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Crystallinity effects on the surface optical response in metals: A preliminary calculation
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The beginning of a practical evaluation scheme for dynamic screening at the surface of a crystal-
line metal is developed. The derivation shows how band-structure effects on the d parameters may
be calculated. Simplified versions of the basic equations are evaluated for a model of the (110) face
of Li. Several features, absent from jellium models, are shown to make significant contributions.
The theory is still too approximate for direct comparisons with experiment, but indicates a feasible

path towards that goal.

I. INTRODUCTION

For some time there has been a strong interest in and a
considerable effort expended on the surface optical
response of metals. Even a list of review articles on this
subject is rather long.! "!! However, at least for metals at
the microscopic level of interest here, theoretical work
has almost exclusively been devoted to jellium models.
Such calculations can now be done with considerable so-
phistication and relative ease,!? but they all omit from the
outset any microscopic allowance for crystallinity effects.
This limitation has recently become a more pressing con-
cern: due to the surge in experimental work!3~!® that can
be directly compared with theoretical predictions. Cer-
tainly a jellium model of Ag can only hope to be qualita-
tive, and even for the alkali metals or Al it is not obvious
that subtle differences in the treatment of many-body
effects have more quantitative importance than the in-
clusion of lattice scattering.

In this paper we begin the development of a theory
that will allow tractable estimates of the influence of band
structure on surface optical response. Our specific em-
phasis here will be on understanding the features that can
appear far (on the scale of screening lengths) from the
surface. In Figs. 1 and 2 we illustrate some of the
changes that occur in switching from a jellium to a crys-
talline substrate. The quantity plotted is the (specially
scaled) component of the electric field normal to the sur-
face as a function of depth into the sample. Such curves
summarize the mean-field linear response of the system to
a long-wavelength external perturbation at a fixed fre-
quency. In Fig. 1 the obvious new feature is the appear-
ance of periodic oscillations tied to the lattice constant.
These accompany any field that extends into the bulk and
are the ‘““local-field” terms that one suppresses in macro-
scopic electrodynamics.!®

In a different range of driving frequency additional os-
cillations with periods larger than the lattice constant can
appear in the asymptotic behavior. An example is shown
in Fig. 2 where the frequency lies within the band of
zone-boundary collective states. The existence of these
modes depends on the presence of gaps in the electronic
energy spectrum, hence on the deviations of the system
from a jellium model. Their influence on electron-
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energy-loss spectra has been calculated before?°~2? and

confirmed by experiment. Our theory shows how they
appear in the surface optical response.

In the rest of the paper we describe how these and fur-
ther calculations can be done. Section II contains the
basic derivation and introduces the several approxima-
tions necessary (at this stage) to obtain tractable formu-
las. Then in Sec. IIT we describe the model calculations
that we have done, illustrating various theoretical in-
gredients and consequences. Although our present nu-
merical results only have a qualitative valfidity, this paper
should be a useful theoretical guide to more sophisticated
evaluations.

II. FORMALISM

In an abstract sense, the problem of the surface optical
response of a crystal has already been solved, in that
several general (and essentially equivalent) schemes have
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FIG. 1. For a model of the (110) face of crystalline Li sub-
jected to a perturbation at a frequency of % the free-electron
Fermi energy €%, we plot the function 5 from Eq. (32) vs dis-
tance into the substrate, with a the interplanar spacing along
the surface normal. The solid curves give the real and imagi-
nary parts of 7, while the dotted curves are the corresponding
jellium results.
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FIG. 2. Same as Fig. 1 except the frequency of the external
perturbation is now 0.9e}. The two dominant periods in the os-
cillations are close to 5a and 5a /4 and both are associated with
the zone boundary collective state.

been derived.?>”2® However, there have been few at-

tempts to convert these formal theories into practical re-
sults. Most of the numerical work has focused on semi-
conductors or insulators (see Refs. 29-31 for recent ex-
amples) and usually the analysis does not consider p-
polarized light. In metals it is this case, or more precisely
the response to a normal electric field, that has been of
primary interest. So in the language of d-parameter
theory, it is d, rather than d, that we wish (initially) to
study. This limited scope has the advantage that one
only needs to consider (scalar) density and not (vector)
current response. It has the numerical challenge that its
evaluation requires the solution of an integral equation.
Our goal is to translate the formal recipes in Ref. 28
(hereafter called SC) into modest changes in the jellium

codes of Kempa and Schaich.3? 34

A. Basic integral equation

We begin with a generalization of the density response
theory in Ref. 32. One seeks the electron density 8p(x,?)

