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Quantum chemical accuracy from density
functional approximations via machine learning
Mihail Bogojeski1,9, Leslie Vogt-Maranto 2,9, Mark E. Tuckerman 2,3,4✉, Klaus-Robert Müller1,5,6✉ &

Kieron Burke 7,8✉

Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,

but accuracies for many molecules are limited to 2-3 kcal ⋅ mol−1 with presently-available

functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher

accuracy, but computational costs limit their application to small molecules. In this paper, we

leverage machine learning to calculate coupled-cluster energies from DFT densities, reaching

quantum chemical accuracy (errors below 1 kcal ⋅ mol−1) on test data. Moreover, density-

based Δ-learning (learning only the correction to a standard DFT calculation, termed Δ-DFT )

significantly reduces the amount of training data required, particularly when molecular

symmetries are included. The robustness of Δ-DFT is highlighted by correcting “on the fly”

DFT-based molecular dynamics (MD) simulations of resorcinol (C6H4(OH)2) to obtain MD

trajectories with coupled-cluster accuracy. We conclude, therefore, that Δ-DFT facilitates

running gas-phase MD simulations with quantum chemical accuracy, even for strained

geometries and conformer changes where standard DFT fails.
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The recent rise in the popularity of machine-learning (ML)
methods has engendered many advances in the molecular
sciences. These include the prediction of properties of

atomistic systems across chemical space1–26, the construction of
accurate force fields27–39 for ML-based molecular dynamics (MD)
simulations, the representation of the (high-dimensional) statis-
tical distribution of molecular conformers40–42, or the prediction
of the kinetics of structural transformation of materials43. In
many applications, a key task for an ML model is to predict the
outcome of an electronic structure calculation without the cal-
culation’s having to be explicitly performed. This could be done at
any desired level of electronic structure theory from density
functional theory (DFT) to the current gold-standard, namely,
coupled-cluster with single, double, and perturbative triple exci-
tations (CCSD(T)). While the latter is generally preferable, its
putative N7 computational scaling with system size makes it
prohibitive for large molecular systems or even for small systems
if many energy and energy gradient calculations are needed, as
would be the case in MD simulations or geometry optimizations.
Therefore, Kohn-Sham (KS) DFT, with its putative N3 scaling, is
often employed as an acceptable compromise between compu-
tational efficiency and accuracy. Unfortunately, the wavefunction
and DFT formalisms are so distinct that there is no known way to
combine the accuracy of the former with the speed of the latter.
Thus, an important advance could be achieved if the power of ML
could be leveraged to allow large numbers of CCSD(T) calcula-
tions to be performed at a cost equal to or even less than that of
the same number of DFT calculations for a given system.

An ML scheme capable of realizing the aforementioned
objective should satisfy several important criteria: First, the ML
framework should be able to deliver basic molecular properties,
such as total energies, geometries, and, in principle, electronic
properties, all at CCSD(T) accuracy. Beyond this, however, it
should also allow geometry optimization and long time-scale MD
to be performed with energies and forces at the CCSD(T) accu-
racy level. The construction of such an ML approach requires a
molecular descriptor flexible enough to accomplish both types of
tasks, and for this, it seems natural to employ the electron density.
It is worth noting that as molecular descriptors have evolved from
objects such as SMILES strings44,45, molecular graphs46,47, and
molecular graphs with feature vectors24,25,48, there has been a
progression toward descriptors that attempt to capture key fea-
tures of the electron density in a simple manner15,48–51. Admit-
tedly, employing the full electron density carries with it a
considerable computational cost; nevertheless, it is useful to
develop such frameworks, considering that more optimal algo-
rithms could follow. Previously, we had shown that the electron
density could be used in a self-consistent manner to train a
system-specific density functional (akin to a system-specific force
field52) using a mapping from the external potential to the elec-
tron density and a second map of the density to the total
energy53. Rather than delivering a solution to the KS equations,
the first map (denoted the ML-HK map) bypasses the KS equa-
tions in a manner that is akin to solving the original Hohenberg-
Kohn functional differential equation54. The second map from
density to energy predicts the result of plugging that solution back
into the Hohenberg-Kohn functional to obtain the ground-state
energy. While other machine-learning methods for the prediction
of electron densities or density functionals have appeared
recently50,51,55–62, the ML-HK map facilitates the use of both
machine-learned densities, from which electronic properties
could be computed, and density functionals for obtaining total
energies and gradients for geometry optimization and MD
simulation.

In this paper, we describe an approach for generating an ML
framework that satisfies the criteria outlined above. The ML

