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Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional
theory to solve electronic structure problems in a wide variety of scientific fields, ranging from
materials science to biochemistry to astrophysics. Machine learning holds the promise of learning
the kinetic energy functional via examples, by-passing the need to solve the Kohn-Sham equations.
This should yield substantial savings in computer time, allowing either larger systems or longer time-
scales to be tackled, but attempts to machine-learn this functional have been limited by the need
to find its derivative. The present work overcomes this difficulty by directly learning the density-
potential and energy-density maps for test systems and various molecules. Both improved accuracy
and lower computational cost with this method are demonstrated by reproducing DFT energies for
a range of molecular geometries generated during molecular dynamics simulations. Moreover, the
methodology could be applied directly to quantum chemical calculations, allowing construction of
density functionals of quantum-chemical accuracy.

INTRODUCTION

Kohn-Sham density functional theory[1] is now enor-
mously popular as an electronic structure method in a
wide variety of fields[2]. Useful accuracy is achieved with
standard exchange-correlation approximations, such as
generalized gradient approximations[3] and hybrids[4].
Such calculations are playing a key role in the materi-
als genome initiative[5], at least for weakly correlated
materials[6].

There has also been a recent spike of interest in ap-
plying machine learning (ML) methods in the physical
sciences[7–11]. The majority of these applications involve
predicting properties of molecules or materials from large
databases of KS-DFT calculations[12–15]. A few applica-
tions involve finding potential energy surfaces within MD
simulations[16–19]. Fewer still have focussed on finding
the functionals of DFT as a method of performing KS
electronic structure calculations without solving the KS
equations[20–23]. If such attempts could be made practi-
cal, the possible speed-up in repeated DFT calculations
of similar species, such as occur in ab initio MD simula-
tions, is enormous.

A key difficulty has been the need to extract the
functional derivative of the non-interacting kinetic en-
ergy. The non-interacting kinetic energy functional Ts[n]
of the density n is used in two distinct ways in a KS
calculation[1], as illustrated in Fig. 1: (i) its functional
derivative is used in the Euler equation which is solved

in the self-consistent cycle and (ii) when self-consistency
is reached, the ground-state energy of the system is cal-
culated by E[n], an Orbital-Free (OF) mapping. The
solution of the KS equations performs both tasks ex-
actly. Early results on simple model systems showed
that machine learning could provide highly accurate val-
ues for Ts[n] with only modest amounts of training[20],
but that the corresponding functional derivatives are too
noisy to yield sufficiently accurate results to (i). Subse-
quent schemes overcome this difficulty in various ways,
but typically lose a factor of 10 or more in accuracy[22],
and their computational cost can increase dramatically
with system complexity.

Here we present an alternative ML approach, in which
we replaced the Euler equation by directly learning the
Hohenberg-Kohn (HK) map v(r) → n(r) (red line in
Fig. 1a) from the one-body potential of the system of
interest to the interacting ground-state density, i.e. we
establish an ML-HK map. We show that this map can
be learned at a much more modest cost than either previ-
ous ML approaches to find the functional and its deriva-
tive (ML-OF) or direct attempts to model the energy as a
functional of v(r) (ML-KS). Furthermore we show that it
can immediately be applied to molecular calculations, by
calculating the energies of small molecules over a range
of conformers. Moreover, since we have already imple-
mented this approach with a standard quantum chemical
code (Quantum Espresso[24]) using a standard DFT ap-
proximation (PBE), this can now be tried on much larger
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scales.

The ML-HK map reflects the underlying computa-
tional approach used to generate a particular electron
density, but is not restricted to any given electronic struc-
ture method. Many molecular properties, not only the
energy, are dependent on the electron density, making
the ML-HK map more versatile than a direct ML-KS
mapping. We also establish that densities can be learned
with sufficient accuracy to distinguish between different
DFT functionals, providing a route to future functional
development by generating precise densities for a range
of molecules and conformations.

RESULTS

We will first outline theoretical results, most promi-
nently the ML-HK map, and then illustrate the approach
with simulations of 1-D systems and 3-D molecules.

ML-Hohenberg-Kohn map

Previous results show that for an ML-OF approach,
the accuracy of ML KS kinetic energy models TML

s [n]
improve rapidly with the amount of data. But mini-
mizing the total energy via gradient descent requires the
calculation of the gradient of the kinetic energy model
TML
s (see Fig. 1). Calculating this gradient is chal-

lenging. Due to the data driven nature of, e.g., kernel
models, the machine-learned kinetic energy functional
has no information in directions that point outside the
data manifold[25]. This heavily influences the gradient
to an extent that it becomes unusable without further
processing[20]. There have been several suggestions to
remedy this problem but all of them share a significant
loss in accuracy compared to Ts[n][21, 22, 26].

