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The relation between semiclassical and density-functional approximations is clarified. Semiclassical
approximations both explain and improve upon density-gradient expansions for finite systems. We derive
highly accurate density and kinetic energy functionals of the potential in one dimension.
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Modern density functional theory is an extremely popu-
lar method for solving electronic structure problems in
many fields, due to its balance of reasonable accuracy
with computational efficiency [1]. The standard approach
is to solve the Kohn-Sham (KS) equations with a given
density-functional approximation to the unknown
exchange-correlation (XC) energy [2]. However, because
no systematic approach to functional approximation exists,
there is now a veritable zoo of approximations from which
to choose [3–6]. Those in common use can be loosely
divided into two classes: nonempirical functionals, such
as the Perdew-Burke-Ernzerhof (PBE) generalized gra-
dient approximation [6], largely developed by Perdew
and co-workers, that start from the uniform and slowly
varying gases, and empirically fitted functionals that are
typically more accurate for systems close to the fit set [3–
5]. The former apply more broadly and are more com-
monly used in physics, especially for bulk metals. The
latter are more popular in chemistry and are more accurate
for specific systems and properties, such as transition-state
barriers.

However, semiclassical methods are standard in physics,
and, in a tour de force, Schwinger [7] used semiclassical
methods to rigorously derive the asymptotic expansion of
the energies of neutral atoms for large Z. Now, in the pre-
KS world of pure density functional theory (DFT), i.e.,
Thomas-Fermi (TF) and related theories, there is a long
history of derivation of density functionals via semiclassi-
cal arguments, including the gradient expansion for both
the kinetic [8] and exchange [9] energies, by considering
an infinite slowly varying electron gas. But its failure for
finite systems led to these other approaches to XC func-
tional construction.

To understand the essential difference between solids of
moderate density variation and all finite systems, consider
the cartoons of Fig. 1. Both prototypes can be treated
semiclassically, i.e., via expansion in @, which is equivalent
to an expansion in gradients of the potential. For the
valence electrons of a simple metal, the Fermi energy EF
is everywhere above the (pseudo)potential, and periodic
boundary conditions apply. This makes semiclassics sim-
ple, because there are no turning points, evanescent re-
gions, or Coulomb cores. In finite systems (and typical
insulators), EF cuts the potential surface, leading to turning

points and evanescent regions. Without a pseudopotential,
there are also Coulomb cores, which require special treat-
ment. The dominant term (in a sense specified below) in all
cases is correctly given by the local density approximation,
but in the latter case there are important quantum correc-
tions, which produce many features missing from semi-
local density approximations, such as shell structure, self-
interaction, etc.

Our semiclassical analysis applies to all systems and
explains the universality of local approximations (without
mentioning the uniform gas). For slowly varying densities,
it is equivalent to the density-gradient expansion but in-
cludes quantum corrections for other cases. These correc-
tions explain why the gradient approximation had to be
‘‘generalized’’ (GGAs) and why local and semilocal ap-
proximations miss essential features of the kinetic energy.
Insights based on our approach have already produced a
derivation of an important empirical parameter (the � of
Ref. [3]) and a revised version of PBE that is proving
successful in many contexts [10]. Ultimately, the theory
suggests that potential functionals [11] provide a more
promising and systematic route to higher accuracy.

We begin by discussing an asymptotic limit for all
matter that corresponds to a semiclassical expansion, of
which Schwinger’s results are a specific example. The
approach to the limit identifies the essential failure of the
gradient expansion for finite systems. We illustrate this
with a model in one dimension and find much more accu-
rate results by correcting this. We close with a discussion of
the implications for modern DFT development.

We (re)introduce a potential scaling [12]:

 v�ext�r� � �4=3vext��1=3r�; N ! �N; (1)

FIG. 1 (color online). Cartoons of potential and Fermi energy
in a simple metal (left) and molecule (right).
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where vext�r� is the one-body potential. For molecules with
nuclear positions R� and charges Z�, under this scaling,
Z� ! �Z� and R� ! ��1=3R�. In an electric field, E !
�5=3E. We say an approximation is large-N asymptotically
exact to the pth degree (AEp) if it recovers exactly the first
p corrections for a given quantity under the potential
scaling of Eq. (1). For neutral atoms, scaling � is the
same as scaling Z, which is well-known:

 E��� � �0:768 745�7=3 � �2=2� 0:269 900�5=3 � � � �

(2)

and is ‘‘unreasonably accurate’’ [7], with less than 10%
error even for H. An approximation that reproduces these
three coefficients is AE2 and is likely to be very accurate.
Lieb [12] showed that Thomas-Fermi theory becomes ex-
act in the limit � ! 1 for all systems. However, TF theory
recovers only the first term in Eq. (2), while Schwinger
derived all three but only for neutral atoms.