model employed in this work is kernel ridge regression (KRR),
the basic principles of which in the construction of density
functionals have been developed over several years63–69. In order
to advance our ML framework53 to the prediction of coupled-
cluster (CC) energies, as opposed to DFT energies, one need only
recognize that the basic ML construction procedure is indepen-
dent of the source of inputs. Therefore, one could readily imagine
training the aforementioned maps on a set of CC densities and
energies. In practice, however, few quantum chemistry packages
yield the CC electron density, as it is not something that is needed
to find a CC energy. Therefore, in order to avoid the need to
compute a CC electron density, we show that the density-energy
map can be constructed by considering the CC energy as a
functional of a DFT density obtained within a standard approx-
imation such as PBE, i.e., we regress the CC energy from the PBE
density. The density is used as the aforementioned descriptor for
a given potential and can additionally serve as an input for
learning other properties as well. The ML algorithm then learns
to predict the CC energy as a functional of the approximate ML-
predicted (descriptor) density. Importantly, we find that it is
roughly as easy to train a model that returns the CC energy from
the DFT density as it is to train for the self-consistent DFT energy
itself. We additionally find that the use of a crudely approximated
density results in a reduction in accuracy (even for DFT energies),
showing the importance of using accurate densities. Drawing on
existing ML experience70, we further show that it is possible to
learn the difference between a DFT and a CC energy as a func-
tional of the input DFT densities. Importantly, this can be done
with greater efficiency than learning either DFT or CC energies
separately. Referring to this approach as Δ-DFT , we show that
the error in the training curve for Δ-DFT drops far faster than
that for learning either the DFT or the CC energies themselves,
indicating that the error in DFT is much more amenable to
learning than the DFT energy itself. Moreover, by exploiting
molecular point group symmetries, we drastically reduce the
amount of training data needed to achieve quantum chemical
accuracy (~1 kcal mol−1), allowing us to extract CC energies from
standard DFT calculations, with essentially no additional cost
(beyond the initial generation of training data). That is, we create
a system-specific ML model capable of yielding CCSD(T) accu-
racy at the cost of a standard DFT calculation. A single water
molecule (see Fig. 1a) is used as the first benchmark of the new
scheme. We use the same PBE density as a functional of the
potential as in ref. 53 but now with various ML maps of the energy
as a functional of the density. While the DFT calculation loses
accuracy rapidly when the molecule is either compressed or
extended, Δ-DFT corrects these errors. We then consider the
examples of ethanol, benzene, and resorcinol, all of which contain
greater internal flexibility. We discuss the issue of sampling input
geometries using finite-temperature MD simulations, arguing that
care must be taken when these configurations do not reflect the
target CCSD(T) energy surface (see Fig. 1b as an illustration for
water). Resorcinol is further used as an example of using the ML
scheme to generate an ab initio MD trajectory on the predicted
underlying CCSD(T) energy surface. Obtaining such a trajectory
typically requires hundreds to thousands or tens of thousands of
energy and force calculations, which would be prohibitive using
explicit CCSD(T) calculations but is routine using the ML model.
This example reveals the importance of having CCSD(T) accu-
racy to describe a conformational change for which DFT pro-
duces quantitatively incorrect barriers. Finally, we take a step
toward creating a more general model capable of predicting
CCSD(T) energies of a small set of similar, but not identical,
molecules. Resorcinol, phenol, and benzene are finally used to
create an ML functional capable of describing multiple molecules.
Here, molecular point group symmetries are exploited to expand
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the training dataset, thereby reducing the number of explicit
CCSD(T) calculations needed to obtain chemical accuracy.

Results
Theory. A central difficulty in quantum chemistry is the funda-
mental incompatibility of the formalisms of DFT and wave-
function based ab initio methods such as CCSD(T). Both aim to
deliver the ground-state energy of a molecule as a function of its
nuclear coordinates. Ab initio methods directly solve the elec-
tronic Schrödinger equation, albeit in an approximate yet sys-
tematic and controllable fashion. KS-DFT, by contrast, buries all
the quantum complexity into an unknown functional of the
density, i.e., the exchange-correlation (XC) energy, which must be
approximated71,72. A myriad of different forms for such KS-DFT
approximations exist. Unfortunately, there is currently no prac-
tical route for converting an approximation in one formalism to
an approximation in the other, as there is no simple mathematical
route to coupling the two formalisms.

In this work, we leverage ML to bypass this difficulty, by
correcting DFT energies to CCSD(T) energies. Routine DFT

calculations use some approximate XC functional and solve the
Kohn-Sham equations self-consistently. However, an alternative
approach has long been considered (e.g., ref. 73), in which the
exact energy, E, is found by correcting an approximate self-
consistent DFT calculation:

E ¼ EDFT½nDFT� þ ΔE½nDFT�; ð1Þ
where DFT denotes the approximate DFT calculation, and ΔE,
evaluated on the approximate density, is defined, formally, such
that E is the exact energy. This is not the functional of standard
KS-DFT, but it still yields exact energies and can be a more
practical alternative in which one solves the KS equations within
that approximation but corrects the final energy by ΔE. If nDFT is
a highly accurate approximation, then ΔE should not differ much
from the intrinsic error of the DFT XC approximation. Recently,
several classes of DFT calculations have been improved by using
densities that are not self-consistent74,75. Thus, regression of DFT
densities to find CC energies can be considered a system-specific
construction of ΔE[nDFT] of the same kind as the system-specific
construction of the HK map53. This differs from a general
purpose, explicit XC functional approximation in that (i) it might
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Fig. 1 Illustration of density-based machine learning for water conformer energies. For all panels, DFT energies (orange) are shown alongside CC
energies (blue) for the same molecular conformers, with optimized geometries indicated by open diamonds. a The nuclear potential, represented by an
approximate Gaussians potential, is the input to a set of ML models that return the electron density53. This learned density is the input for independent ML
predictions of molecular energies based on DFT or CC electronic structure calculations, or the difference between these energies, in order to correct the
DFT energy (final term in Eq. (3)). b Calculated energies for CC (dark blue) and DFT (dark orange) for 102 sample geometries relative to the lowest
training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom). Note that the DFT energy errors are not
a simple function of the energy relative to the minimum energy geometry (see Supplementary Fig. 2), as short O–H bond lengths tend to be too high in
energy and stretched bonds are overstabilized. c Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC

energies. The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line. d The energy surface (in kcal mol−1) of symmetric water geometries for
EDFTML (orange) and ECCΔ�DFT (blue) after applying the Δ-DFT correction (bottom). For this figure, DFT calculations use the PBE functional, and CC
calculations use CCSD(T) (see “Methods” for more details).
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only be accurate for the systems for which it has been trained, (ii)
it has no simple closed form, and (iii) its functional minimum
yields only an approximate density. However, using the results
from the Supplementary Discussion 2.1, one can, in principle,
construct the exact density from a sequence of such calculations.
To avoid confusion, we note that Δ-DFT has nothing in common
with, e.g., Δ-SCF, a useful alternative to TDDFT for extracting
excited state energies in DFT76.