However, we propose an interesting alternative to gra-
dients and the ML-OF approach. Recently, it has been
shown that the Hohenberg-Kohn map for the density
as a functional of the potential can be approximated
extremely accurately using semiclassical expressions[27].
Such expressions do not require the solution of any differ-
ential equation, and become more accurate as the number
of particles increases. Errors can be negligible even for
just 2 distinct occupied orbitals.

Inspired by this success, we suggest to circumvent the
kinetic energy gradient and directly train a multivari-
ate machine learning model. We name this the ML-
Hohenberg-Kohn (ML-HK) map:

nML[v](x) =

M∑
i=1

βi(x)k(v, vi). (1)

Here, each density grid point is associated with a group
of model weights β. Training requires solving an opti-
mization problem for each density grid point. While this
is possible in 1-D, it rapidly becomes intractable in 3-D,
since the number of grid points grows cubically.

The use of a basis representation for the densities, as
in

nML[v](x) =

L∑
l=1

u(l)[v]φl(x), (2)

renders the problem tractable even for 3-D. A machine
learning model that predicts the basis function coeffi-
cients u(l)[v] instead of the grid points is then formulated.

Predicting the basis function coefficients not only
makes the machine learning model efficient and allows
the extension of the approach to 3-D but also permits
regularization, e.g. to smooth the predicted densities by
removing the high frequency basis functions for exam-
ple, or to further regularize the machine learning model
complexity for specific basis functions.

For orthogonal basis functions, the machine learning
model reduces to several independent regression models
and admits an analytical solution analogous to Kernel
Ridge Regression (see supplement Eq. 5):

β(l) =
(
Kσ(l) + λ(l)I

)−1
u(l), l = 1, . . . , L. (3)

Here, for each basis function coefficient, λ(l) are regular-
ization parameters and Kσ(l) is a Gaussian kernel with
kernel width σ(l). The λ(l) and σ(l) can be chosen in-
dividually for each basis function via independent cross-
validation (see [12, 28]). This ML-HK model avoids prior
gradient descent procedures and with it the necessity to
“de-noise” the gradients. Due to the independence of
Eq. 3 for each l, the solution scales nicely.

Functional and Density driven error

How can the performance of the ML-HK map be mea-
sured? It has recently been shown how to separate out
the effect of the error in the functional F and the error in
the density n(r) on the resulting error in the total energy
of any approximate, self-consistent DFT calculation[29].
Let F̃ be an approximation of the many body func-
tional F , and ñ(r) the approximate ground-state den-
sity when F̃ is used in the Euler equation. Defining
Ẽ[n] = F̃ [n] +

∫
d3rn(r)v(r) yields

∆E = Ẽ[ñ]− E[n] = ∆EF + ∆ED (4)

where ∆EF = F̃ [n]−F [n] is the functional-driven error,
while ∆ED = Ẽ[ñ] − Ẽ[n] is the density-driven error.
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Figure 1. a. Mappings used in this paper. The bottom arrow represents E[v], a conventional electronic structure calculation,
i.e., KS-DFT. The ground state energy is found by solving KS equations given the external potential, v. E[n] is the total
energy density functional. The red arrow is the HK map n[v] from external potential to its ground state density. b top. How
the energy error depends on M for ML-OF and ML-HK with different basis sets for the 1-D problem. b bottom. Errors of
the PBE energies (relative to exact values) and the ML maps (relative to PBE) as a function of interatomic spacing, R, for H2

with M = 7. c. How our Machine Learning Hohenberg-Kohn (ML-HK) map makes predictions. The molecular geometry is
represented by Gaussians; many independent Kernel Ridge Regression models predict each basis coefficient of the density. We
analyze the performance of data-driven (ML) and common physical basis representations for the electron density.

In most DFT calculations, ∆E is dominated by ∆EF .
The standard DFT approximations can, in some specific
cases, produce abnormally large density errors that dom-
inate the total error. In such situations, using a more
accurate density can greatly improve the result [29–31].
We will use these definitions to measure the accuracy of
the ML-HK map.

1-D potentials

The following results demonstrate how much more ac-
curate ML is when applied directly to the HK map.
The box problem originally introduced in Snyder et al.
[20] is used to illustrate the principle. Random poten-

tials consisting of three Gaussian dips were generated
inside a hard-wall box of length 1 (atomic units), and
the Schrödinger equation for one electron was solved ex-
tremely precisely. Up to 200 cases were used to train an
ML model TML

s [n] for the non-interacting kinetic energy
functional Ts[n] via Kernel Ridge Regression (for details,
see supplement).

