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OUTLINE

Real-space analysis decomposes the exchange-correlation energy of
a many-electron system into contributions from all possible interelec-
tronic separations u. The density-gradient expansion of the exchange-
correlation hole surrounding an electron has a characteristic structure.
Its zeroth-order term, the local spin density (LSD) approximation, is a
good approximation to both the hole and its cusp at v = 0. When the
electron density varies slowly over space, addition of each successive term
of higher order in V improves the description of the hole at small u, but
worsens it at large u. Starting with the second-order gradient expansion,
we cut off the spurious large-u contributions in a way that restores the
negativity and normalization constraints on the exchange hole, and the
normalization constraint on the correlation hole. This procedure defines
numerical generalized gradient approximations (GGA’s) for the exchange
and correlation energies, using no empirical input. We report the results
of this construction in detail. This numerical GGA satisfies the most
important exact conditions respected by LSD, plus several more (but
not all) exact conditions currently known. The PW91 functional is an
analytic fit to this functional, designed to respect several further exact
conditions including the Lieb-Oxford bound.
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HISTORY

Density functional theory is widely used to calculate the ground-
state properties of atoms, molecules, solids, and other many-electron
systems]1, 2, 3, 4]. In principle, this theory would yield the exact ground-
state energy and electron spin densities of any system, if the exact de-
pendence of the exchange-correlation energy on the spin densities were
known. This functional is often written as an integral over the system:

Eyclng,n)] = [d*r n(r) exe([ny,ny], 1), (1)

where exc([nq,n],T) is the exact exchange-correlation energy per parti-
cle, and n(r) = nq(r) +n(r) is the total electron density. (Square brack-
ets indicate a functional dependence.) In the seminal work which estab-
lished the basic equations of density functional theory, Kohn and Sham
[1] also proposed the local spin density (LSD) approximation, which may
be written as

B,y = [dr n(x) & (n(x),n(x)), (2)
LSD

where €2°(ny,n)) is the exchange-correlation energy per particle of a
uniform electron gas (jellium). This function is now well-known from
quantum Monte Carlo data [5, 6, 7], and has been accurately fitted to
analytic representations [8, 9, 10]; we shall use the parametrization of
Ref. [10]. LSD is thus a first-principles approximation, in the sense that
its parameters are not fitted empirically to calculated or experimental
results for any system other than the one in which its form is exact. By
construction, LSD is exact for a uniform system, and a good approxima-
tion for slowly-varying systems. However, LSD also provides moderate
accuracy for real systems where the density varies rapidly over space,
which are beyond its obvious range of validity. Three decades after its
proposal, LSD remains a popular approximation for realistic solid-state
calculations, although it seriously overestimates the atomization energies
of molecules and solids.

However, despite its limited accuracy, LSD is a remarkably reliable
approximation: It reproduces chemical trends, and provides useful infor-
mation even about systems unlike any previously studied. We attribute
this reliability to the first-principles character of LSD, and to LSD’s re-
spect for powerful exact constraints (especially the hole constraints of
Egs. (20)-(22) below) which permit a controlled extrapolation from a
system of slowly-varying electron density to any real electronic system.
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Our aim is to retain those good features of LSD in any generalization
thereof. The many length scales present in the electron density make free
guesswork a futile way to construct Exc[ny,n|]. To be consistently right
in practice, a density functional should be right for compelling reasons.

There have been many attempts to improve upon the accuracy of
LSD. The most direct is the gradient expansion approximation (GEA),
which was already suggested in the original work of Kohn and Sham [1].
GEA is found by considering LSD as the zeroth-order term in a Taylor
series for Exc[ny,n|] about the uniform density, and adding corrections
to the next (second) order in the density gradients. Such an expansion
can be rigorously performed. The first corrections to the LSD approxi-
mation are (in principle) straightforward to calculate, and the addition
of these leading corrections to the exchange-correlation energy functional
produces the GEA energy functional:

Vno VTLU/
Eg g, ny] = By, ny] + Z,/dsr Coo (n1,11) 555 5> (3)

where the coefficients C,/(n1,n), which depend weakly on the density,
have been calculated by Rasolt and others [11,12, 13, 14, 15]. For systems
of slowly-varying density, GEA should improve on LSD. Unfortunately,
for real systems, GEA is often worse than LSD, providing the wrong sign
for the correction to ELSP and for E. itself in atoms, molecules, and solids
[14, 16, 17]. The reasons for this failure are discussed in detail below.
In a nutshell, GEA violates Egs. (20)-(22), which are respected by LSD.
This violation is known [18, 19] to arise from the unphysical long-range
behaviors of the GEA exchange and correlation holes, as discussed in our
section on the cutoff procedure.