8p(x,Q)= [dx’ 3 xo(x,x";Q.K+G’)
<

where
XO(x,x';Q,Q')z—/l-ffdzxfd2X'e*"Q‘Xxo(x,x')e"Q"x’ )
7

In a jellium model, the integrals in Eq. (7) would repro-
duce a factor of 6(Q—Q’), which in turn would remove
the sum on G’ in Eq. (6) and replace Q and K+ G’ with
K.

Our method of solving Eq. (6) is based on taking cosine
Fourier transforms of the x dependence according to the
definitions>?

e K¥8g ot f dx"
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induced at first order by an external potential energy of
the form

VeXt(x’t):Fee~Kxei(K~X—a.)t) , (1)
where the three-dimensional vector x has been separated
into a component x along the normal to the surface plane
and a two-dimensional projection X into the surface
plane. The material lies to the right of x =0 and the
two-dimensional wave vector K (of magnitude K) will
eventually be set to zero. Since all quantities will be at
frequency w, we stop writing factors of e @ and leave
the dependence on o implicit.

The density response is found within the time-
dependent Hartree approximation [or random-phase ap-
proximation (RPA)] by writing

8p(x)= [ dx "X X, X ) Vg (X )+ Vg (x)] 2)

where the induced potential energy is
Vina(x)= f d’x

In (2), x, is the independent-particle susceptibility. For
our description of a simple crystalline surface the system
has a discrete translational symmetry in X and, once one
is several lattice constants into the material, also a
discrete translational symmetry in x. The reciprocal lat-
tice of the bulk is described by the vectors g=(g,G) and
we assume the projections of g along or normal to X, the
surface normal, can be independently varied. The global
translational symmetry in X implies that the perturbation
at K produces a response at all Q given by

Q=K+G . (4)

Sp(x') . (3)
—xl

Using this property of y, plus the (two-dimensional)
Fourier transform of the Coulomb potential,

ﬁ:_l_ S %erMeiQX , (5)

where A4 is the total surface area, we obtain for the
Fourier transform of the X dependence of 5p

_2me? ko I8p(x", K+G") (6)
K+G|°
[
=f0mdx cosgxS(x) , (8)
T(q,q’)=£fwdx cosqxfwdx’cos 'x'T(x,x") 9)
Y0 0 9 R
The transform of the Coulomb potential energy
V. (x,x";Q0)=(2me2/Q)e 2 —x jg
Vc(q’ ’Q)_U q’Q)S q— q Q)U q)Q U(q ’Q
(10)

where
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2

4re
v(g,Q)=——= (11)
q*+Q’
and
Q/m
== (12)
Q) 47re?

while the transform of the external potential energy
V,(x)=T,e %is

Ve(q,Q)=v.(Q(q,Q), (13)
where
or,
= . (14)
7(Q 4ge?

Applying these results to Eq. (6) yields
8p(q,Q)=fomdq'2‘,)(0(t1,q’;Q,K+G’)
&
xv(g', K+G")8p(q', K+G’')
+3 8p0(¢,Q,K+G")[6g o—MK+G')],
Pt

(15)
where
8000, Q. Q)= [ “da'xo(4:4,Q.Q (4", Q)7 (Q)
(16)

and

_7Q) e ;
MQ=-"5 J " dqv(4,Q)8p(4,Q) . (17)

3 4(¢;Q,K+G')D,(x =0,K+G’)
G’ .
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The physical interpretation of A(Q) is that it represents
a reflection amplitude in the sense that for x <O (in vacu-
um)

MQ)T e %= fowdx’VC(x,x';Q)Sp(x’,Q)

2 o0 ’
=3£Q€—eQXfo dx'e " %'8p(x,Q) . (18)
Changing to a g integration and using Egs. (11)-(14) in
Eq. (18) gives Eq. (17). Indeed we can write the potential
energy in vacuum as

e®(x)=T,e®X (e KX+ UK + G )e K ClxgiGX
G

(19)

so the normal component of the displacement (or electric)
field is for x <O,

eD, (x)=T, 3 /Xt X|K +G]|
G
X[8g.0e F*—MK+G)e®TC*] . (20)
Comparing with Eq. (15) we see that a weighted sum of

the D, (x =0,K+G’) acts as the driving term for p.
This leads us to write

8p(q,Q)=3F[4(q;QK+G")— g ]
<

XD, (x =0,K+G’)/4re , 21

which when substituted in Eq. (15) gives an equation for
A in which 8p, does not appear:

=D, (x =0,Q)+ [dg’Sx¢(4.9;QK+G" (¢, K+G)3 A(¢;K+G",K+G")D,(x =0,K+G") . (22)
G’ G"