To measure the accuracy of an approximate HK map,
the analysis of the previous section is applied to the KS
DFT problem. Here F is just Ts, the non-interacting
kinetic energy, and

∆EF = T̃s[n]− Ts[n], (5)

i.e., the error made in an approximate functional on the
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ML-OF ML-HK (grid) ML-HK (other)

∆E ∆EF ∆ED ∆E ∆ED ∆EML
D ∆ED (Fourier) ∆ED (KPCA)

M MAE max MAE max MAE max MAE max MAE max MAE max MAE max MAE max

20 7.7 47 7.7 60 8.8 87 3.5 27 0.76 8.9 9.7 70 0.58 8 0.15 2.9
50 1.6 30 1.3 7.3 1.4 31 1.2 7.1 0.079 0.92 0.27 2.4 0.078 0.91 0.011 0.17

100 0.74 17 0.2 2.6 0.75 17 0.19 2.1 0.027 0.43 0.18 2.4 0.031 0.42 0.0012 0.028
200 0.17 2.9 0.039 0.6 0.17 2.9 0.042 0.59 0.0065 0.15 0.02 0.46 0.017 0.14 0.00055 0.015

Table I. Energy errors in kcal/mol for the 1-D data set for various M , the number of training points. For definitions, see text.

exact density. Table I on the left gives the errors made by
ML-OF for the total energy, and its different components,
when the density is found from the functional derivative.
This method works by following a gradient descent of the
total energy functional based on the gradient of the ML
model TML

s ,

n(j+1) = n(j) − εP
(
n(j)

) δ

δn
EML(n(j)), (6)

where ε is a small number and P (n(j)) is a localized PCA
projection to de-noise the gradient. Here and for all fur-
ther 1-D results we use

EML[n] = TML
s [n] +

∫
dxn(x) v(x). (7)

The density-driven contribution to the error ∆ED, which
we calculate exactly here using the von Weizsäcker ki-
netic energy[32] is always comparable to, or greater than,
the functional-driven error ∆EF , due to the poor quality
of the ML functional derivative[20]. The calculation is
abnormal, and can be greatly improved by using a more
accurate density from a finer grid. As the number of
training points M grows, the error becomes completely
dominated by the error in the density. This shows that
the largest source of error is in using the ML approx-
imation of Ts to find the density by solving the Euler
equation.

The next set of columns analyzes the ML-HK ap-
proach, using a grid basis. The left-most of these columns
shows the energy error we obtain by utilizing the ML-HK
map:

∆E = |EML[nML[v]]− E|. (8)

Note that both ML models, TML
s and nML, have been

trained using the same set of M training points.
The ML-HK approach is always more accurate than

ML-OF, and its relative performance improves as M in-
creases. The next column reports the density-driven er-
ror ∆ED which is an order-of-magnitude smaller than for
ML-OF. Lastly, we list an estimate to the density-driven
error

∆EML
D = |EML[nML[v]]− EML[n]|, (9)

which uses the ML model TML
s for the kinetic energy

functional in 1-D. This proxy is generally a considerable
overestimate (a factor of 3 too large), so that the true
∆ED is always significantly smaller. We use it in subse-
quent calculations (where we cannot calculate TML

s ) to
(over-)estimate the energy error due to the HK-ML map.

The last set of columns are density-driven errors for
other basis sets. Three variants of the ML-HK map were
tested. First, direct prediction of the grid coefficients:

In this case, u
(l)
i = ni(xl), l = 1, . . . , G. 500 grid points

were used, as in Snyder et al. [20]. This variant is tested
in 1-D only; in 3-D the high dimensionality will be pro-
hibitive. Second, a common Fourier basis is tested. The
density can be transformed efficiently via the discrete
Fourier transform, using 200 Fourier basis functions in
total. In 3-D these basis functions correspond to plane
waves. The back-projection u 7→ n to input space is
simple, but although the basis functions are physically
motivated, they are very general and not specifically tai-
lored to density functions. The performance is almost
identical to the grid on average, although maximum er-
rors are much less. For M = 20, the error that originates
from the basis representation starts to dominate. This is
a motivation for exploring, third, a Kernel PCA (KPCA)
basis[33]. KPCA[34] is a popular generalization of PCA
that yields basis functions that maximize variance in a
higher dimensional feature space. The KPCA basis func-
tions are data-driven and computing them requires an
eigen-decomposition of the Kernel matrix. Good results
are achieved with only 25 KPCA basis functions. The
KPCA approach gives better results because it can take
the non-linear structure in the density space into account.
However, it introduces the pre-image problem: It is not
trivial to project the densities from KPCA space back to
their original (grid) space (see supplement). It is thus
not immediately applicable to 3-D applications.
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Molecules

We next apply the ML-HK approach to predict elec-
tron densities and energies for a series of small molecules.
We test the ML models on KS-DFT results obtained
using the PBE exchange-correlation functional[35] and
atomic pseudopotentials with the projector augmented
wave (PAW) method[36, 37] in the Quantum ESPRESSO
code.[38] Since the ML-OF approach applied in the previ-
ous section becomes prohibitively expensive in 3-D due to
the poor convergence of the gradient descent procedure,
we compare the ML-HK map to the ML-KS approach.
This approach models the energy directly as a functional
of v(r), i.e. it trains a model

EML[v] =

M∑
i=1

αik(vi, v) (10)

via KRR (for details, see supplement).
We also apply the ML-HK map with Fourier basis func-

tions. Instead of a TML
s [n] model, we learn an EML[n]

model

EML[n] =

M∑
i=1

αik(ni, n) (11)

which avoids implementing the potential energy and
exchange-correlation functionals.