Coupled cluster accuracy from ML DFT. Details of our
approach are found in the “Methods” section. In brief, the
approach constitutes a realization of the part of the Hohenberg-
Kohn theorem that establishes a one-to-one mapping between
external potentials v(r) and ground-state densities n(r) for a
specified number of electrons. This map is expressed through the
functional relationship n[v](r). In practice, we expand the density

in an orthonormal basis ϕl(r) as nML½v� ¼
PL

l¼1 u
ðlÞ
ML½v�ϕlðrÞ and

learn the set density expansion coefficients fu
ML
½v�g53 in order to

construct a learned DFT density nDFTML ðrÞ. As previously noted,
KRR is employed here as the ML model. A second KRR model is
then used to predict energies from a higher level of theory, in this
case CC energies:

ECC
ML½nDFTML � ¼

XM
i¼1

αikðuML½v�; uML½vi�Þ: ð2Þ

where k(uML[v], uML[vi]) is the kernel, and {α} are the coefficients
learned in the second KRR model. This allows us to create
ECC
ML½nDFTML �, the chemically accurate CC energy, as a functional of

the learned DFT density. (This corresponds to learning EDFT+
ΔE in Eq. (1)).

In order to demonstrate the methodology behind the map in
Eq. (1), we begin by describing the process of learning the CC
energy directly via Eq. (2) based on a set of 102 random water
geometries (Fig. 1b and Supplementary Fig. 1). Note that the
mean absolute error (MAE) of DFT energies relative to the CC
energies (relative to the lowest energy conformer in the training
set) is 1.86 kcal mol−1, with maximum errors of more than 6 kcal
mol−1. The performance of the EDFT

ML ½nDFTML � and ECC
ML½nDFTML � models

was evaluated for training subsets containing 10, 15, 20, 30, 40 or
50 geometries, while the test set consisted of 52 geometries
(Fig. 1c). Due to the small size of the dataset, we used cross-
validation to obtain more stable estimates for the prediction
accuracy of the models69. Details of the evaluation procedure are
provided in the “Methods” section. As expected, the accuracy of
each model improves with increasing training set size, but the
benefit of predicting CC energies compared to DFT energies is
immediately obvious. For this dataset, the MAE of EDFT relative
to ECC (used here as the ground truth) is reached by EDFT

ML ½nDFTML �
with 40 training geometries. Quantum chemical accuracy of 1
kcal mol−1 is obtained using slightly fewer (30) samples for the
energy functional ECC

ML½nDFTML �, and an improved MAE of 0.24 kcal
mol−1 with 50 training samples. Once constructed, the time to
evaluate EML[n] is the same regardless of the energy on which it is
trained (for a fixed amount of training data). There is a clear
benefit of training the model on the more accurate CC energies as
long as a good performance can be achieved with a small number
of samples from the more computationally expensive method.

Standard semilocal density functionals such as PBE typically
yield highly accurate densities near equilibrium, and errors in
atomization energies are dominated by errors in the energy rather
than the self-consistent density77. However, far from equilibrium,
these self-consistent densities can differ substantially from the
exact density. In such density-sensitive cases, the energy error can
be substantially increased by the error in the self-consistent

density, leading to many failures of standard functionals78. The
need to find accurate densities is bypassed by the ML-CC energy
map, as it learns accurate energies even as a functional of an
inaccurate density, as in Eq. (1).

Reducing the CC cost with Δ-DFT . Inspired by the concept of
delta learning79, we also propose a machine-learning framework
that is able to leverage densities and energies from lower-level
theories (e.g., DFT) to predict CC level energies. This is achieved
by correcting DFT energies using delta learning, which we denote
as Δ-DFT . Instead of predicting the CC energies directly using
our machine-learning model, we can instead train a new map
ΔECC�DFT

ML ½nDFTML � that yields the error in a DFT calculation (rela-
tive to CC) for each geometry (i.e., the second term in Eq. (1)).
We define the corresponding total energy as

ECC
Δ�DFT½nDFTML � ¼ EDFT½nDFT� þ ΔECC�DFT

ML ½nDFTML �: ð3Þ
Correcting the DFT energies in this way leads to a dramatic

improvement in the model performance, as seen in Fig. 1c.
Remarkably, with only 10 training samples, the MAE of this
ECC
Δ�DFT ½nDFTML �model is already lower than the error of ECC

ML½nDFTML �
trained with 50 samples; using 50 training samples reduces the
MAE of the Δ-DFT model to only 0.013 kcal mol−1. The Δ-DFT
correction is easier to learn than the energies themselves, as
illustrated in Fig. 1d for symmetric water geometries that were
not included in the previous dataset. Although the optimized
geometry differs slightly between DFT and CC, the Δ-DFT
approach provides a smooth map between the two types of
electronic structure calculations as a functional of the density. For
the most extreme geometries, the model errors for Δ-DFT are
smaller than for the direct models (see Supplementary Fig. 3) and
depend differently on the geometry, indicating that there is
information contained in the density beyond that of the external
nuclear potential. We note in passing that Δ-DFT links a
particular DFT calculation to a particular CC level of theory,
rendering comparisons between models trained on different
calculations invalid (see Supplementary Discussion 2.2). The
comparison between the Δ-DFT and total energy ML models is
further explored with larger molecules in the subsequent sections.