Ma and Brueckner [14] were among the first to recognize and attempt
to cure these problems with GEA, but the pioneering fundamental work
was performed later by Langreth and co-workers [18, 20, 21]. The reme-
dies, called [16] generalized gradient approximations (GGA’s), assume
the following form for the exchange-correlation energy:

ES%4[n;,n)| = /d3r f(ny,ny,Vng, Vny), (4)

where the function f is chosen by some set of criteria. Many func-
tions f have been proposed in the literature, but consensus is beginning
to develop around several which are qualitatively similar for systems
of physical interest. These GGA’s have been particularly successful in
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chemical applications, where they tend to reduce the LSD overestima-
tion of molecular binding energies by about a factor of five. In atomic
applications, GGA’s greatly improve upon the LSD total energy, but
improve the first ionization energy and electron affinity only marginally.
In the solid state, the (expanded) GGA lattice constants are sometimes
more and sometimes less accurate than those of LSD, although in sev-
eral cases it still remains to separate the error of GGA from the error of
computational approximations such as muffin-tinned potentials or pseu-
dopotentials. For a review, see Refs. [22] and [23]; for more recent
results, see Refs. [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Of course, the semi-local form of Eq. (4) cannot encompass the full
nonlocality of the exact Eyc[ng,n)]. The exact functional is a “square
peg” (literally, in view of its derivative discontinuities [38, 39] under
changes of particle number) which we are trying to force into the “round
hole” of a continuum approximation for simplicity and computational
convenience. The accuracy of GGA (and LSD) for Eyc depends in part
upon system-averaging [40], and so may not carry over to the energy
density or the potential [41, 42, 43], v%.(r) = §Exc/ény(r). Moreover,
the energy density is only defined modulo an additive divergence of a
vector field, and the potential modulo an additive constant.

A decade ago, Perdew [19] recognized that a simple non-empirical
prescription (the real-space cutoff procedure) could be employed to cure
the worst problems of GEA, by cutting off the spurious long-range parts
of the GEA exchange and correlation holes in order to restore the most
important exact conditions satisfied by LSD. The resulting GGA ex-
change hole for the neon atom has been displayed in Ref. [44]. Since
the only input to this prescription is the GEA exchange-correlation hole,
the resulting form for f is completely determined by the cutoff procedure
and the properties of the slowly-varying electron gas, i.e., this GGA (and
so far no other) is a first-principles approximation.

Applying this procedure for exchange, and analytically fitting the re-
sulting numerically-defined f, produces the Perdew-Wang 1986 (PW86)
functional for exchange [19, 16]. Subsequently, Becke [45] proposed an
alternative GGA for the exchange energy, B88, which reproduces the
exact asymptotic (r — co) behavior of an exchange energy density, and
depends on a single parameter which was adjusted to minimize the error
in the exchange energies of the rare-gas atoms; this functional has been
widely adopted in quantum chemistry. Still later, Perdew and Wang
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[46] proposed the PW91 functional for exchange, which slightly modifies
Becke’s form, in order to restore the GEA for slowly-varying densities,
and to satisfy the Lieb-Oxford bound [46, 47] and various non-uniform
scaling conditions [48, 49, 50]. The differences [51] between these func-
tionals for systems of physical interest are probably smaller than the
error made in using the GGA form, Eq. (4). Thus the real-space cutoff
procedure [19, 16] may be considered as a justification for all three of
these exchange functionals.

Until 1991, however, GGA’s for correlation [20, 17, 52] continued
to depend upon at least one empirical parameter, and to differ [51] sig-
nificantly one from another. Indeed, the non-empirical construction of
f from the real-space cutoff procedure proved more difficult for corre-
lation than for exchange. A key input to the real-space construction,
an accurate analytic representation of the correlation hole in the uni-
form electron gas with spin densities n; and n|, has only recently been
found [53]. Furthermore, the GEA corrections to the correlation hole
are imperfectly known. Using a crude model for short-range correla-
tion, Perdew and Wang [46] performed the real-space cutoff of the hole.
They fitted the resulting functional to an analytic form and also added
several further analytic terms to satisfy other exact conditions, yielding
the PW91 correlation functional. As we shall show here, the original
PWO91 parametrization holds up when a more refined correlation hole is
employed.