Both approaches require the characterization of the
Hamiltonian by its external potential. The external
(Coulomb) potential diverges for the 3-D molecules and
is therefore not a good feature to measure the distance
in ML. Instead, we use an artificial Gaussians potential
in the form of

v(r) =

Na∑
α=1

Zα exp

(
−‖r−Rα‖2

2γ2

)
(12)

where Rα are the positions and Zα are the nuclear
charges of the Na atoms. The Gaussians potential is
used for the ML representation only. The width γ is a
hyper-parameter of the algorithm. The choice is arbi-
trary but can be cross-validated. We find good results
with γ = 0.2 Å. The idea of using Gaussians to repre-
sent the external potential has been used previously[39].
The Gaussians potential is discretized on a coarse grid
with grid spacing ∆ = 0.08 Å. To use the discretized po-
tential in the Gaussian kernel, we flatten it into a vector
form and thus use a tensor Frobenius norm.

Our first molecular prototype is H2, with the only de-
gree of freedom, R, denoting the distance between the H
atoms. A dataset of 150 geometries is created by varying
R between 0.5 and 1.5 Å (sampled uniformly). A ran-
domly chosen subset of 50 geometries are designated as

the test set and are unseen by the ML algorithms. These
geometries are used to measure the out-of-sample error
reported below.

The remaining 100 geometries make up the grand
training set. To evaluate the performance of the ML-
KS map and the ML-HK map, subsets of varying sizes
M are chosen out of the grand training set to train the
EML[v] and nML[v] models, respectively. Because the re-
quired training subsets are so small, careful selection of a
subset that covers the complete range of R is necessary.
This is accomplished by selecting the M training points
out of the grand training set so that the R values are
nearly equally spaced (see supplement for details).

For practical applications, it is not necessary to run
DFT calculations for the complete grand training set,
only for the M selected training points. Strategies for
sampling the conformer space and selecting the grand
training set for molecules with more degrees of freedom
are explained for H2O and MD simulations later on.

The performance of the ML-KS map and ML-HK map
is compared by evaluating EML[v] that maps from the
Gaussians potential to total energy and the combina-
tion of nML[v] that maps from Gaussians potential to
the ground-state density in a three-dimensional Fourier
basis representation (l = 25) and EML[n] that maps from
density to total energy. The prediction errors are listed
in Table II.

The MAE of the energy evaluated using the ML-HK
map is significantly smaller than that of the ML-KS map.
This indicates that even for a 3-D system, learning the
potential-density relationship via the HK map is much
easier than directly learning the potential-energy rela-
tionship via the KS map.

Fig. 1b shows the errors made by the ML-KS and the
ML-HK maps. The error of the ML-HK map is smoother
than the ML-KS error and is much smaller, even for the
most problematic region when R is smaller than the equi-
librium bond distance of R0 = 0.74 Å. The MAE that is
introduced by the PBE approximation on the H2 dataset
is 2.3 kcal/mol (compared to exact CI calculations), i.e.,
well above the errors of the ML model and verifies that
the error introduced by the ML-HK map is negligible for
a DFT calculation.

The next molecular example is H2O, parametrized with
three degrees of freedom: two bond lengths and a bond
angle. To create a conformer dataset, the optimized
structure (R0 = 0.97 Å, θ0 = 104.2◦ using PBE) is taken
as a starting point. A total of 350 geometries are then
generated by changing each bond length by a uniformly
sampled value between ±0.075 Å and varying the an-
gle θ between ±8.59 degrees (±0.15 rad) away from θ0
(see supplement Fig. 1 for a visualization of the sam-
pled range). For this molecule, the out-of-sample test set
again comprises a random subset of 50 geometries, with
the remaining 300 geometries used as the grand train-
ing set. Because there are now three parameters, it is
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ML-KS ML-HK