This may be further simplified by defining

vq,Q)=3 4(q;Q,K+G")D,(x =0,K+G")/D,(x =0,K) , (23)
G

so (22) becomes

v(g,Q)=D,(x =0,Q)/D,(x =0,K)+ 3 fowdq’)(o(q,q';Q,K+G’)v(q’,K+G’)v(q’,K+G’) . (24)
<

Working back through the algebra we have from (21)
4medp(q,Q)=v(q,Q)D,(x =0,K)—D,(x =0,Q) . (25)

Combining Egs. (17), (20), and (25) allows one to formally
solve for D, (x =0,Q) or A(Q) in terms of v. These re-

sults can be used to reexpress the ‘“driving” term in (24)
for G0 as

D,(x =0,K+G)/D,(x =0,K)
:—2y(K+G)fO°°dqu(q,K+G)v(q,K+G) ,  (26)

[

which can be viewed as a modification of the effective x:
Xo—Xo~286,6:(1—86,0)7(K+G) .

One next needs to find a reasonable Y, and to solve (24)
for v(q,Q). To ease the computational effort we will
make severe approximations at both of these steps. Since
our emphasis is on d, we drop all crystallinity effects in
X; i.e. the only deviation from the jellium model in the
bulk is a periodic variation in x. Momentum parallel to
the surface is then conserved through the screening pro-
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cess, so (24) simplifies to
( =1+ f dq XQ( q,q

where, as done earlier for the frequency w, we have
suppressed all reference to the common parallel wave
vector K—0. Equation (27) is identical in form to the
jellium result, cf. Eq. (24) in Ref. 32. The different
answers for the two models depend on differences in X,

We remark that a much earlier paper on surface opti-
cal response® also approximated the surface of a three-
dimensional crystal as a system with only one direction of
discrete translational symmetry. However, they were
only concerned with the surface-plasmon dispersion and
their direction of periodicity was parallel, rather than
perpendicular, to the surface plane.

v(g'iq’), 27

B. Calculable quantities

To further emphasize the formal similarity with equa-
tions of the jellium model, we show how the function v
determines all the quantities of interest. Equation (25)
now appears as

4medp(q)=[v(q)—1]D,(0) , (28)
where D (0)=D,(x =0,K—0). Then inverting the
transform,

- 2 (- _

4medp(x)= (O)v-rfo dq cosgx[v(q)—1], (29)

which describes the distribution of screening charge den-
sity inside the metal. The left-hand side of (29) also ap-

pears in Poisson’s equation
4medp(x)=V-E . (30)

Since the perturbation is long wavelength (and since we
have neglected transverse umklapp processes) we can re-
place V-E=QJE, /9, and use (29) and (30) to find

E.(x)=E_(0 +4Tref dx'8p(x’)
J7 quMq)_l]

f°° qux 9. (31)

To within normalization terms this result describes all
the curves shown in Figs. 1 and 2. Indeed the 5 plotted
there is given by

=Dx(0)+Dx(0)-~

f “d s1nqx (32)

v(0)—1

vg)—1 J

which vanishes at x =0 and whose value, averaged over a
unit cell, tends to one deep in the bulk. It is an artifact of
the semiclassical infinite barrier model (SCIB) approxi-
mation introduced below that 7 has a nonzero derviative
at x =07 (see Figs. 1, 2, and 8), which implies an unphys-
ical discontinuity in 8p there. The spatial distribution of
the near surface behavior of the response is not well de-
scribed by the SCIB, but this will be repaired by better
theories of v(q).3°

Finally we reduce the formal prescription of SC for d .
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In the present notation this appears as

(1—1/emd, = [ 7 dx[E (x)—EXx)]/D,(0) ,
(33)
where
EXx)=O(x)E (x)+6(—x)E (x) (34)
with
0, x<—a/2
O(x)=Ix/a+1L, —a/2<x<a/2 (35)
1, a/2<x

and close (on the scale of transverse wavelengths) to the
surface

ES(x)=D,(0), (36)

5 10,00+2 S cos(ngyx ey '(n,0) | D,(0) .

n>0

E>(x)=

(37)
The system in bulk has a lattice constant along X equal to
a and we represent the corresponding reciprocal-lattice
“vectors” by g =ng,, where n is an integer and
go=2m/a. We assume that the Hamiltonian in bulk has
reflection symmetry about at least one point in the unit
cell and choose the origin for x at an integer multiple of a
away from such a symmetry point and far enough out in
vacuum so that no significant equilibrium or induced
charge density exists there. This latter choice makes
E,=~E. for x <0. The symmetric placement of the ori-
gin also simplifies the expansion of the bulk “reference
field” E. . The €’s that appear there are from the micro-
scopic dielectric function to be analyzed below. Their
only property that we need here is

0 10,0)=1/€&m | (38)

(m

where €\™ is the macroscopic dielectric function for fields
along X. The subscript 1 is necessary in (38) because our
neglect of crystallinity effects in X has made the system
optically anisotropic.

