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Crystallinity effects on the surface optical response in metals: A preliminary calculation
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The beginning of a practical evaluation scheme for dynamic screening at the surface of a crystal-
line metal is developed. The derivation shows how band-structure effects on the d parameters may
be calculated. Simplified versions of the basic equations are evaluated for a model of the (110) face
of Li. Several features, absent from jellium models, are shown to make significant contributions.
The theory is still too approximate for direct comparisons with experiment, but indicates a feasible
path towards that goal ~

I. INTRODUCTION

For some time there has been a strong interest in and a
considerable effort expended on the surface optical
response of metals. Even a list of review articles on this
subject is rather long. ' " However, at least for metals at
the microscopic level of interest here, theoretical work
has almost exclusively been devoted to jellium models.
Such calculations can now be done with considerable so-
phistication and relative ease, but they all omit from the
outset any microscopic allowance for crystallinity effects.
This. kmitation has recently become a more pressing con-
cern due to the surge in experimental work' ' that can
be directly compared with theoretical predictions. Cer-
tainly a jellium model of Ag can only hope to be qualita-
tive, and even for the alkali metals or Al it is not obvious
that subtle differences in the treatment of many-body
effects have more quantitative importance than the in-
clusion of lattice scattering.

In this paper we begin the development of a theory
that will allow tractable estimates of the influence of band
structure on surface optical response. Our specific em-
phasis here will be on understanding the features that can
appear far (on the scale of screening lengths) from the
surface. In Figs. 1 and 2 we illustrate some of the
changes that occur in switching from a jellium to a crys-
talline substrate. The quantity plotted is the (specially
scaled) component of the electric field normal to the sur-
face as a function of depth into the sample. Such curves
summarize the mean-field linear response of the system to
a long-wavelength external perturbation at a fixed fre-
quency. In Fig. 1 the obvious new feature is the appear-
ance of periodic oscillations tied to the lattice constant.
These accompany any field that extends into the bulk and
are the "local-field" terms that one suppresses in macro-
scopic electrodynamics. '

In a different range of driving frequency additional os-
cillations with periods larger than the lattice constant can
appear in the asymptotic behavior. An example is shown
in Fig. 2 where the frequency lies within the band of
zone-boundary collective states. The existence of these
modes depends on the presence of gaps in the electronic
energy spectrum, hence on the deviations of the system
from a jellium model. Their influence on electron-

energy-loss spectra has been calculated before and
confirmed by experiment. Our theory shows how they
appear in the surface optical response.

In the rest of the paper we describe how these and fur-
ther calculations can be done. Section II contains the
basic derivation and introduces the several approxima-
tions necessary (at this stage) to obtain tractable formu-
las. Then in Sec. III we describe the model calculations
that we have done, illustrating various i&eoretical in-
gredients and consequences. Although. our present nu-
merical results only have a qualitative validity, this paper
should be a useful theoretical guide to more sophisticated
evaluations.

II. FORMALISM

In an abstract sense, the problem of the surface optical
response of a crystal has already been solved, in that
several general (and essentially equivalent) schemes have
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FICr. 1. For a model of the (110) face of crystalline Li sub-
jected to a perturbation at a frequency of

~
the free-electron

Fermi energy cF, we plot the function q from Eq. (32) vs dis-
tance into the substrate, with a the interplanar spacing along
the surface normal. The solid curves give the real and imagi-
nary parts of q, while the dotted curves are the corresponding
jellium results.
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24me
u qQ=

The physical interpretation of A, (Q) is that it represents
a refiection amplitude in the sense that for x (0 (in vacu-
um)

and

y(Q)=
4~e

(12)

A(Q)l, e~ =f dx'V, (x,x';Q)5p(x', Q)

e~ f dx'e ~" 5p(x', Q) .
0

(18)

V, (q, Q)=y, (Q)u(q Q» (13)

while the transform of the external potential energy
V, (x)=l",e ~" is Changing to a q integration and using Eqs. (11)—(14) in

Eq. (18) gives Eq. (17). Indeed we can write the potential
energy in vacuum as

where

r,
y, (Q)=

4~e
(14)

eiK x ' —Kx+yg(K+G)e K+G~x iG x '