∆E ∆Ro ∆θ0 ∆E ∆EML
D ∆Ro ∆θ0

Molecule M MAE max MAE max MAE max

5 1.3 4.3 2.2 — 0.70 2.9 0.18 0.54 1.1 —
H2 7 0.37 1.4 0.23 — 0.17 0.73 0.054 0.16 0.19 —

10 0.080 0.41 0.23 — 0.019 0.11 0.017 0.086 0.073 —

H2O

5 1.4 5.0 2.1 2.2 1.1 4.9 0.056 0.17 2.3 3.8
10 0.27 0.93 0.63 1.9 0.12 0.39 0.099 0.59 0.12 0.38
15 0.12 0.47 0.19 0.41 0.043 0.25 0.029 0.14 0.064 0.23
20 0.015 0.064 0.043 0.16 0.0091 0.060 0.011 0.058 0.024 0.066

Table II. Prediction errors on H2 and
H2O with increasing number of train-
ing points M for the ML-KS and ML-
HK approaches. In addition, the esti-
mated density-driven contribution to
the error for the ML-HK approach
(Eq. 9) is given. Energies in kcal/mol,
bond-lengths in pm, and angles in de-
grees.

more difficult to select equidistant samples for the train-
ing subset of M data points. We therefore use a K-means
approach to find M clusters and select the grand train-
ing set geometry closest to each cluster’s center for the
training subset (see supplement for details).
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Figure 2. Top. Distribution of energy errors against PBE
on the H2O dataset for ML-KS and ML-HK. The errors are
plotted on a symmetric log scale with linear threshold of 0.01,
using nearest neighbor interpolation from a grid scan for col-
oring. Black dots mark the test set geometries with averaged
bond lengths. Bottom left. Comparison of the PBE er-
rors made by ML-HK and ML-KS on the test set geometries.
Bottom right. Energy landscape of the ML-HK map for
symmetric geometries (R versus θ). All models trained on
M = 15 training points. Energies and errors in kcal/mol. A
black cross marks the PBE equilibrium position.

Models are trained as for H2. The results are given in
Table II. As expected, the increase in degrees of freedom
for H2O compared to H2 requires a larger training set size

M . However, even for the more complicated molecule,
the ML-HK map is consistently more precise than the
ML-KS map, and provides an improved potential energy
surface, as shown in Fig. 2. With an MAE of 1.2 kcal/mol
for PBE energies relative to CCSD(T) calculations for
this data set, we again show that ML does not introduce
a new significant source of error.

The ML maps can also be used to find the minimum en-
ergy configuration. The total energy is minimized as the
geometry varies with respect to both bond lengths and
angles. For optimization, we use Powell’s method[40],
which requires a starting point and an evaluation func-
tion to be minimized. For the H2O case, the search is re-
stricted to symmetric configurations, with a random sym-
metric geometry used as the starting point. Results are
reported in Table II. The optimizations consistently con-
verge to the correct minima regardless of starting point,
consistent with the maps being convex, i.e., the potential
energy curves are sufficiently smooth as to avoid intro-
ducing artificial local minima.

For larger molecules, generating random conformers
that sample the full configurational space becomes dif-
ficult. Therefore, we next demonstrate that molecular
dynamics (MD) using a classical force field can also be
used to create the grand training set. As an example, we
use benzene (C6H6) with only small fluctuations in atomic
positions out of the molecular plane. Appropriate con-
formers are generated via isothermal MD simulations at
300 K, 350 K, and 400 K using the General Amber Force
Field (GAFF)[41] in the PINY MD package[42]. Sav-
ing snapshots from the MD trajectories generates a large
set of geometries that are sampled using the K-means ap-
proach to obtain 2,000 representative points for the grand
training set. Training nML[v] and EML[n] is performed as
above by running DFT calculations on M = 2000 points.
We find that the ML error is reduced by creating the
training set from trajectories at both the target temper-
ature and a higher temperature to increase the represen-
tation of more distorted geometries. The final ML model
is tested on 200 conformational snapshots taken from an
independent MD trajectory at 300 K (see Fig. 3a). The
MAE of the ML-HK map for this data set using train-
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ing geometries from 300 K and 350 K trajectories is only
0.37 kcal/mol for an energy range that spans more than
10 kcal/mol (see Table III).

For benzene, we further quantify the precision of the
ML-HK map in reproducing PBE densities. In Fig. 4, it
is clear that the errors in the Fourier basis representation
are larger than the errors introduced by the ML-HK map
by two orders of magnitude. Furthermore, the ML-HK
errors in density (as evaluated on a grid in the molecular
plane of benzene) are also considerably smaller than the
difference in density between density functionals (PBE
versus LDA[43]). This result verifies that the ML-HK
map is specific to the density used to train the model and
should be able to differentiate between densities gener-
ated with other electronic structure approaches.