We begin the simplification of (33) by expressing it as a

primary term plus a remainder:
(l—l/e‘l'"))dl=fomdx[Ex(x)— > (x)]/D,(0)+R .

(39)

Substituting from (31) and (37) the explicit integral in (39)
becomes

fowdx[Ex(x)—E;(x)]/Dx(O)

“ 4 q)—1/€"]
== -——, (40)
f q°

where we have used the fact that the cosine terms in (37)
integrate to zero and have replaced f o dx with

fw f dg squ fwdq ‘
0

The result (40) is meamngful if v(q —>0)—>/e("’), which
we will show later is true. The remainder term may be
written as
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RD,(0)= [*” dx{6(—x)E(x)—B(—x)E(x)+[O

:fj/z/zdx{[e(—x)—é(—x)]Dx(o)

where ©(x)=Lt, O(x). The field difference in the last
line has both constant and fluctuating parts, but when
multiplied by the difference of © functions all parts in-
tegrate to zero. Hence the remainder term vanishes so

(1—1/€m™) f°° gy —1/6m], (42)
identical in form to the Jelllum result. Our derivation of
(42) used a specific choice of origin, but in fact the func-
tional form of (42) is independent of that choice.’® The
function v(gq) changes in a complicated way when the ori-
gin is translated by b, but as SC showed d; merely shifts
tod, —b.

As a slight digression we note here for completeness
the form of d, for our present model which only has crys-
tallinity effects along the surface normal. The response to
electric fields parallel to the surface is given by (local)
free-electron formulas so d is easily found. From SC the
analog of (33) is

(1—€™)d = f_wwdx[D

which reduces to the frequency-independent real-valued
result

d= f ax[o
where ny(x) is the equilibrium density, ng z(x) describes
its variation in an infinite “crystal,” and 7, 5 is the aver-
age of ny p(x) over a unit cell. The macroscopic dielec-
tric function for fields parallel to the surface is

D} (x)]/E(0) , (43)

O(x)ng g(x)—no(x)]/Ay 5 , (44)

47Tﬁo Be2

er=1——7"—, (45)
mao

and similar equations relate the D’s in (43) to E;, which
is nearly constant. An evaluation of (44) requires only
the ground-state density profile, but represents merely a
slight improvement over a full jellium model for which
n, p is constant.

C. Integral equation solution

Having shown via Egs. (29), (31), (32), and (42) the util-
ity of the function v(q) we consider next its evaluation
from (27). Again a drastic (but improvable) approxima-
tion will simplify the initial estimate. The susceptibility
Xo(g,q') has both smooth and singular contributions,
with the latter coming solely from the bulk response of
the system. Our approximation is to keep only the singu-
lar terms, which has an uncontrolled effect on the surface
contributions. In a jellium calculation such an approxi-
mation yields the so-called semiclassical infinite barrier
model, which has often been used but is now generally re-

+[O(x)—
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(x)—O6(x)]E; (x)}
O(x)]E; (x)}

(41)
[
garded as allowing only qualitative insights.!”® Our

opinion is that any complete theory must evaluate both
types of contribution to Y,, but one must start somewhere
tractable.

The appearance of the singular terms is more involved
in the presence of crystallinity effects than for jellium,
since wave vectors are only conserved to within multiples
of go=2m/a. We claim that Y, separates into>®

Xo'9,9")=Xo,8(q,9")8(k —k’)
+Xo,5(q, —q")0(k +k'—go)+Xo(q,q") , (46)
where
q=k+g, q'=k'+g’, 47)

with 0<k, k'<g, and g =ng,, g’ =n'g, with n and n’
non-negative integers. The X, p(g,q’') are Fourier trans-
forms of the bulk susceptibility:

Xo,5(k +ngo,k +n'gg)

—i(k +ngy)x

zxk(n,n')Z%foadx fﬁwwdx’e

ilk+n'gy)x’
X Xo,p(x,x")e o,

(48)

and the Y, function contains the nonsingular contribu-
tions that we ignore here. For a jellium model the g’s
would not appear, which would remove the second singu-
lar term and make the first diagonal in the total wave
vector, rather than diagonal only in the reduced wave
vector. In this limit the SCIB solution for v is trivial:

vislium( oy =1/e,(q) , (49)
where
€p(q)=1—x, 5(q,9" v (q) (50)

is (in the RPA) the Lindhard bulk dielectric function.
We used (49) and (50) to determine the jellium curves in
Figs. 1 and 2.