G

(19)

Applying these results to Eq. (6) yields

5p(q, Q)= f dq'gyp(q, q', Q, K+G')
0 G'

X u(q', K+G')5p(q', K+G')

+g 5pp(q Q K+G )[5G p A(K+G )]

where

5pp(q Q Q') = f, dq'Xp(q q';Q Q')u(q' Q')y, (Q')

(16)

so the normal component of the displacement (or electric)
field is for x (0,

eD (x)=l, g e' +

G

X [5 e
—&x g(K+ G)e IK+GIx]

Comparing with Eq. (15) we see that a weighted sum of
the D„(x =O, K+G') acts as the driving term for 5p.
This leads us to write

5p(q, Q)=g[~(q;Q, K+G ) —5

and XD (x =O, K+6')/47re, (21)

A, (Q)= f dq u(q, Q)5p(q, Q) .
y, (Q)

(17) which when substituted in Eq. (15) gives an equation for
3 in which 5p0 does not appear:

QA(q;Q, K+G')D (x =O, K+G')
G'

=D„(x =O, Q)+ fdq'gyp(q, q';Q, K+G')u (q', K+G')g A (q', K+G', K+G")D (x =O, K+G") .
G'

This may be further simplified by defining

v(q, Q)= g A (q;Q, K+G')D„(x =O, K+G')/D (x =O, K),

Gl I

(23)

so (22) becomes

v(q, Q)=D (x =O, Q)/D„(x =O, K)+g f dq'yp(q, q';Q, K+G')u(q', K+G') (q', K+G') .
0

(24)

D (x =O, K+G)/D„(x =O, K)
= —2y(K+G) f dq u(q, K+G)v(q, K+G),

0
(26)

Working back through the algebra we have from (21)

4me5p(q, Q)=v(q, Q).D (x =O, K) D(x =O, Q) . —(25)

Combining Eqs. (17), (20), and (25) allows one to formally
solve for D„(x =O, Q) or A, (Q) in terms of v. These re-
sults can be used to reexpress the "driving" term in (24)
for G&0 as

which can be viewed as a modification of the effective g0..

Xp Ip 25G G (1 5G,p)y(K+G)

One next needs to find a reasonable yp and to solve (24)
for v(q, Q). To ease the computational effort we will
make severe approximations at both of these steps. Since
our emphasis is on d~, we drop all crystallinity effects in
X; i.e. the only deviation from the jellium model in the
bulk is a periodic variation in x. Momentum parallel to
the surface is then conserved through the screening pro-
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cess, so (24) simplifies to

v(q)=1+ f dq'yo(q, q')U(q')v(q'),
0

(27)

In the present notation this appears as

(1—1/ei )di = f dx [E,(x) —E,(x)]/D, (0),
where, as done earlier for the frequency ~, we have
suppressed all reference to the common parallel wave
vector K—+0. Equation (27) is identical in form to the
jellium result, cf. Eq. (24) in Ref. 32. The different
answers for the two models depend on differences in yo.

We remark that a much earlier paper on surface opti-
cal response also approximated the surface of a three-
dimensional crystal as a system with only one direction of
discrete translational symmetry. However, they were
only concerned with the surface-plasmon dispersion and
their direction of periodicity was parallel, rather than
perpendicular, to the surface plane.

B. Calculable quantities

To further emphasize the formal similarity with equa-
tions of the jellium model, we show how the function v
determines all the quantities of interest. Equation (25)
now appears as

4rre op( q) = [v(q) —1]D„(0), (28)

where D (0)=D (x =O, K—+0). Then inverting the
transform,

QO

4vreop(x) =D (0)—f dq cosqx [v(q) —1],
7T 0

(29)

which describes the distribution of screening charge den-
sity inside the metal. The left-hand side of (29) also ap-
pears in Poisson's equation

4irefip(x)=V E . (30)

Since the perturbation is long wavelength (and since we
have neglected transverse umklapp processes) we can re-
place V.E=BE„/B„and use (29) and (30) to find

E, (x)=E„(0)+4vre f dx '5p(x '
)

=D, (0)+D (0)—f dq [v(q) —1]
VT 0 g

=D (0)—f dq v(q) .
o q

(31)