Ethane (C2H6), with a small energy barrier for the rel-
ative rotation of the methyl groups, is also evaluated in
the same way. Using geometries sampled using K-means
from 300 K and 350 K classical trajectories, the ML-HK
model reproduces the energy of conformers with a MAE
of 0.23 kcal/mol for an independent MD trajectory at
300 K (Fig. 3b). This test set includes conformers from
the sparsely-sampled eclipsed configuration (see supple-
ment Fig. 3). Using points from a 400 K trajectory im-
proves the ML-HK map due to the increased probability
of higher energy rotamers in the training set (see Ta-
ble III). The training set could also be constructed by
including explicit rotational conformers, as is common for
fitting classical force field parameters[41]. In either case,
generating appropriate conformers for training via com-
putationally cheap classical MD significantly decreases
the cost of the ML-HK approach.

As additional proof of the versatility of the ML-HK
map, we show that this approach is also able to inter-
polate energies for proton transfer in the enol form of
malonaldehyde (C3H4O2). This molecule is a well-known
example of intramolecular proton transfer, and our previ-
ous AIMD and ab initio path integral studies [44] found
classical and quantum free energy barrier values of 3.5
and 1.6 kcal/mol, respectively, from gradient-corrected
DFT. In this work, classical MD trajectories are run for
each tautomer separately, with a fixed bonding scheme,
then combined for K-means sampling to create the grand
training set. The training set also includes an artificially
constructed geometry that is the average of tautomer
atomic positions. For the test set, we use snapshots from
a computationally expensive Born-Oppenheimer ab ini-
tio MD trajectory at 300 K. Fig. 5a shows that the ML-
HK map is able to predict DFT energies during a pro-
ton transfer event (MAE of 0.27 kcal/mol) despite being
trained on classical geometries that did not include these
intermediate points.

The ML-HK map can also be used to generate a stable
MD trajectory for malonaldehyde at 300 K (see Fig. 5b).
In principle, analytic gradients could be obtained for
each timestep, but for this first proof-of-concept trajec-

Training
trajectories

∆E ∆EML
D

Molecule MAE max MAE max

300K 0.42 1.7 0.32 1.5
Benzene 300K + 350K 0.37 1.8 0.28 1.5

300K + 400K 0.47 2.3 0.30 1.8

300K 0.20 1.5 0.17 1.3
Ethane 300K + 350K 0.23 1.4 0.19 1.1

300K + 400K 0.14 1.7 0.098 0.62

Malonaldehyde 300K + 350K 0.27 1.2 0.21 0.74

Table III. Energy and density-driven errors (kcal/mol) of the
ML-HK approach on the MD datasets for different training
trajectory combinations.

tory, a finite-difference approach was used to determine
atomic forces. The ML-HK-generated trajectory sam-
ples the same molecular configurations as the ab inito
simulation (see Fig. 6), with mean absolute energy er-
rors of 0.77 kcal/mol, but it typically underestimates the
energy for out-of-plane molecular fluctuations at the ex-
tremes of the classical training set (maximum error of
5.7 kcal/mol). Even with underestimated energy val-
ues, the atomic forces are sufficiently large to return
the molecule to the equilibrium configuration, resulting
in a stable and long trajectory. The new set of coor-
dinates could be further sampled to expand the train-
ing set in a self-consistent manner. Using iterative ML-
HK-generated MD trajectories would eliminate the need
to run computationally expensive MD simulations with
DFT and would provide an iterative approach to reduce
the energy errors for conformations not included in the
classical training set.

DISCUSSION

For several decades, density functional theory has been
a cross-disciplinary area between theoretical physics,
chemistry, and materials sciences. The methods of each
field cross-fertilize advances in other fields. This has led
to its enormous popularity and widespread success, de-
spite its well-known limitations in both accuracy and the
systems and properties to which it can be applied.

The present work makes a key step forward toward
adding an entirely new ingredient to this mix, namely the
construction of functionals via machine learning. While
previous work showed proofs of principle in 1-D, this is
the first demonstration in 3-D, using real molecules and
production-level codes. We also demonstrate that molec-
ular conformers used in the training set can be generated
by a range of methods, including informed scans and clas-
sical MD simulations. This opens the possibility that
machine-learning methods, which complement all exist-
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Figure 3. Energy errors of ML-HK along classical MD trajectories. PBE values in blue, ML-HK values in red. a. A 20 ps
classical trajectory of benzene. b. A 20 ps classical trajectory of ethane.

ing approaches to functional approximation, could be-
come a new and very different approach to this problem,
with the potential to greatly reduce the computational
cost of routine DFT calculations.