Because of this exactness for any system, as � ! 1,

 n� �r� ! �2�nTF��1=3r� � nQC��; r�=�1=3 � � � ��; (3)

where nQC becomes negligible compared to nTF every-
where except in regions whose size is vanishing. So con-
sider instead scaling the density rather than the potential,
denoted by a subscript:

 n� �r� � �2n��1=3r�: (4)

This density scaling is unusual, in that both the coordinate
[13] and the particle number are scaled [14] (N to �N). The
universal functional is

 F�n� � min
�!n
h�jT̂ � V̂eej�i; (5)

where � is any antisymmetric wave function with density
n�r� and T̂ and V̂ee are the kinetic and Coulomb repulsion
operators, respectively. For large � , we find

 F�n� � � �7=3FTF�n� � �5=3FWD�n� � �F2�n� � � � � (6)

by using the arguments of Ref. [15], i.e., that the gradients
of the density become small almost everywhere under this
scaling. Here FTF�n� � T�0�S �n� �U�n�, where TS is the
noninteracting KS kinetic energy, U the Hartree energy,
and a superscript �j� denotes the jth order contribution to
the gradient expansion of a functional. The second term is
FWD�n� � T�2�S � E

�0�
X , i.e., the leading gradient correction

to the kinetic energy TW=9, where TW �
R
d3rjrnj2=�8n�

is the von Weizsäcker term (W) [8], and the Dirac correc-
tion (D), i.e., the local approximation to exchange, while
F2�n� � T�4�S � E

�2�
X . Thus, scaling the density in this way

justifies using the complete WD correction to TF theory
(rather than just one or the other).

Next, we compare the expansion of Eq. (2) with that of
Eq. (6). Since T � �E for atoms, and T 	 TS to the order
with which we are working, we see that � scaling the
density produces Eq. (6), which is the usual gradient

expansion, but misses the �2 term of Eq. (2). This quantum
correction has long been recognized as missing from TF
theory, but the gradient expansion misses it altogether. If
TF theory is AE0, why is TFWD not AE1? The answer is
that, for systems like those on the left of Fig. 1, without
turning points, edges, or Coulomb cores, there is no quan-
tum correction, and the gradient expansion is the asymp-
totic expansion. For all others, there are quantum
corrections to the energy, qualitatively changing its asymp-
totic expansion. Because EF ! 1 as � ! 1, these can be
calculated with semiclassical techniques, just as Schwinger
did for atoms.

To give an explicit example of these principles, we
consider noninteracting spinless fermions in 1D in a po-
tential v�x�with infinite walls at x � 0 and L. For this case,
v� �x� � �4v��x�, and the analog of Eq. (6) is

 T�n� � � �5T�0��n� � �3T�2��n� � �T�4��n� � � � � ; (7)

where T�0� � �2
R
dxn3�x�=6, T�2� � �TW=3, etc. [16].

Even a flat box [v�x� � 0]yields some insight. Then

 T� �
�2

6L2

�
�5N3 � �4 3

2
N2 � �3 1

2
N
�
; (8)

and the exact ground-state density is

 n� �x� �
k�F
�
�

sin�2k�Fx�
2L sin���x=L�

; (9)

where k�F � ����N � 1=2�=L. As � ! 1, n! �2N=L
and T is dominated by its leading term, agreeing with TF
theory [12]. For N � 1, T�n� � � �2�5�5 � 2�3 �

� � ��=�12L2�, missing the quantum correction. The second
term in Eq. (9) contains quantum oscillations and is of
O���, i.e., 1 order less, everywhere but at the edges (a
region of size L=�), where it cancels the dominant term.