The SCIB solution for v when one keeps (one-
dimensional) crystallinity effects is more involved. It is
helpful to define a symmetrized bulk dielectric function
matrix as

8k —k')ep(q,q")

=€, (n,n")8(k —k')

=38(k —k')[Sn’n:*vl/z(q)Xo,B(q,q')vl/z(q')} , (81
where

12 _ (477,32)1/2
v 4(q) _—Ak+ngo . (52)
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Then the combination of Egs. (27) and (46) can be written
as

S [ Tdk' v Qe (n,n W Mg 8k —k")

nz0"0
+v g€ (n,—n'—1)
XUI/Z(q,)S(k+k'-—g0)],v(q')
:1+f0wd¢7)70(q,17)v(17)v(:7). (53)

We can make the second term on the left-hand side of
(53) look like the first by some notational manipulation.
After the integration over k', replace in the second term
n' with —m —1:

S v (geplq, —(go—k+n'gy))

n'Z0
X —(go—k+n'gy)Wgo—k+n'gy)
=3 v V2 g)eg(q, k +mgg)

m <0

Xv!2(k +mgyv(—(k +mgy)) . (54)
Then (53) becomes
So Y Ag)e (nn W 2(g v lg’])

=1+ [dg Xo(q,P0(@V(G) (55

where now g'=k +n'g, and the sum on n’ runs over all
integers. To make the left-hand side of (55) appear as a
multiplication by a square matrix, consider the changes
in (55) under the replacement k —g,—k. At the same
time let n —>—m —1 with m <0 and n’'— —m'—1 with
m' unrestricted. Then

qg—(go—k)—(m +1)gg=—(k +mgy)=Ik +mg,|
(56)
and
g’ —(go—k)—(m'+1)go=—(k +m’'g,) . (57)

Our assumption of an inversion symmetry in the bulk
provides the relation

v Y%(q)ep(q,q" W q")
=v'1/2(—q)eB(~q,—q’)v1/2(—q’). (58)
Combining all these changes, (55) becomes

S v Y g)e (mym g wlq’])

=1+ [dg xolgl.@w@wg), (59)

where now g =k +mg,, g'=k +m'g,, and m is a nega-
tive integer. Together (55) and (59) imply that

S Bi(n,n g’ h=1+ [ dg %o(lql.g (@),  (60)

where the square matrix B, (n,n’) is defined by

By (n,n")=v Vgl (n,n' W q") , (61)
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with n and n’ integers. The SCIB solution then appears
as

vsesllg V=3B, (n,n"), (62)

and the same matrix inverse would be needed for the gen-
eral solution of (60).

D. Subtraction terms

As we show in Sec. III, the matrix in (61) is readily cal-
culated. However, its inverse can fail to exist at particu-
lar values of g. Since our formulas for, say, 7 and d 1» Te-
quire integrals over g, these singular points cause numeri-
cal difficulties. We shall treat them by the same methods
used above the bulk plasmon threshold in jellium where
the €5(q) of (50) has a single zero.***” This involves sub-
tracting from the exact B ;! functions which reproduce
its pole structure, but which are analytically tractable.
Our symmetrized definition of €, is especially useful in
this task since it leads to

B M(n,n")=v " VXg)e; Hn,n' W' q") (63)

in which the two sorts of poles that occur do so in
separate factors, either v!/%(g’) or €; (n,n’). We treat
these in turn.

The singularities due to v!/%(q’) are easy to locate and
are always present. Since ¢ =k +ng, and ¢'=k+n'g,
we have when ¢'—0 that ¢g—(n —n')g,. Hence near
these singularities

B nn)=L ez (g,q")

’

q

(n _n')g()
g—(n—n')g

U

€z ((n —n")gy,0) . (64)

Summing over n’, as required by (62), we define

(n—n')g
(1) — - v -1 )
v(q) 2"’: a—(n—n')gy €g ((n—n')gy,0)

_ g —1
- € (g’o)
(3&:0) q—g "
2
= qugzeo—’(n,m , (65)
g>0 -

where the last step follows from the symmetry
€5'(g,0)=€5'(—g,0). We refer to the singular struc-
tures in (64) and (65) as zone-boundary singularities.
They are responsible for the local-field oscillations evi-
dent in both Figs. 1 and 2. Their periods are independent
of frequency and of the form a/n with »n an integer, but
their amplitudes depend on  since the €; !(n,0) do.
When we need to integrate over g, the singular structures
in (65) are treated as requiring principal value integrals.
To illustrate we obtain for



43 CRYSTALLINITY EFFECTS ON THE SURFACE OPTICAL ...

1 Wy 2 [, SiNgx ()
__]77 (x)—ﬂfodq p vi(q)

= fxdx'lf:dq cosgx'v'V(q)

‘—2260

n,0)(cosngyx —1) (66)

n>0
and for
_ b b2 redgr oy
1 o Ja'l —ﬂfo qz[v (@)—v1(0)]
=3 ¢ ‘1n0)—3C_w—‘1—— 0. (67
g>0 q-—8

The standing-wave form of the fluctuating structure in
(66) is what we expected to obtain, but (67) shows that its
presence has no direct effecton d .