Δ-DFT with molecular symmetries. The next molecule chosen
to evaluate our ML model is ethanol using geometries and
energies from the MD17 dataset32,33. This molecule has two types
of geometric minima, for which the alcohol OH is either an anti
or doubly degenerate gauche position; the freely rotating CH3

group introduces additional variability into these possible geo-
metries. Supplementary Fig. 4 shows the atomic distributions of
the ethanol dataset after alignment based on heavy atom posi-
tions. The fact that ethanol possesses internal flexibility and a
larger number of degrees of freedom than water naturally renders
the learning problem more difficult. Hence, we expect that a
greater number of training samples is needed to achieve chemical
accuracy for the range of thermally accessible geometries. The
dataset contains 1000 training and 1000 test samples with both
DFT and CC energies (see Supplementary Fig. 5). The ML-HK
map automatically incorporates equivalence for each chemical
element, but we can also exploit the mirror symmetry of the
molecule by reflecting H atoms through the plane defined by the
three heavy atoms, effectively doubling the size of the training set,
as outlined in the “Methods” section. To differentiate the models
trained on datasets augmented by these symmetries, we add an s
in front of the machine-learning model (e.g., sML). Table 1 shows
the prediction accuracies of the various sML models for ethanol
compared to some other state-of-the-art ML methods for the
same dataset. The prediction error for DFT and CC energies is
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roughly equal to that of other ML models trained only on
energies.

It is also important to note that using the ECC
sΔ�DFT½nDFTsML �

functional to correct low-cost DFT energies achieves a MAE for
CC energies comparable to those of the most accurate force-
based models, (without incurring the cost of evaluating CC
forces for each training point). We note that Δ-learning does
not improve the energy prediction over a direct force-based
sGDML model for CC energies (see Supplementary Table 1).
The ECC

Δ�DFT½nDFT
ML � functional based only on the original 1000

training geometries has a MAE of 0.15 kcal mol−1 (see
Supplementary Table 2), hence using the ethanol symmetry
reduces the MAE of the ML model by half while requiring the
same number of CC calculations.

Molecule optimization using ML functionals. Neither the
training nor test configurations from the MD17 dataset32,33 include
the minimum energy conformers of ethanol. Using the ML models,
we predicted the energy of the anti and gauche conformers opti-
mized using MP2/6-31G* and the electronic structure methods
used to generate the energies for each model. Note that MP2 and
PBE have gauche as the global minimum, but the CCSD(T) global
minimum is anti. Although all training geometries have energies

more than 4.5 kcal mol−1 higher than the global minimum, the ML
models are able to predict the energies of the minima with errors
below chemical accuracy (see Table 2).

In addition, the machine-learned energy function is sufficiently
smooth to optimize ethanol using energy gradients computing
from the ML model itself. Calculations for each conformer start
from geometries optimized using MP2/6-31G*, which are slightly
different from both DFT- and CC-optimized geometries.
Figure 2b shows that despite the sparsity of training data near
the minimum energy configurations, the ML models trained with
different energies can differentiate between the DFT and CC
minima with remarkable fidelity.

ML model sensitivity to density inputs. Our results show that we
can use ML models to map learned electron densities to several
types of energy targets. This naturally raises the question of how
sensitive our results are to the input density. If one does not need
accurate self-consistent densities, why bother with the density at
all? Why not, instead, simply learn the energy directly from the
nuclear potential? To answer this, consider benzene and the 1500
geometries in the MD17 dataset34 (see Supplementary Figs. 7, 8).
Due to benzene’s 24 point group (D6h) symmetries, applying our
symmetrization approach on 1000 CC training points produces
an effective dataset size of 24,000 geometries.

We first investigate the difference between EsML models trained
using the self-consistent DFT densities (nDFT) and those created
by the ML-HK density map (nDFTsML). Just as for ethanol, these
models have accuracies comparable to other approaches that
require CC forces for training (see Supplementary Table 3).
Table 3 shows that for any of our energy functionals (EDFT

sML , E
CC
sML,

or ECC
sΔ�DFT), model performance differs negligibly when trained

using these two-electron density representations because the
density-driven errors of the ML-HK maps are small53. Relevant
dimensionality estimation (RDE)80 quantifies the effective
complexity that the ML models require for predicting, e.g., a

Table 1 MAEs (kcal mol−1) of sML ethanol maps compared
to other ML models using forces and energies.

ML method EsML½nDFTsML� EsΔ�DFT ½nDFTsML� ESchNet12 EsGDML
33

DFT 0.99 n/a 0.08 (0.93a) 0.07
CC 1.10 0.09 n/d 0.05

n/a not applicable, n/d not determined.
aEDFTSchNet trained on energies alone.

Table 2 Energy errors (kcal mol−1) of the sML-HK maps for ethanol at conventionally optimized geometries.

MP2 anti MP2 gauche DFT anti DFT gauche CC anti CC gauche

EDFTsML½nDFTsML� 0.22 0.44 0.30 0.55 0.04 0.58

ECCsML½nDFTsML� 0.12 0.49 0.19 0.62 0.13 0.66

ECCsΔ�DFT ½nDFTsML� 0.06 0.01 0.06 0.02 0.01 0.01
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based optimizations reproduce the subtle differences in DFT- and CC-optimized geometries (dark orange and dark blue diamonds, respectively). For this
figure, DFT calculations use the PBE+TS functional and CC calculations use CCSD(T) (see refs. 32,33 for more details).
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particular set of energies given a set of densities (see
Supplementary Tables 4, 5, 6). The direct EsML models for
benzene using the ground-state densities are all of similar
complexity, with a comparable number of relevant data
dimensions required to obtain similar accuracy. ECC

sΔ�DFT achieves
higher accuracy with fewer relevant data dimensions than either
direct model because the energy difference landscape is smoother
and easier to learn.