How can one calculate exactly the leading correction to
the dominant term in E�v� � for any system? As � ! 1,
v� �r� dominates over kinetic energy, and the system be-
comes semiclassical. In d dimensions, the diagonal
Green’s function for noninteracting particles satisfies

 g�v� ��@; r; E� � �1�4=dg�v��@=�1=d; �1=dr; E=�4=d�: (10)

So as � ! 1, effectively @! 0. Furthermore, in 1D [17]:

 g�x; E� � gsemi�x; E�
�

1�O
�

1

E3=2

dv
dx

��
; (11)

where gsemi is approximated semiclassically. We can ex-
tract, e.g., the density from the Green’s function, via
n�x� �

H
C dEg�x; E�=�2�i�, with C any contour in the

complex energy E plane that encloses all of the eigenvalues
E1; . . . ; EN along the real axis. By choosing a vertical line
along E � EF � i�, which is then closed by a large circle
enclosing all of the occupied poles, the smallest jEj used is
EF, which is growing with � . The semiclassical approxi-
mation is combined with the best choice of contour to give
a density error of O�1=��.
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In any situation, this yields

 nTF�x� � kF�x�=�; tTF�x� � k3
F�x�=6�; (12)

where k�x� �
�������������������������
2�E � v�x��

p
and the subscript F implies

evaluation at EF. Insertion of the left result into the right
produces T�0��n�, i.e., TF theory. In the situation on the left
of Fig. 1, the next corrections are precisely those of the
gradient expansion [16]. But real systems have corrections
at lower orders, because of Coulomb cores, turning points,
and evanescent regions. We illustrate these deviations from
Eq. (12), by calculating nsemi�x� for a 1D box with potential
v�x�, 0 
 x 
 L, and EF > v�x� everywhere. Note that
WKB yields the exact results for v � 0, but only once
the boundary conditions are imposed. The WKB wave
function satisfying the boundary conditions on the left is
sin��x�=

���������
k�x�

p
, and ��x� �

R
x
0 dx

0k�x0� is the semiclassi-
cal phase, yielding

 gsemi�x; E� �
cos��L� � cos�2��x� ���L��

k�x� sin��L�
: (13)

The first term yields the TF result, so

 nQC�x� � �
1

4�

I
C

dE
k�x�

e2i��x� � e�2i���x����L��

e2i��L� � 1
: (14)

The semiclassical quantization condition is ��L�=� an
integer, so �F�L� � ��N � ��, 0 
 � 
 1. The most con-
venient choice is � � 1=2. As N ! 1, EF � � for the
dominant contributions to the integral, so we expand all
quantities to first order in �. Substituting u � TF� and
y � �F�x�=TF,

 nQC�x� � �
=fe2i�F�x�g

2�TFkF�x�

Z 1
0
du
e�yu � e��1�y�u

e�u � 1
; (15)

with �F�x� �
R
x
0 dx

0=kF�x0� the classical time for a particle
at EF to travel from 0 to x, TF � �F�L�, and finally

 nsemi�x� �
kF�x�
�
�

sin2�F�x�
2TFkF�x� sin��x�

; (16)

where ��x� � ��F�x�=TF. Similarly, by defining tS�x� �H
C dE�E � v�x��g�x; E�=�2�i�, we find

 tQC
S �x� � k2

F�x�n
QC�x��1� ��x���x��=2�

kF�x���x�
4TF

�
1

6
� cot��x�

cos2�F�x�
sin��x�

�
; (17)

where ��x� � ��T�2�F =TF � k
�2
F �x��=�2TF�, ��x� �

��1=2� csc2��x��=�2k2
F�x�TF� and T�2�F �

R
L
0 dx

0=k3
F�x

0�.
Important features of these results include: (i) exact when
v � 0, where kF � ��N � 1=2�=L; (ii) highly nonlocal
functionals of the potential through �F, which is set glob-
ally; (iii) TF theory retains only the first terms, and EF
differs because of this; (iv) even if low-lying orbitals have
turning points, these do not appear in our expression, once
EF � vmax; and (v) the Maslov index of nsemi differs by
1=2 from that of individual eigenstates.