The other singularities in (63) arise from the diver-
gences of € Y(n,n'), more specifically from the zeros of
det(€,). Hence their location only depends on k, not on

norn'. If we write
. k —kg 2
det(€, )= +0(k—ky)*, (68)

0

then the values of k;, and R, must be found numerically.
The functional relation between k, and w defines the
dispersion relation of these so-called zone-boundary col-
lective states (ZBCS’s).2°72%38 Since they are excitations
of the bulk, (68) also implies that

k - (go - ko )

ko)) ; 69
—Ry) o)) (69)

det(?k)—‘— +O0(k _(go_

i.e., the poles always appear in “conjugate” pairs. To ap-

proximate By « ! near them we recall that the inverse of a
matrix can be expressed as

“(n,n')=Nl(q,q')/det(B,) , (70)

where ﬁk is the classical adjoint matrix.’*® Then for k
near k, or g, — kg

Ny (Ln')
q _(k0+lg0)
Ngo-ko(l,n')
q —(go—kotIgo)

B (n,n ) =3 R,
7

(71)

Since ﬁk has the same symmetries as ﬁk, see (58),

Ng0~k0(l,n’)=N(g0—k0+lgo,g0*k0+n’g0)

=N(k0+mg0,k0+m’g0)=Nko(m,m') ,
(72)

where m =—(I +1) and m’'=—(n'+1). Then if we sum
(71) over n’ to define v!?)(q), it can be reduced to
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1
(2) =R ’
vouq) om%’Nko(m,m) ————_q—(ko"'mgo)
.
Q+(k0+mg0)
2(k0+mg0)
=R —M, (m), (73)
02 kg, e
where
Mko(m)=2Nko(m,m') . (74)

To make the subtraction function (73) appear similar to
that in the jellium model®* we further define

2R M, (m)
Ym =" : (75)
(l/elm —1)(k0+mg0)
SO
(ko +mgg)?
V(@) =(1/em—1) S om0 T80T (76)

m qz_(ko"'mgo)z

The singularities here are treated in integrals by replacing
ko—ko+i0" to represent the creation of a ZBCS propa-
gating away from the surface. This yields for

2 e, singx
(2) —— SR L (2)
7 7(x) fo dq vi©(q) (77)

em—1
the simple result

ik +mg0)x

el x>—z Ymle -1), (78)

and for

1— 1 ]dm f‘”dq V(g)— (0]

65.””
(79)
the finite contribution
=3 TIn (80)

~ j(kot+mggy)

To complete the evaluation of  and d, for the SCIB ap-
proximation is now a well-defined numerical task. One
writes

vsarp(q) =%(q)+v'V(g)++v?(q) , (81)

where 7 is determined by substituting from (62), (65), and
(76). By construction, ¥(q) has no singular structures.
This makes all required integrals well behaved if we note
the following limiting values. As g— oo, v'!) and +?
vanish while vgorp and ¥ tend to 1. As g—0,
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- -9 @ _-1 ,
% 7—(n —n')ge € (n,n')
k

oy *
%k-&—ngo

vscis(q)
€ (0,n")

=€, '(0,0)+0(q?)
=1/ . (82)

The identification in the last line of (82) is the appropriate
version for our anisotropic system of the well-known con-
nection between microscopic and macroscopic €’s.2%40 42
For us it ensures that the integral (42) for d, is conver-
gent. The limiting values of the v/ are

Ng—-0)—>—2 3 € (n,00+0(g?) , (83)
n>0
g —0)—>(1—1/6™) Ty, +0(q?) . (84)
m
From (82)-(84) the limiting behavior of v immediately
follows. To make contact with jellium results define
S(@)=%(g)—1—-2 3 € '(n,0) (85)
n>0
Then
—iYm | 2 redg S(g)
d=Y—+= =211+ +
L % ko t+mg, f q? %Ym 1—17&™
(86)
where
S(g—0)=— [1—— [1+Zvm|ro6h, @
€] m

which compares directly with Eq. (21) in Ref. 34.

To end this section we remark that we have formulated
the subtractions from B ; ! so the results would still apply
if X, were retained. The same general scheme could also
be used when three-dimensional lattice structure is al-
lowed.