Our new method, directly learning the Hohenberg-
Kohn density-potential map, overcomes a key bottleneck
in previous methodologies that arises in 3-D. Our ap-
proach avoids solving an intermediate more general prob-
lem (the gradient descent) to find the solution of the more
specific problem (finding the ground-state density). This
is called transductive inference by the machine learning
community and is thought to be key to successful statisti-
cal inference methods[45]. Following a direct prediction
approach with the ML-HK map increases the accuracy
consistently on both 1-D examples and 3-D molecules.
We are also able to learn density models that outperform
energy models trained on much more data. This quan-
titative observation allows us to conclude that learning
density models is much easier than learning energy mod-
els. Such a finding should be no surprise to practitioners
of the art of functional construction (see, e.g., [27]), but
the present work quantifies this observation using stan-
dard statistical methods. As the ML-HK map accurately
reflects the training densities, more exact methods could
also be used to generate the training set densities for
functional development.

We have also derived a way to use basis functions to
make the approach computationally feasible. This makes
it easier to integrate the method into existing DFT codes.

Another advantage is the possibility to take the innate
structure of the densities into account, i.e. spatial corre-
lations are preserved by using low frequency basis func-
tions. Again, this fits with the intuition of experienced
practitioners in this field, but here we have quantified
this in terms of machine-learned functionals.

Direct prediction of energies (e.g., the ML-KS map)
always has the potential to lead to conceptually easier
methods. But such methods must also abandon the in-
sights and effects that have made DFT a practical and
usefully accurate tool over the past half century. Many
usefully accurate DFT approximations already exist, and
the corrections to such approximations can be machine-
learned in precisely the same way as the entire functional
has been approximated here[23]. If machine-learning cor-
rections require less data, the method becomes more pow-
erful by taking advantage of existing successes. Further-
more, existing theorems, such as the viral theorem[46],
might also be used to directly construct the kinetic en-
ergy functional from an ML-HK map. In the case of
orbital-dependent functionals, such as meta-GGA’s or
global hybrids, the method presented here must be ex-
tended to learn, e.g., the full density matrix instead of
just the density.

We also note that, for all the 3-D calculations shown
here, we machine-learned E[n], the entire energy (not
just the kinetic energy), which includes some density-
functional approximation for XC. But, with a quantum
chemical code, we could have trained on much more ac-
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Figure 4. The precision of our density predictions using the Fourier basis for ML-HK for the molecular plane of benzene. The
plots show a. the difference between the valence density of benzene when using PBE and LDA functionals at the PBE optimized
geometry. b. error introduced by using the Fourier basis representation. c. error introduced by the nML[v] density fitting (a.–c.
on same color scale). d. the total PBE valence density e. the density differences along a 1-D cut of a.–c. f . the density error
introduced with the ML-HK map (same data, but different scale, as in c.).

curate quantum chemical densities and energies. Thus,
the ML-HK maps in principle allow the construction of
(nearly) exact density functionals for molecular systems,
with the potential to significantly reduce the computa-
tional cost of quantum chemistry based MD simulations.
All this provides useful directions in which to expand on
the results shown here.

METHODS

Kohn-Sham Density Functional Theory (KS-
DFT) is a computational electronic structure method
that determines the properties of many-body systems by
using functionals of the electron density. The founda-
tion is the Hohenberg-Kohn theorem[47] that establishes
a one-to-one relationship between potential and density,
i.e. at most one potential can give rise to a given ground-
state density.

Kohn-Sham DFT avoids direct approximation of many
body effects by imagining a fictitious system of non-
interacting electrons with the same density as the real
one[1]. Its accuracy is limited by the accuracy of exist-

ing approximations to the unknown exchange-correlation
energy, while its computational bottleneck is the solu-
tion of the Kohn-Sham equations that describe the non-
interacting particles.

Here, 3-D DFT calculations for ML models are per-
formed with the Quantum ESPRESSO code[38] using
the PBE exchange-correlation functional[35] and pro-
jector augmented waves (PAWs)[36, 37] with Troullier-
Martin pseudization for describing the ionic cores[48].
All molecules are simulated in a cubic box (L = 20 bohr)
with a wave function cutoff of 90 Ry. The 1-D dataset is
taken from Snyder et al. [20].

Kernel Ridge Regression (KRR)[49, 50] is a ma-
chine learning method for regression. It is a kernelized
version of Ridge Regression which minimizes the least
squares error and applies an `2 (Tikhonov) regulariza-
tion. Let x1, . . . , xm ∈ Rd be the training data points and
let Y = (y1, . . . , ym)

T
be their respective labels. KRR

then optimizes
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Figure 5. a. Energy errors of ML-HK along a 0.25 ps ab initio MD trajectory of malonaldehyde. PBE values in blue, ML-HK
values in red. The ML model correctly predicts energies during a proton transfer in frames 7 to 15 without explicitly including
these geometries in the training set. b. Energy errors of ML-HK along a 1 ps MD trajectory of malonaldehyde generated by
the ML-HK model. ML-HK values in red, PBE values of trajectory snapshots in blue.

min
α

m∑
i=1

∣∣∣∣∣∣yi −
m∑
j=1

αjk(xi, xj)

∣∣∣∣∣∣
2

+ λαᵀKα (13)

where k is the kernel function and λ is a regularization
parameter. K is the kernel matrix with Kij = k(xi, xj).
It admits an analytical solution

α = (K + λI)
−1

Y. (14)

Most popular is the Gaussian (radial basis function) ker-
nel which allows to find a smooth non-linear model func-
tion in input space that corresponds to a linear function
in an infinite dimensional feature space[28].