We plot results for v�x� � �80sin2�2�x�, a well with
two deep valleys. The four lowest single particle energies
are �46:32, �42:50, 10.18, and 37.25, so that the lower
two have turning points. In Fig. 2, we show the density,
both exact and approximate, for N � 4 particles and the
corresponding tS�x� in Fig. 3. The density is not automati-
cally normalized, but its error is less than 0.2%. Evaluating
T�0�S tests the accuracy of a density: The exact value is
153.0; it is 115.5 in self-consistent TF, 114.6 in non-self-
consistent TFW, and 151.4 for nsemi. In fact, tsemi

S is ill-
behaved right at the end points, so we model its approach to
the boundaries with a simple parabola for x < 0:0875, with
a constant chosen to match the logarithmic derivative at
that point. The resulting integrated TS is 156.2, compared
to the exact result 157.2.

We emphasize that the correct semiclassical treatment
has reduced the error in self-consistent TF theory by a
factor of 40. Thus the semiclassical approach is far more
powerful and systematic than the usual gradient expansion.
How then do density functionals achieve the accuracy

needed for chemical and materials applications? The an-
swer already appears for the flat box. Inserting the exact
density in T�0� yields �2

6L2 ��5N3 � �4 9
8N

2 � �3 3
8N�, i.e.,

reasonably accurate quantum corrections, because most
of the contribution comes from regions of not-too-rapidly
varying density. In the double-well potential, T�0�S on the
exact density is only 4 times worse than our semiclassical
approximation. Thus semilocal functionals, applied to the
highly accurate densities from the KS scheme, contain
typically good approximations to the quantum corrections
in the energy. In fact, for the flat box, the leading gradient
correction worsens the energy. If we alter the coefficient of
TW from �1=3 to �0:424, the corresponding ‘‘general-

FIG. 2. Densities for v�x� � �80sin2�2�x� for N � 4.
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ized’’ gradient expansion is AE1 and far more accurate for
particles in boxes.

So what does this mean for modern electronic structure
theory? Most importantly, this work unites rigorous proofs
about TF theory [12], Schwinger’s semiclassical results for
neutral atoms [7], and modern functional development for
KS calculations.

Exchange.—We have shown that the local approxima-
tion to exchange becomes exact as � ! 1 for all systems,
consistent with the fact that all popular functionals recover
this limit. Furthermore, to be AE1 for EX of atoms, their
small gradient limit must be about double that of the
gradient expansion [15], and this is also true for both
empirical [3] and nonempirical functionals [6]. These
functionals agree for moderate gradients and differ for
large gradients. For periodic systems without turning
points, the gradient expansion is AE to the order of the
gradients. Restoring the original gradient expansion
greatly improves lattice parameters [10]. Finally, recent
beyond-GGA functionals that recover the fourth-order gra-
dient expansion yield good approximations for the en-
hanced gradient coefficient in atoms [15].

To apply the methods developed here directly to atoms,
we need to generalize them to include turning points,
evanescent regions, and Coulomb cores. Such a scheme
might produce a derivation of a GGA beyond the small
gradient limit.

Correlation.—As the behavior of EC is not governed by
a simple asymptotic expansion [15], we have not found a
universal limit in which local correlation becomes exact.
Consistent with this, most nonempirical EC functionals are
designed to be exact when the density is uniform [6], but
this condition is violated by empirical functionals [4].

Now EXC for a large jellium cluster is dominated by a
bulk contribution (exact in the local density approxima-
tion) and a surface contribution, which can be accurately
approximated by a GGA. Restoring the density-gradient
expansion for EX in PBE yields a highly accurate surface
exchange energy, so the analog is to recover the surface
correlation energy [18].

KS kinetic energy.—A holy grail for many years [19] has
been to find an accurate kinetic energy functional TS�n�
bypassing the construction of KS orbitals. Almost all ap-
proaches begin from a semilocal expression, sometimes
enhanced by nonlocality based on linear response. This
study shows that, if one is interested in total energies, a
vital feature is to be asymptotically correct for neutral
atoms. Thus, as � ! 1 in either potential or density scal-
ing, the functional must reduce to TF. For atoms, the
gradient expansion of TS�n� works rather well. The coef-
ficient of Z2 is �0:65 in TF theory, �0:53 if T�2� is
included, and �0:52 if T�4� is added [20]. Thus each
successive term in the gradient expansion brings it closer
to being AE1, since the exact value is �1=2. Generalizing
the gradient expansion to make it AE2 produces a more
accurate functional for total energies of both atoms and
molecules [20]. Last, our example here shows how much
simpler the kinetic energy is as a functional of the potential
than of the density.
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FIG. 3. Kinetic energy densities of Fig. 2.
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