III. MODEL CALCULATION

To illustrate the formalism we now describe a pseudo-
potential evaluation of the basic formulas. The parame-
ters are chosen to model the (110) face of Li since this
system has relatively strong lattice scattering and shows
significant deviations from jellium predictions. The lat-
tice constant along the surface normal is @ =2.48 A so
g8o=2m/a=2.54 A~'. With one conduction electron
per atom the jellium r, =3.26a, where a is the Bohr ra-
dius. The lattice potential energy is described by a single
Fourier component pseudopotential

V(x)=2V,cos(gox) (88)

whose strength is ¥;=1.44 eV. This choice, plus the as-
sumption of an isotropic effective mass m* /m =1.09, al-
lows a reasonable representation of the band dispersion at
low energy in the (110) direction.?>?>*»* Qur treatment
is similar in spirit, but different in detail, from the two-
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band model used by Sturm and Oliveira. Although both
models allow just one Fourier component in ¥ (x), our
band structure is explicitly periodic in an extended zone
scheme. This is necessary since we eventually need in-
tegrals over g of the response function. For the same
reason we also keep all local-field effects. Finally, we note
that although we are using a pseudopotential for the lat-
tice scattering, we do not try to correct for the difference
between pseudocharge densities and true charge densities.

A picture of the (one-dimensional) band structure is
shown in Fig. 3. The first Brillouin zone has been chosen
so the reduced wave vector remains positive, as is ap-
propriate for the cosine Fourier transforms of our formal-
ism. The Fermi energy is determined by requiring that
the average bulk density be given by 3/(477r3a3) its
value i 1s ep=4.04 eV, slightly smaller than the Jelhum re-
sult €%=4.33 eV The Fermi wave vector p,=1.20 A -1
is larger than p2, but a bit smaller than g, /2=1.27 AL

The bulk susceptibility defined in (48) is calculated
from

2 fpl,Pﬁfp'l',P
Xo,p(x,x")=—- 2 > ;
B AL a% €y i — €, +i0T
X3 (0 (XY (X My (x7)

(89)

where p and p' label wave vectors in the first zone, [ and
' are band indices, P is the common wave vector parallel
to the surface, and the overall factor of 2 is for spin. The
f’s are Fermi occupation factors and will be evaluated at
zero temperature. Their argument is the total energy of
an electron state, whereas only the difference of ‘““normal”
energies survives in the denominator. The wave func-
tions are also one dimensional (Bloch waves). The plane
wave variation in X has been Fourier transformed away.
In Fig. 4 we compare the continua of single-particle
bulk excitations for our band-structure model and its jel-

4IIIII‘IIYIIIIIIIIIII|I|II
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0.0 0.2 04 06 08 1.0
p/g,

FIG. 3. Band structure along the (110) direction in Li. The
solid curves give the electron energy ¢, vs (reduced) wave vector
p. The dashed horizontal line is the Fermi level.
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lium limit, when ¥V;—0 and m*—m. The bounded re-
gions are where the imaginary part of x, z(x,x’) [and
also of €z(q,q')] is nonzero. The gap separating intra-
band from interband excitations is a direct consequence
of lattice scattering. We also show in Fig. 4 the disper-
sion of undamped bulk collective modes. These curves
are determined by requiring det[€, |=0. For the jellium
model the only mode that appears is the bulk plasmon,
while the band-structure effects lead to a damping of this
mode due to interband transitions and the appearance of

lTI]]lIlI|l!II|IIII

] -
w
\
3 i
a 1 ]
Ollllllllllllll|llll
0.0 0.5 1.0 1.5 2.0
/g,
_Illlillll‘llillllll—
L (b)_
2_ JR—
(o)<
w
\
3
e}

IIIII[l[l

O 111 l L1 11
00 05 1.0 1.5 2.0
a/g,

FIG. 4. Comparison of electron-hole pair continuum of exci-
tation for (a) the jellium model and (b) the Li(110) band-
structure model. The solid curves are the boundaries in
frequency-wave-vector space between regions of zero and finite
excitation probability. In (a) the excitations occur between the
curves while in (b) the excitations are either below the lower
solid curve (intraband) or above the upper solid curve (inter-
band). The structure in (b) is periodic in the wave vector q. The
dashed curves describe the dispersion of undamped collective
modes. In (a) the bulk plasmon exists up to #iw/e%=2.52. In
(b) the ZBCS begins and ends away from the zone boundaries at
g =0and g,.
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a new collective mode in the continuum gap, the ZBCS.