Next, we consider model performance when the molecular
electron density is approximated by a superposition of atomic
densities (SAD), which are conceptually similar to the pseudo-
densities used in other ML models9,15 and effectively translate the
nuclear potential into electron densities, albeit without a proper
description of the chemical bonds. While such densities (denoted
as nSAD) cost little to generate, Table 3 shows that ML models
trained on these inputs have errors that are at least twice those of
models using more accurate densities. The RDE analysis shows
that models based on nSAD have comparable dimensionality for
direct energy models but significantly lower signal-to-noise ratios
(defined in SI for RDE analysis, Supplementary Eq. 2), thus
rendering the energy models less accurate. Nonetheless, given the
ever-present trade-off between accuracy and computational cost,
SAD densities may be useful to avoid self-consistent optimization
of the electron density for each geometry. In the case of SAD
inputs, energy labels for the ML models would reflect the DFT
functional evaluated on the approximate density (e.g., ESAD). For
benzene, results are poorer for both the direct ML energy model
(ESAD

sML ) and Δ-DFT (ECC
sΔ� SAD), although they are still within

chemical accuracy. We understand the larger errors to be due to
the increased variance of ESAD labels (seven times that of the self-
consistent dataset—see Supplementary Fig. 9) as well as their
overall lower signal-to-noise ratio, as evidenced by the RDE
analysis (see Supplementary Table 6).

The results presented thus far demonstrate that reasonably
accurate ML models can be created using approximate densities
that are inconsistent with the energy targets. Such ML models can
be generated for applications where speed is more important than
accuracy, for example, in the first few cycles of an active learning
scheme17, where a cheap approximate density provides sufficient
information to train models that ultimately would return CC
energies with chemical accuracy. Finally, using accurate self-
consistent densities as input significantly improves model
performance for the same training and test geometries. These
findings provide clear evidence that the electron density contains
highly useful machine-learnable information about the molecular
system beyond that contained in atomic positions alone.

MD using CC energies. The final molecular example of 1,3-ben-
zenediol (resorcinol) illustrates the utility of learning multiple ML
functionals for the same system. Combining the ECC

sML½nDFTsML � with the
more expensive and accurate ECC

sΔ�DFT ½nDFTsML � method, we demon-
strate how to run self-consistent MD simulations that can be used to
explore the configurational phase space based on CC energies.

Resorcinol has two rotatable OH groups, two molecular
symmetry operations, and more degrees of freedom than water,
ethanol, or benzene, making this a more stringent test of the ML
functionals. The initial datasets are generated from 1 ns classical
MD simulations at 500 K and 300 K for the training and test sets,
respectively (details are found in the “Methods” section). For the
density representation, the 1000 conformer training set is
augmented with the two symmetries, resulting in an effective
training set size of 4000 samples (see Supplementary Fig. 10). The
molecular geometries in the MD-generated training set have
energies between 7 and 50 kcal mol−1 above the equilibrium
conformer (as shown in Supplementary Fig. 11); the four local
minima are also included in the dataset using geometries from
MP2/6-31G* optimizations, leading to 1004 unique training
geometries and a total effective training set size of 4004 samples.
These local minima, which differ in the orientation of the two
alcohol groups, are separated by a rotational barrier of ~ 4 kcal
mol−1 (see Supplementary Fig. 12). The maximum relative
energy errors between the DFT and the (ground truth) CC
energies are 6.1 and 6.7 kcal mol−1, respectively, for geometries
included in the training and test sets.

As with the other examples, ML model performance improves
with increasing training set size (see Supplementary Fig. 13).
When trained on 1004 unique training geometries (4004 training
points), the MAE of predicted energies is around 1.3 kcal mol−1

for both EDFT
sML ½nDFTsML � and ECC

sML½nDFTsML �, and the error, when using
ECC
sΔ�DFT ½nDFTsML �, is only 0.11 kcal mol−1. The Δ-DFT accuracy is

insensitive to the use of the ML-HK map for the density input, as
shown in Supplementary Table 7, and is sufficient to run an MD
simulation based on CC energies without the need of CC forces.

Although DFT energies may be sufficient for some molecules,
the ability to use CC energies to determine the equilibrium
geometries and thermal fluctuations is a promising advance. For
resorcinol, the relative DFT energies can differ significantly from
the CC energies, particularly near the OH rotational barrier that
separates conformers (see Supplementary Fig. 12). Conforma-
tional changes are also rare events in the MD trajectories, making
it crucial to describe the transitions accurately. For example, the
exploration of the OH dihedral angles over a 10 ps MD trajectory
from a DFT-based constant-temperature simulation at 350 K is
shown in Supplementary Fig. 14. In this simulation, only one
conformational change is observed, despite several excursions
away from the local minima.

Using the ECC
sΔ�DFT approach, we could easily correct energies

after running a conventional DFT-MD simulation. However, as
shown in Supplementary Fig. 15, for snapshots along a 1.5 ps
constant-energy simulation starting from a point near a
conformer change, the MAE of DFT energies compared to CC
energies for each snapshot is 1.0 kcal mol−1, with a maximum of
just under 4.5 kcal mol−1. Therefore, a more promising use of the
ML functionals is to run MD simulations using the CC energy
function directly. An example ECC

sΔ�DFT ½nDFTsML � trajectory starting
from a random training point is shown in Supplementary Fig. 16,
with an MAE of 0.2 kcal mol−1.