To within normalization terms this result describes all
the curves shown in Figs. I and 2. Indeed the g plotted
there is given by

2 ~ sinqx v(q) —1
rI(x) =— dq

o q v(0) —1
(32)

which vanishes at x =0 and whose value, averaged over a
unit cell, tends to one deep in the bulk. It is an artifact of
the semiclassical infinite barrier model (SCIB) approxi-
mation introduced below that g has a nonzero derviative
at x =0+ (see Figs. 1, 2, and 8), which implies an unphys-
ical discontinuity in 5p there. The spatial distribution of
the near surface behavior of the response is not well de-
scribed by the SCIB, but this will be repaired by better
theories of v(q).

Finally we reduce the formal prescription of SC for d~.

where

E„(x)=6(x)E„(x)+6( x)—E, (x)

with

(33)

(34)

0, x & —a/2
e(x ) = . x /a + —,', —a /2 (x (a /2

1, a/2&x
(35)

and close (on the scale of transverse wavelengths) to the
surface
E„(x)=D (0), (36)

E~(x)= eo '(0,0)+2 g cos(ngox)eo '(n, O) D„(0) .
n)0

(37)
The system in bulk has a lattice constant along x equal to
a and we represent the corresponding reciprocal-lattice
"vectors" by g =ngo, where n is an integer and
go=2~/a. We assume that the Hamiltonian in bulk has
reAection symmetry about at least one point in the unit
cell and choose the origin for x at an integer multiple of a
away from such a symmetry point and far enough out in
vacuum so that no significant equilibrium or induced
charge density exists there. This latter choice makes
E„=E„ for x &0. The symmetric placement of the ori-
gin also simplifies the expansion of the bulk "reference
field" E . The e's that appear there are from the micro-
scopic dielectric function to be analyzed below. Their
only property that we need here is

eo '(0, 0)=1/ei ',
where ez ' is the macroscopic dielectric function for fields
along x. The subscript l is necessary in (38) because our
neglect of crystallinity effects in X has made the system
optically anisotropic.

We begin the simplification of (33) by expressing it as a
primary term plus a remainder:

(1 —1/e' ')d = f dx[E„(x) E(x)]/D —(0)+R
(39)

Substituting from (31) and (37) the explicit integral in (39)
becomes

f dx [E (x) E(x)]/D, (0)—
0

[v(q) —1/ei ]dq, (40)
0

where we have used the fact that the cosine terms in (37)
integrate to zero and have replaced J o dx with

2 f ~ sinqx 2 f ~ dq
0 7T 0 P 77 0 q

The result (40) is meaningful if (q v~0)~/ Ie, iwhich
we will show later is true. The remainder term may be
written as
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RD„(0)=f dx [6( x—)E (x)—6( x—)E (x)+ [6(x)—6(x)]E„(x)I—a/2

dx 0 —x —6 —x D 0+ Ox —ex E x—a/2
= f dx [[6(x)—6(x)][E (x) —D (0)]],—a/2

(41)

where 6(x)=Lt, pB(x). The field difference in the last
line has both constant and fluctuating parts, but when
multiplied by the difference of 8 functions all parts in-
tegrate to zero. Hence the remainder term vanishes so

(1 —1/e', ')d, =—f, [v(q) —1/e,' '],
0 q

(42)

identical in form to the jellium result. Our derivation of
(42) used a specific choice of origin, but in fact the func-
tional form of (42) is independent of that choice. The
function v(q) changes in a complicated way when the ori-
gin is translated by b, but as SC showed d~ merely shifts
to d~ —b.

As a slight digression we note here for completeness
the form of d~~ for our present model which only has crys-
tallinity effects along the surface normal. The response to
electric fields parallel to the surface is given by (local)
free-electron formulas so d~j is easily found. From SC the
analog of (33) is

(1 —
EI~ ')d~~ = f dx [D~~(x) —D~~ (x)]/E~~(0), (43)

which reduces to the frequency-independent real-valued
result

where

q =k +g, q'=k'+g', (47)

with 0(k, k'(g0 and g =ng0, g'=n'g0 with n and n'
non-negative integers. The yp ii(q, q') are Fourier trans-
forms of the bulk susceptibility:

yp ii(k +ng p, k +n'gp)

yk(n, n')—= —f dx f dx'e

i ( k + n'go)x'
Xgp ~(x x )e

garded as allowing only qualitative insights. ' Our
opinion is that any complete theory must evaluate both
types of contribution to g0, but one must start somewhere
tractable.

