation simply combines both into one peak, which will be a 
good approximation to the total oscillator strength 44 45. 
 
Over the last year, it has been shown that incorporation of the essential terms of 
the polarizability from the Bethe-Salpeter equation (i.e., an orbital-dependent 
functional) recovers excellent excitonic peak shifts in semiconductors 46 47. 
Chemists with long molecules should be aware of this, as the standard 
methodology misses these effects. 
 
TD current DFT: The Runge-Gross theorem in fact establishes that the potential 
is a functional of the current density, j(r).  This approach allowed Vignale and 
Kohn 48 to construct a gradient expansion in j(r) that goes beyond the adiabatic 
approximation without violating exact conditions for boosts. This formulation 
leads naturally to ultra non-local functionals that can shift exciton peaks and 
correct polarizability problems 49, but no accurate approximation is yet available. 
 

OUTLOOK 
 

TDDFT in its present incarnation works remarkably well for many systems 
and properties. The number of papers is growing exponentially. While most are 
focused on extracting electronic transitions, there are many other promising 
applications. For example, atoms and molecules in intense laser fields can be 
handled with this formalism. Recently, it has been shown that scattering cross-
sections can also be extracted 50. 
 

This is a golden-age of TDDFT in quantum chemistry, in which we are right 
now discovering which systems and properties can be handled routinely, where 
our favorite approximations fail, and how to fix these failures. We anticipate 
several more exciting years. 
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