Starting from a different point in the DFT-generated trajectory
serves to illustrate the importance of generating MD trajectories
directly on the CC energy surface. As seen in Fig. 3, for constant-
energy simulations starting from the same initial condition, a DFT-
based trajectory does not have sufficient kinetic energy to traverse
the rotational barrier, while the conformer switch does occur for the
CC-based trajectory. Astonishingly, the ECC

sΔ�DFT ½nDFTsML � trajectory
has a MAE of only 0.18 kcal mol−1 relative to the true CC energies
over a range of more than 15 kcal mol−1.

As the Δ-DFT method requires performing a DFT calculation
at each step of the trajectory, we can overcome this computational

Table 3 MAEs (kcal mol−1) for the MD17 benzene test set
for the different density inputs and energy labels.

Density/energy EDFTsML ECCsML ECCsΔ�DFT ESADsML ECCsΔ�SAD

nDFT 0.02 0.03 0.01 n/d n/d
nDFTsML 0.02 0.03 0.01 n/d n/d
nSAD 0.03 0.08 0.06 0.22 0.22

n/d not determined
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cost by combining the ML models. The middle panel of Fig. 3b
shows the CC trajectory using a reversible reference-system based
multi-time-step integrator81 to evaluate energies and forces
primarily with the ECC

sML½nDFTsML � model as a reference and with
periodic force corrections based on the more accurate
ECC
sΔ�DFT ½nDFTsML � every three steps (see Supplementary Note 1.4

and Supplementary Fig. 17 for more details). The resulting
trajectory has a MAE of 3.8 kcal mol−1 relative to the true CC
energies, with the largest errors in regions that are sparsely
represented in the training set. This self-consistent exploration of
the configurational space with the combined ML models provides
an opportunity to improve the sampling in a cost-effective
manner.

Combining densities for improved sampling. The electron
density provides some advantages as a descriptor of a chemical
system over inputs that rely solely on local atomic environments
or connectivity11,12,82. For a given periodic cell and number of
basis functions, the same density input structure is able to
describe systems with different numbers, types, and orders of
atoms. In contrast, models that rely on an atomistic decom-
position of the energy must have representations for the envir-
onment of each separate element (for example, see refs. 6,26). To
improve the sampling represented in the training set for resor-
cinol, we can leverage overlap with configurational spaces sam-
pled by similar, yet smaller and less costly, molecules. For
example, adding data for phenol can provide better sampling of
the rotation of an OH group, while the dynamics of benzene
contains extensive sampling of C–C bonds.

To demonstrate this feature of density-based ML models, we
use 1001 geometries for each of these two molecules as input
configurations (see Supplementary Figs. 8, 18), along with the
1004 resorcinol configurations. We trained a set of density-to-
energy maps, combining the symmetrized datasets, pairwise and
as a complete set, and then we used the resorcinol test set to
evaluate the performance of this model. In each case, the density-
to-energy map was learned by combining the densities of the
different molecules into a single dataset. The models using

combinations of true or independently learned densities,
displayed in Tables 4 and 5 and Supplementary Tables 8 and 9,
show significant improvements in performance, with the predic-
tion error being reduced by 30–60%. The results for models
trained on DFT energies are similar to those for CC energies and
can be found in Supplementary Table 10.

In addition, we can analogously train an ML-HK map by
combining the artificial potentials of the different molecules into
one dataset in order to produce a combined map (nDFTsML�c). Using
the combination of symmetrized phenol and resorcinol data to
train the ML-HK map improves the performance of the direct
ML energy models, although the Δ-DFT approach is again less
sensitive to the density representation. We note that, unlike the
models with independently learned densities, simply adding more
training data by including benzene in the ML-HK map, does not
significantly change the results. Molecular similarity clearly
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Fig. 3 Resorcinol dynamics from an initial condition near a conformational change. a The atomic positions explored during 100 fs NVE MD trajectories
run with standard DFT (dark orange), ECCsML½nDFTsML� with RESPA-corrected forces (light blue), and ECCsΔ�DFT ½nDFTsML� (blue). b The conformer energy along each
trajectory (solid lines), with the error relative to CC shown as a shaded line width. c The evolution of the C–C–O–H dihedral angle for each trajectory with
dashed grey lines indicating the barrier between conformers. For this figure, all DFT calculations use PBE and all CC energies are from CCSD(T).

Table 4 ECCsML MAEs (kcal mol−1) for combinations of
molecular datasets evaluated on the resorcinol test set.

Resorcinol Resorcinol phenol Resorcinol phenol benzene

nDFT 0.99 0.49 0.53
nDFTsML 1.37 1.04 0.70
nDFTsML�c n/a 0.69 0.71

n/a not applicable

Table 5 ECCsΔ�DFT MAEs (kcal mol−1) for combinations of
molecular datasets evaluated on the resorcinol test set.

Resorcinol Resorcinol phenol Resorcinol phenol benzene

nDFT 0.11 0.06 0.07
nDFTsML 0.11 0.09 0.08
nDFTsML�c n/a 0.07 0.09

n/a not applicable

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19093-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5223 | https://doi.org/10.1038/s41467-020-19093-1 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


affects the combination of ML-HK maps (see Supplementary
Table 9 for resorcinol and benzene), but the ML density
functionals are less sensitive and show improvement for all
molecular combinations. We view this as a stepping stone toward
learning a truly transferable model capable of predicting both
densities and energies for a wide range of configurations and
molecules.