We next show several views of the dielectric matrix*!
by plotting its values along certain cuts through Fig. 4.
The macroscopic limit, defined by (82), is given in Fig. 5.
The real part of €™ is slightly changed from the jellium
limit, but the interband absorption makes the imaginary
part nonzero above a threshold.

In Fig. 6 we compare several fixed frequency plots of
€,(0,0). At #w/e%=0.5, one is below the interband
threshold so the band structure and jellium pictures are
fairly similar. At #iw/e%=0.9 there are considerable
differences. Notice in particular the extra zeros of
€,(0,0). They occur close to the k, and g, —k values of
the ZBCS since local-field effects—specifically the
difference between €,(0,0) and detI?kI—are not large at
this frequency. Finally, at #iw/ex=2.0 one is in the
plasmon range for jellium, but there is no complete zero
for the band-structure case.

In Fig. 7 we compare the d,’s. For the band-structure
case, reciprocal-lattice vectors out to t4g, were kept.
There is clearly additional structure that begins sharply
at the interband threshold and continues through and
beyond the ZBCS band. We have separately plotted the
direct contribution of the ZBCS to d,. It begins and ends
with vanishing strength, just as in electron-loss spec-
tra.?’22 Note that the imaginary part of d, changes sign
below the bulk plasmon. In the presence of band struc-
ture the imaginary part of d,| is not a direct measure of
the absorption.* We have also done analogous calcula-
tions for Na, whose pseudopotential strength is an order
of magnitude smaller than that of Li. The deviations be-
tween the Na results and a jellium limit are almost indis-
cernable since effects on d | scale roughly with V3.

Returning to Fig. 7 it is interesting to notice that the
interband scattering is strong enough to significantly
round off the plasmon divergence that appears in the jelli-
um d,. We emphasize that this lifetime broadening is be-
ing calculated microscopically here, not fudged by an ad

2 L T T T T T T T T T T A
L= =
0 Lo T
/E -
&y F .
w - -
-1 -
2 -
-3 F I ! L | 1 ]
0 1 2
Ho/€s
FIG. 5. Macroscopic dielectric function vs frequency for

response along the surface normal. Both the real and imaginary
parts of €™ are drawn with solid lines. The dashed curves give
the jellium result; note that its imaginary part is identically
Zero.
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hoc parameter. The appearance of the field when the
damped plasmon is present is shown in Fig. 8, which like
Figs. 1 and 2 is determined from (32) with v replaced by
v++vU+42) The plasmon oscillation is evident, but it
decays as one moves into the bulk. In Fourier space
there is a (rounded) polelike structure in the € ! versus &
curves which we can handle numerically without subtrac-

tions. However, the neglect of zone planes other than
(110) is a serious omission in this higher-frequency
range. 2122

To sum up, we would describe our results as a promis-
ing beginning on a difficult problem. The derivation in
Sec. IT has shown how to reduce a formal prescription?®
to a practical evaluation scheme. Several severe approxi-
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FIG. 6. Comparison of microscopic dielectric functions. In each panel both the real and imaginary (bottom and top) parts of
€,(0,0) are plotted for both the band-structure and jellium (solid and dashed) models. The fixed frequency is (a) 0.5¢%, (b) 0.9¢%, and
(c) 2.0e%. The singularities that go off scale are inverse square-root divergences.
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FIG. 7. Comparison of d, for the band-structure (open
squares) and jellium (solid line) models. The real and imaginary
parts of d, are plotted separately. The solid squares give the
direct contribution (80) of the ZBCS over the frequency range
where it exists as an undamped mode.

mations were made in this first effort, but there appears
to be no fundamental impediment to their removal. We
can envision the retention of Y,, starting first with an
infinite barrier model®® and then progressing to finite and
self-consistently determined barriers. Also, an analysis
that accounts for crystallinity effects in three dimensions
should be a feasible, but considerable challenge. One can
go beyond a RPA description of many-body effects too,
incorporating, say, a time-dependent local-density-
functional scheme. Our confidence in the possibility of
this succession of improvements rests on the facts that a
similar path was followed for the jellium models' ~!! and
that the formal developments here show that crystallinity
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FIG. 8. Same as Fig. 1 except the frequency of the external
perturbation is here 2.0e%. The local-field oscillations, which in
contrast to Fig. 1 are now more evident in the imaginary part of
1, still have period a.

effects do not change the basic structure of the theory.
The awareness of this possibility plus the existence of
relevant experimental data!>~!'® will hopefully lead to
steady improvements. Although the present numerical
results cannot be directly compared with experiment,
they do give first measures of the existence and impor-
tance of effects totally absent in jellium models. Their
evaluation has also provided a calculational basis onto
which one can build systematic refinements. We look
forward to this continuing progress.
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