The appearance of the singular terms is more involved
in the presence of crystallinity effects than for jellium,
since wave vectors are only conserved to within multiples
of g0 =2~/a. We claim that y0 separates into

Xp(q, q') =Xp,~(q, q'»(k —k')

+yp ii(q, —q')6lk +k' —gp)+gp(q, q'), (46)

d~~~~

= f dx[6(x)np g(x) np(x)]/np ii (44) (48)

where np(x) is the equilibrium density, n p ii(x) describes
its variation in an infinite "crystal, " and n0 & is the aver-
age of np ii(x) over a unit cell. The macroscopic dielec-
tric function for fields parallel to the surface is

4~n0 ze
(45)

and similar equations relate the D~~'s in (43) to E~~, which
is nearly constant. An evaluation of (44) requires only
the ground-state density profile, but represents merely a
slight improvement over a full jellium model for which
n0 z is constant.

C. Integral equation solution

Having shown via Eqs. (29), (31), (32), and (42) the util-
ity of the function v(q) we consider next its evaluation
from (27). Again a drastic (but improvable) approxima-
tion will simplify the initial estimate. The susceptibility
yp(q, q') has both smooth and singular contributions,
with the latter coming solely from the bulk response of
the system. Our approximation is to keep only the singu-
lar terms, which has an uncontrolled effect on the surface
contributions. In a jellium calculation such an approxi-
mation yields the so-called semiclassical infinite barrier
model, which has often been used but is now generally re-

where

equi(q)
= 1 —

yp ii(q, q')v (q) (50)

is (in the RPA) the Lindhard bulk dielectric function.
We used (49) and (50) to determine the jellium curves in

Figs. 1 and 2.
The SCIB solution for v when one keeps (one-

dimensional) crystallinity effects is more involved. It is
helpful to define a symmetrized bulk dielectric function
matrix as

5(k —k')equi(q, q')

—= ek (n, n ')6(k —k')

=5(k —k')[5„„.—u'~ (q)yp i, (q, q')U'~z(q')],

where

i yz (4vre )
'~

k +ng0

(51)

(52)

and the y0 function contains the nonsingular contribu-
tions that we ignore here. For a jellium model the g's
would not appear, which would remove the second singu-
lar term and make the first diagonal in the total wave
vector, rather than diagonal only in the reduced wave
vector. In this limit the SCIB solution for v is trivial:

v'""," (q)=1/e (q),
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Then the combination of Eqs. (27) and (46) can be written
as

with n and n' integers. The SCIB solution then appears
as

f dk'[u '~ (q)Ek(n, n')u'~ (q')5(k —k')
n')0 vsciB( lq I )=&Bk '(n, n')

n'
(62)

+u ' (q)Ek(n, n—' —1)

Xu' (q')6(k+k' —go)]v(q')

=1+f dqgo(q, q)u(q)v(q) . (53)

We can make the second term on the left-hand side of
(53) look like the first by some notational manipulation.
After the integration over k', replace in the second term
n' with —m —1:

g u
' '(q)Eii(q, —(go —k+n'go))

n') 0

X u
'

( —(go —k+ n 'go ) )v(go —k + n 'go )

u '~(q)E~(q, k+mgo)
m(0

Xu'~'(k+mgo)v( —(k+mgo)) . (54)

Then (53) becomes

gu ' (q)Ek(n, n')u' (q')v( q'l)
n'

=1+f dq fo(q, q)u(q)v(q) (55)

where now q'=k +n'go and the suII1 on n' runs over all
integers. To make the left-hand side of (55) appear as a
multiplication by a square matrix, consider the changes
in (55) under the replacement k~go —k. At the same
time let n~ —m —1 with m (0 and n'~ —m' —1 with
m ' unrestricted. Then

q ~(go —k) —(m + 1)go = —(k + mgo) = lk + mgo l

and the same matrix inverse would be needed for the gen-
eral solution of (60).