Discussion
DFT is used in at least 30,000 scientific papers each year83, and
because of its low cost relative to wave function based ab initio
methods, it can be used to compute energies of large molecules.
Moreover, if geometry optimizations or MD simulations are
desired, these would be beyond the reach of CCSD(T) level cal-
culations owing to the high computational cost. However, if
CCSD(T) is affordable for a small number of carefully chosen
configurations, then our methodology provides one possible
bridge between the DFT and CCSD(T) levels of theory.

There are two distinct modes in which our results can be
applied. With Δ-DFT, the cost of a gas-phase MD simulation is
essentially that of the DFT-based MD with a given approximate
functional, plus the cost of evaluating a few dozen CCSD(T)
energies. While the optimal selection of training points is an open
question in the field of machine learning, the Δ-DFT approach
presented here may help to reduce the number of points neces-
sary by learning an inherently smoother energy correction map.
We stress that no forces are needed for training, making training
set generation cheaper than other methods with similar perfor-
mance. Compared to other machine-learning models, Δ-DFT is
well behaved and stable outside of the training set, since the zero-
mean prior allows it to fall back on DFT results when far from the
training set. The combination of Δ-DFT with the ML models for
DFT energies of ref. 53 yields both the efficiency from bypassing
the KS equations and the accuracy of CCSD(T). While this yields
accurate energy functions within the training manifold, it occa-
sionally yields inaccurate energy gradients or forces in an MD
simulation, which can be corrected with the Δ-DFT forces using
the appropriate integrators, as shown above.

Clearly, our methodology can be applied to any gas-phase MD
simulation or geometry optimization for which CCSD(T) calcu-
lations can be performed for a reasonable number of carefully
selected configurations. Gas-phase MD, for example, has many
applications. Earlier studies focused on comparing equilibrium
properties from simulations excluding or including (via the
Feynman path integral) nuclear quantum effects84–88. More
recent studies have focused on accurate spectroscopy and
exploration of reactivity in small complexes and clusters89–92. For
geometry optimization at the CCSD(T) level or testing of DFT
energetics against CCSD(T) energies, DFT geometries often
must be used due to the prohibitive cost of finding an optimum
CCSD(T) geometry. For molecules with many soft modes, finding
the geometry can require hundreds of evaluations of energies and
forces. Here, we have shown how relatively few energies are
needed in Δ-DFT to produce an accurate energy functional,
suggesting the possibility of using Δ-DFT to speed up such
searches, producing CC geometries for molecules that were pre-
viously prohibitive. For larger molecules and/or molecules
interacting with an environment, recent schemes that embed an
ab initio core within a larger DFT calculation93 could also be
treated by this method, especially if Δ-DFT need only be applied
to the ab initio portion of the calculation. With suitable training
sets, the ML approaches presented here have the potential to
enable MD simulations for each of these systems.

Standard electronic structure methods require users to choose
between accuracy and computational cost for each application.

The success of our new ML approach connecting DFT densities
to CC energies provides a new framework and strategy for linking
formerly inconsistent calculations to reduce the penalty of this
tradeoff. We have also demonstrated that the densities from a
simpler molecule can be combined with a more complex system
to improve the coverage of critical degrees of freedom. This
promising result indicates that the smart use of combined den-
sities from smaller molecular fragments could yield more accurate
energies at even lower cost. Given that the CC-DFT energy dif-
ference landscape does not resemble the intrinsic energy land-
scapes of either of the underlying electronic structure methods,
themselves, we hope future work will further explore this dis-
similarity as a function of training set size and composition for Δ-
DFT models.

ML represents an entirely new approach to extracting energies
from DFT calculations, avoiding some of the biases built into
human-designed functionals, while also bypassing the need for
strict self-consistency between the electron density and the
resulting energy when an approximate result is sufficient. As
shown here, ML provides a natural framework for incorporating
results from more accurate electronic structure methods, thus
bridging the gap between the CC and the DFT worlds while
maintaining the versatility of DFT to describe electronic prop-
erties beyond energy and forces such as the dipole moment,
molecular polarizability, NMR chemical shifts, etc. Along with
these insights, the long and successful history of KS-DFT suggests
that using the density as a descriptor may thus prove to be an
excellent strategy for improved simulations in the future.

Methods
Machine-learning model. In order to predict the total energy of a system given
only the Na atomic positions of a molecule and using the electron density as a key
descriptor, we can use the ML-HK map introduced in ref. 53, with the entire
procedure being illustrated in Fig. 1a. Initially, we characterize the Hamiltonian
by the external nuclear potential v(r), which we approximate using a sum of
Gaussians as94

vðrÞ ¼
XNa

α¼1

Zα exp
�jjr� Rαjj2

2γ2

� �
; ð4Þ

where r are the coordinates of a spatial grid, Rα is a vector containing the atom
coordinates of atom α, and Zα is the nuclear charges of atom α. Finally, γ is a width
hyperparameter. This Gaussian potential is then evaluated on a 3D grid around the
molecule and used as a descriptor for the ML-HK model. For each molecule, cross-
validation is used to determine the width parameter, γ, and the grid spacing for
discretization of the associated Gaussian potential.