For the ML-HK map, the canonical error is given by
the L2 distance between predicted and true densities

e(β) =

M∑
i=1

‖ni − nML[vi]‖L2
(15)

=

M∑
i=1

∥∥∥∥∥∥ni −
L∑
l=1

M∑
j=1

β
(l)
j k(vi, vj)φl

∥∥∥∥∥∥
L2

. (16)

The ML model coefficients β(l) can be optimized inde-
pendently for each basis coefficient l via

β(l) =
(
Kσ(l) + λ(l)I

)−1
u(l), l = 1, . . . , L. (17)

Cross-validation. Note that all model parameters
and hyper-parameters are estimated on the training set;
the hyper-parameter choice makes use of standard cross-
validation procedures (see Hansen et al. [12]). Once the
model is fixed after training, it is applied unchanged out-
of-sample.
Exact calculations. Relative energy errors of the

ML models trained on KS-DFT calculations are deter-
mined by comparing to accurate energies from the Mol-
pro Quantum Chemistry Software[51] using the Full Con-
figuration Interaction method for H2 and CCSD(T)[52]
for H2O.
Molecular Dynamics (MD). For benzene, ethane,

and malonaldehyde, GAFF parameters[41] were as-
signed using the AmberTools package[53]. Geometry
optimizations were performed using MP2/6-31g(d) in
Gaussian09[54]. Atomic charge assignments are from
RESP fits to HF/6-31g(d) calculations at optimized
geometries[55] and two additional rotational conformers
for ethane.

For the three larger molecules, classical isothermal MD
simulations were run using the PINY MD package[42]
with massive Nosé-Hoover chain (NHC) thermostats[56]
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Figure 6. The extent of the malonaldehyde conformers gener-
ated by all MD methods. a) The training set of 2,000 repre-
sentative conformers selected from the classical MD trajecto-
ries (red points) by K-means sampling. Test points from an
ab initio MD trajectory (green) and the independently gen-
erated MD trajectory using the ML-HK model (blue) sample
the same coordinate space (offset from the molecular plane for
clarity). b) A closer view of the region outlined with a dashed
box for the ab initio (green) and ML-HK (blue) trajectories.

for atomic degrees of freedom (length = 4, τ = 20 fs,
Suzuki-Yoshida order = 7, multiple time step = 4) and
a time step of 1 fs. The r-RESPA multiple time step
approach[57] was employed to compute rapidly varying
forces more frequently (torsions every 0.5 fs, bonds/bends
every 0.1 fs). Systems were equilibrated for 100 ps before
collecting snapshots every 100 fs from 1 ns trajectories.
Snapshots were aligned to a reference molecule prior to
DFT calculations for the ML model. For malonaldehyde,
the ML training set geometries were selected from tra-
jectories for both enol tautomers as the GAFF force field
does not permit changes in chemical bond environments.

For malonaldehyde, an additional Born-Oppenheimer
MD simulation using DFT was run using the QUICK-
STEP package[58] in CP2K v. 2.6.2[59]. The PBE
exchange-correlation functional[35] was used in the Gaus-
sian and plane wave (GPW) scheme[60] with DZVP-
MOLOPT-GTH (m-DZVP) basis sets[61] paired with the
appropriate dual-space GTH pseudopotentials[62] opti-

mized for the PBE functional[63]. Wave functions were
converged to 1E-7 Hartree using the orbital transforma-
tion method[64] on a multiple grid (n = 5) with a cutoff
of 900 Ry for the system in a cubic box (L = 20 bohr). A
temperature of 300 K was maintained using massive NHC
thermostats[56] (length = 4, τ = 10 fs, Suzuki-Yoshida
order = 7, multiple time step = 4) and a time step of
0.5 fs.

In order to generate the MD trajectory with the ML-
HK model, we used the Atomistic Simulation Environ-
ment (ASE) [65] with a 0.5 fs timestep and a tempera-
ture of 300 K maintained via a Langevin thermostat. A
thermostat friction value of 0.01 atomic units (0.413 fs−1)
was chosen to reproduce the fluctuations in C atoms ob-
served for the DFT-based trajectory (see ESI). In this
proof-of-concept work, atomic forces were calculated us-
ing central finite differences, with ε = 0.001 Å chosen
to conserve the total energy during the simulation. The
last 1 ps of a 4 ps trajectory was used to evaluate the
performance of the ML-HK model.
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