D. Subtraction terms

As we show in Sec. III, the matrix in (61) is readily cal-
culated. However, its inverse can fail to exist at particu-
lar values of q. Since our formulas for, say, g and d~, re-
quire integrals over q, these singular points cause numeri-
cal difhculties. We shall treat them by the same methods
used above the bulk plasmon threshold in jellium where
the E~(q) of (50) has a single zero. ' This involves sub-
tracting from the exact B k

' functions which reproduce
its pole structure, but which are analytically tractable.
Our symmetrized definition of ek is especially useful in
this task since it leads to

BI, '(n, n')=u '~ (q)Ek '(n, n')u'~2(q') (63)

Bk '(n, n ')=, Eii '(q, q')
q'

in which the two sorts of poles that occur do so in
separate factors, either u'~ (q') or El, '(n, n'). We treat
these in turn.

The singularities due to u' (q') are easy to locate and
are always present. Since q =k+ngo and q'=k+n'go
we have when q'~0 that q~(n —n')go. Hence near
these singularities

and

(56)
(n —n')go

Ez '((n —n')go, O) .
q

—n n' go— (64)

(g, —k) —(m'+ l)g, = —(k +m'g. ) . (57) Summing over n ', as required by (62), we define

Our assumption of an inversion symmetry in the bulk
provides the relation

u
'~ (q)Ei, (q, q')u'~ (q')

(n —n')go
v"'(q) =g, E~ '((n n')go, O—)

q
—n n' go—

=u '~
( —q)Eii( —q, —q')u' ( —q') .

Combining all these changes, (55) becomes

g u
' (q)Ek(m, m')u'~ (q')v(lq' )

m'

(58) E~ '(g, O)
~0) q g

Eo '(n, O),2

g)0 q g
(65)

=1+ dqyo q, q U q vq (59)

where the square matrix Bi, (n, n') is defined by

Bk(n, n')=u '~ (q)Ek(n, n')u' (q'), (61)

where now q =k +mgo, q' =k +m 'go, and m is a nega-
tive integer. Together (55) and (59) imply that

g Bk(n, n')v(lq'l) =1+f dq go(lql, q )u(q )v(q ), (60)
n'

where the last step follows from the symmetry
Eii (g, O)=Eii ( —g, O). We refer to the singular struc-
tures in (64) and (65) as zone-boundary singularities.
They are responsible for the local-field oscillations evi-
dent in both Figs. 1 and 2. Their periods are independent
of frequency and of the form a/n with n an integer, but
their amplitudes depend on co since the Eo (n 0) do.
When we need to integrate over q, the singular structures
in (65) are treated as requiring principal value integrals.
To illustrate we obtain for
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g'"(x)= —$ dq""q v"'(q)
(m) q

v' '(q) =R Q g N/, (m, m ')
m, m'

l

q
—(ko+ mgo )

and for

= I dx' —y dq cosqx'v'"(q)
o

=2 g eo '(n, O)(cosngox —1)
n)o

(66)

where

l

q + (ko+ mgo)

2(ko+mgo)=Rog Mk(m),q' —(ko+mgo)
(73)

M/, (m)=yN/, (m, m') .
m'

(74)

k —ko
det(ek)= +O(k —ko)

Ro
(68)

then the values of ko and Ro must be found numerically.
The functional relation between ko and co defines the
dispersion relation of these so-called zone-boundary col-
lective states (ZBCS's). ' Since they are excitations
of the bulk, (68) also implies that

= g eo '(n, O)—f- =0 . (67)
00

q
2

g
2

The standing-wave form of the fluctuating structure in
(66) is what we expected to obtain, but (67) shows that its
presence has no direct effect on d~.