After obtaining the Gaussian potential, we use a KRR model to learn the
approximate DFT valence electron density. In order to simplify the learning
problem and avoid representing the density on a 3D grid, we expand the density
map in an orthonormal basis set, and consequently learn the basis coefficients
instead of the density grid points:

nML½v�ðrÞ ¼
XL

l¼1
uðlÞML½v�ϕlðrÞ: ð5Þ

where ϕl(r) is a basis function. In this work, a Fourier basis is employed. In the
applications presented in this work, 12,500 basis functions (25 per dimension)
proved sufficient for good performance. Use of KRR to learn these basis coefficients
makes the problem more tractable for 3D densities, and more importantly, the
orthogonality of the basis functions allows us to learn the individual coefficients
independently:

uðlÞML½v� ¼
XM

i¼1
βðlÞi k½v; vi�; ð6Þ

where β(l) are the KRR coefficients and k is a kernel functional.
The independent and direct prediction of the basis coefficients makes the ML-

HK map more efficient and easier to scale to larger molecules, since the complexity
only depends on the number of basis functions. In addition, we can use the
predicted basis coefficients to reconstruct the continuous density at any point in
space, making the predicted density independent of a fixed grid and enabling
computations such as numerical integrals to be performed at an arbitrary accuracy.
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As a final step, another KRR model is used to learn the total energy from the
density basis coefficients:

EML½nML� ¼
XM
i¼1

αikðuML½v�; uML½vi�Þ; ð7Þ

where k is the Gaussian kernel.

Exploiting point group symmetries. Training datasets for our machine-learning
model can be easily enriched using the point group symmetries. To extract the
point group symmetries and the corresponding transformation matrices we used
the SYVA software package95. Consequently, we can multiply the size of the
training set by the number of point group symmetries without performing any
additional quantum chemical calculations simply by applying the point group
transformations on our existing data.

Cross-validation and hyperparameter optimization. Due to the small number of
training and test samples, when evaluating the models on the water dataset, the
data were shuffled 40 times, and for each shuffle a subset of 50 geometries was
selected as the training set, with the remaining 52 being used as the out-of-sample
test set. For the smaller training sets, a subset of the 50 training geometries was
selected using k-means sampling.

The hyperparameters for all models were tuned using fivefold cross-validation
on the training set. For the ML-HK map from potentials to densities, the following
three hyperparameters were optimized individually for each dataset: the width
parameter of the Gaussian potential γ, the spacing of the grid on which Gaussian
potential is evaluated, and the width parameter σ of the Gaussian kernel k[v, vi].
For each subsequent density to energy map E�

ML½n�, only the width parameter of the
Gaussian kernel k(uML[v], uML[vi]) needs to be chosen using cross-validation.
Specific values are reported in the Supplementary Tables 11–15.

Classical molecular dynamics. Training and test set geometries for resorcinol
(1,3-benzenediol) and phenol were selected from a 1 ns trajectory generated via
classical MD using the GAFF force field96. The local minima were optimized using
MP2/6-31g* in Gaussian0997. Symmetric atomic charge assignments were deter-
mined from a RESP fit98 to the HF/6-31g* calculations, using the three distinct
geometries with Boltzmann weights determined by the relative MP2 energies for
resorcinol. All other standard GAFF parameters96 for the MD simulations were
assigned using the AmberTools package99. To generate resorcinol and phenol
conformers, classical MD simulations in a canonical ensemble were run at 300 K
and 500 K using the PINY_MD package100 with massive Nosé-Hoover chain
(NHC) thermostats101 for atomic degrees of freedom (length= 4, τ= 20 fs, Suzuki-
Yoshida order= 7, multiple time step= 4) and a time step of 1 fs.

For the resorcinol and phenol training sets, we selected 1000 conformers closest
to k-means centers from the 1 ns classical MD trajectory run at 500 K. The test sets
comprise 1000 randomly selected snapshots from the 1 ns 300 K classical MD
simulations. Datasets are aligned by minimizing the root mean square deviation
(RMSD) of carbon atoms to the global minimum energy conformer.

DFT molecular dynamics. Born-Oppenheimer MD simulations of a resorcinol
molecule in the gas phase were run using DFT in the QUICKSTEP package102 of
CP2K v. 2.6.2103. The PBE XC functional104 was used to approximate exchange
and correlation, and a mixed Gaussian/plane wave (GPW) basis-set scheme105 was
employed with DZVP-MOLOPT-GTH (m-DZVP) basis sets106 paired with
appropriate dual-space GTH pseudopotentials107,108. Wave functions were con-
verged to 1E-7 Hartree using the orbital transformation method109 on a multiple
grid (n= 5) with a cutoff of 900 Ry for the system in a cubic box (L= 20 bohr). For
the constant-temperature simulation, a temperature of 350 K was maintained using
massive NHC thermostats101 (length= 4, τ= 10 fs, Suzuki-Yoshida order= 7,
multiple time step= 4) and a time step of 0.5 fs.

ML molecular dynamics. We used the atomistic simulation environment110 with a
0.5 fs time-step to run MD with ML energies. For the constant-temperature
simulation, a temperature of 350 K maintained via a Langevin thermostat with a
friction value of 0.01 atomic units (0.413 fs−1). Atomic forces were calculated using
the finite difference method with ϵ= 0.001Å.

Electronic structure calculations. Optimizations for ethanol conformers were run
using MP2/6-31g* in Gaussian0997. DFT calculations for the ML models were run
using Quantum ESPRESSO code111 with the PBE XC functional104 and projector-
augmented wave approach112,113 with Troullier-Martin pseudopotentials replacing
explicit ionic core electrons114. Molecules were simulated in a cubic box (L= 20
bohr) with a wave function cutoff of 90 Ry. The valence electron densities were
evaluated on a grid with 125 points in each dimension. All CC calculations were
run using Orca115 with CCSD(T)/aug-cc-pVTZ116 for water or CCSD(T)/cc-
pVDZ116 for resorcinol and phenol.

Data availability
The data generated and used in this study are available at quantum-machine.org/datasets.

Code availability
The code generated and used for this study is available at https://github.com/
MihailBogojeski/ml-dft.
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