The other singularities in (63) arise from the diver-
gences of Vk '(n, n'), more specifically from the zeros of
det(e k ). Hence their location only depends on k, not on
n or n'. If we write

To make the subtraction function (73) appear similar to
that in the jellium model we further define

2RQMk (m)

(1/ei ' —1)(ko+mgo)
(75)

so

y (ko+mgo)v"'( )=(1/eI ' —1)g
q

2 —(ko+ mgo )
(76)

il' '(x)= —J dq v' '(q)
o q

(77)

The singularities here are treated in integrals by replacing
ko —+ko+i0+ to represent the creation of a ZBCS propa-
gating away from the surface. This yields for

k —(go —ko)
det(ek ) = +O(k —(go —ko))

( —RQ)

the simple result
(69)

i.e., the poles always appear in "conjugate" pairs. To ap-

proximate B k near them we recall that the inverse of a
matrix can be expressed as

gI '(x)=gy (e ' ' —1),

and for

(78)

B„'(n,n') =N(q, q')/det(B„), (70)

where Nk is the classical adjoint matrix. Then for k
near ko or go

—ko

d/2) — f q Lv/2/(q) v/2)(0) j

N„(l, n')

+lo o
N k (l, n')

q
—(go —ko+ lgo )

(71)

the finite contribution

(2)
'Y

~ i (ko+mgo)

(79)

(80)

Since N/, has the same symmetries as Bk, see (58),

„(l,n') =N(gQ —kQ+lgQ, gQ
—ko+n'go)

=N(k, +mg„k, +m g, )=N„(m, m ),
(72)

where m = —(l +1) and m'= —(n'+1). Then if we sum
(71) over n

' to define v' '(q), it can be reduced to

To complete the evaluation of g and d~ for the SCIB ap-
proximation is now a well-defined numerical task. One
writes

vsciB(q) =v(q)+ v" '(q)+ v' '(q),
where v is determined by substituting from (62), (65), and
(76). By construction, v(q) has no singular structures.
This makes all required integrals well behaved if we note
the following limiting values. As q —+~, v"' and v' '

vanish while vsc&z and v tend to l. As q ~0,
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vscIB(q) =X, ~k
q

—n n—' go

—+g, ek (0 n')k
k +n'go

=eo '(0, 0)+O(q )

(m) (82)

v"'(q ~0)~(1—1/eI™)g y +O(q') . (84)

From (82) —(84) the limiting behavior of v immediately
follows. To make contact with jellium results define

S(q)=v(q) —1 —2 g eo '(n, O) .
n&0

Then

(85)

7m
&k, + g,

2
y

dq 1+~ S(q)
1 y&(m)

(86)

where

S(q~0) = — 1— 1 1++y +O(q ), (87)

which compares directly with Eq. (21) in Ref. 34.
To end this section we remark that we have formulated

the subtractions from B k
' so the results would still apply

if go were retained. The same general scheme could also
be used when three-dimensional lattice structure is al-
lowed.

The identification in the last line of (82) is the appropriate
version for our anisotropic system of the well-known con-
nection between microscopic and macroscopic e's. "'

For us it ensures that the integral (42) for di is conver-
gent. The limiting values of the v" are

v'"(q~O)~ —2 g eo '(n, O)+ O(q ),
n &0

band model used by Sturm and Oliveira. Although both
models allow just one Fourier component in V(x), our
band structure is explicitly periodic in an extended zone
scheme. This is necessary since we eventually need in-
tegrals over q of the response function. For the same
reason we also keep all local-field effects. Finally, we note
that although we are using a pseudopotential for the lat-
tice scattering, we do not try to correct for the difference
between pseudocharge densities and true charge densities.

A picture of the (one-dimensional) band structure is
shown in Fig. 3. The first Brillouin zone has been chosen
so the reduced wave vector remains positive, as is ap-
propriate for the cosine Fourier transforms of our formal-
ism. The Fermi energy is determined by requiring that
the average bulk density be given by 3/(4irr, ao); its
value is cF =4.04 eV, slightly smaller than the jellium re-
sult v+=4. 33 eV. The Fermi wave vector p~=1.20 A
is larger than pF, but a bit smaller than go/2= 1.27 A

The bulk susceptibility defined in (48) is calculated
from

~ =2 fpl, P fp
' I ', P

P e, +fico e I
+—IO

X QADI(x)P, I.(x)Q*,I,(x ')P I (x '),
(89)

where p and p' label wave vectors in the first zone, I and
l' are band indices, P is the common wave vector parallel
to the surface, and the overall factor of 2 is for spin. The
f's are Fermi occupation factors and will be evaluated at
zero temperature. Their argument is the total energy of
an electron state, whereas only the difference of "normal"
energies survives in the denominator. The wave func-
tions are also one dimensional (Bloch waves). The plane
wave variation in X has been Fourier transformed away.

In Fig. 4 we compare the continua of single-particle
bulk excitations for our band-structure model and its jel-

III. MODEL CALCULATION

To illustrate the formalism we now describe a pseudo-
potential evaluation of the basic formulas. The parame-
ters are chosen to model the (110) face of Li since this
system has relatively strong lattice scattering and shows
significant deviations from jellium predictions. The lat-
tice constant along the surface normal is a =2.48 A so
go =2m /a =2. 54 A '. With one conduction electron
per atom the jellium r, =3.26ao, where ao is the Bohr ra-
dius. The lattice potential energy is described by a single
Fourier component pseudopotential

V(x) =2 Vocos(gox ) (88)

whose strength is Vo=1.44 eV. This choice, plus the as-
sumption of an isotropic effective mass I */m =1.09, al-
lows a reasonable representation of the band dispersion at
low energy in the (110) direction. ' ' ' Our treatment
is similar in spirit, but different in detail, from the two-

0—
I I I I I I I I I I I I I

0.0 0.2 0.4 0.6
p/g.

O. B 1.0

FIG. 3. Band structure along the (110) direction in Li. The
solid curves give the electron energy E~ vs (reduced) wave vector
p. The dashed horizontal line is the Fermi level.
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hoc parameter. The appearance of the field when the
damped plasmon is present is shown in Fig. 8, which like
Figs. 1 and 2 is determined from (32) with v replaced by
v+v'"+v' '. The plasmon oscillation is evident, but it
decays as one moves into the bulk. In Fourier space
there is a (rounded) polelike structure in the e &

' versus k
curves which we can handle numerically without subtrac-

tions. However, the neglect of zone planes other than
(110) is a serious omission in this higher-frequency
range. '

To sum up, we would describe our results as a promis-
ing beginning on a difFicult problem. The derivation in
Sec. II has shown how to reduce a formal prescription
to a practical evaluation scheme. Several severe approxi-
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0.0 0.2 0.4 0.6 0.8 1.0
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0.0 0.2 0.4 0.6 0.8 1.0
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0

—2
0.0

I I I I I I I I I I

0.2 0.4 0.6
q/g.

1.0

FICx. 6. Comparison of microscopic dielectric functions. In each panel both the real and imaginary (bottom and top) parts of
ez(0, 0) are plotted for both the band-structure and jellium (solid and dashed) models. The fixed frequency is (a) 0.5c+, (b) 0.9m+, and
(c) 2.0cF. The singularities that go off scale are inverse square-root divergences.
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FIG. 8. Same as Fig. 1 except the frequency of the external
perturbation is here 2.0c„. The local-field oscillations, which in
contrast to Fig. 1 are now more evident in the imaginary part of
g, still have period a.

1

f1&/ep

FIG. 7. Comparison of d~ for the band-structure (open
squares) and jellium (solid line) models. The real and imaginary
parts of d, are plotted separately. The solid squares give the
direct contribution (80) of the ZBCS over the frequency range
where it exists as an undamped mode.

mations were made in this first effort, but there appears
to be no fundamental impediment to their removal. We
can envision the retention of yo, starting first with an
infinite barrier model and then progressing to finite and
self-consistently determined barriers. Also, an analysis
that accounts for crystallinity effects in three dimensions
should be a feasible, but considerable challenge. One can
go beyond a RPA description of many-body effects too,
incorporating, say, a time-dependent local-density-
functional scheme. Our confidence in the possibility of
this succession of improvements rests on the facts that a
similar path was followed for the jellium models' " and
that the formal developments here show that crystallinity

effects do not change the basic structure of the theory.
The awareness of this possibility plus the existence of
relevant experimental data' ' will hopefully lead to
steady improvements. Although the present numerical
results cannot be directly compared with experiment,
they do give first measures of the existence and impor-
tance of effects totally absent in jellium models. Their
evaluation has also provided a calculational basis onto
which one can build systematic refinements. We look
forward to this continuing progress.
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