Our real-space cutoff procedure provides a unified derivation of gener-
alized gradient approximations for the exchange and correlation energies,
which brings not only conceptual benefits, but also practical ones: The
local form of LSD (Eq. (2)) and the semi-local form of GGA (Eq. (4)) are
both better suited to exchange and correlation, treated together, than to
either one separately [40] The PW91 GGA displays a strong cancellation
[23] between the nonlocalities of exchange and correlation in the range of
valence electron densities. As the “most local” [51] of the GGA’s, PW91
is the one least likely to overcorrect the subtle errors of LSD for solids.

Is the PW91 GGA more appropriate for solids or for atoms and
molecules? Its GEA hole input is better suited to the former, but its
sharp radial real-space cutoffs of the hole density are more realistic for
the latter. In a solid, the exact holes can have long tails [18, 23], which
cannot arise in atoms and other systems with compact electron densities.
These tails probably limit the accuracy of GGA in extended systems with

5

strongly inhomogeneous densities, e.g., in the calculation of the metal
surface energy [23].

This article presents a detailed derivation of the real-space cutoff
procedure and its results. We begin by defining the real-space decom-
position [19, 54] of the exchange-correlation energy, and explaining its
importance. Then we discuss the real-space cutoff procedure, and the
numerically-defined exchange-correlation hole and energy which it pro-
duces. We test the numerical GGA against a number of exact condi-
tions. We next discuss how the numerical results are fitted to analytic
forms. This produces the Perdew-Wang 1991 (PW91) generalized gra-
dient approximation. An outline of a more primitive derivation was
published earlier [46]. We use atomic units throughout this paper, in
which €? = & = m, = 1, so that all energies are in hartrees (27.2116 eV)
and all distances in bohrs (0.5292 A), unless explicitly stated otherwise.

Although the basic idea behind the PWO91 is simple, its derivation
and form are complicated, and its parameters are not seamlessly meshed
[55]. Perdew, Burke, and Ernzerhof [56] have recently constructed a
simplified derivation of a simplified and formally-improved version of
this functional, in which all parameters (other than those in LSD) are
fundamental constants. This “PBE” functional, which we recommend for
future numerical calculations and formal advances, has also been used
to improve [57] the PW91 model for the exchange hole; the correlation
hole for PBE is the PW91 correlation hole presented here. Thus the
present article, which provides the only full and detailed derivation of
the widely-used PW91 functional, also serves as “deep background” for

PBE.

REAL-SPACE DECOMPOSITION AND PROBLEMS WITH GEA

An alternative to the point-wise decomposition of Eq. (1) is to write
Ec as an integral over interelectronic separations u:

Bu="y [du (ne(w) (5)

where N = [d3r n(r) is the total number of electrons, and (ny(u)) is
the system-averaged exchange-correlation hole:

(e () = % [ dr n(x) nse(r,r + u). (6)



Here nyc(r,r+u) is the density at r+ u of the exchange-correlation hole
about an electron at r, defined as

Nxe(r,r+u) = /01 dX nyxep(r,r + 1)
— [ dx [(Walga(x) 8a(x + ) ) n(r) — 8w, (7)

where 6n(r) = 7(r) — n(r) is the density fluctuation operator. The
integral over A is a coupling-constant integration, in which ¥, is the
ground state of the Hamiltonian with electron-electron repulsion A/u,
and with external potential v)(r) adjusted to keep (¥,|a(r)|¥,) = n(r)
fixed [59] at the physical or A =1 density.

Splitting the hole into separate exchange and correlation contribu-
tions (where exchange arises from the lower limit A = 0),

Nxe(T, T + 1) = ng(r,r + u) + ne(r,r + u), (8)

one may easily show from their definitions [4] that these holes satisfy the
following exact conditions [19, 60, 61]:

nx(r,r +u) <0, (9)
/d3u ny(r,r +u) = —1, (10)

and
[d*une(r,r+u)=0. (11)

Clearly the system-averaged holes (ny(u)) and (nq(u)) also respect Egs.
(9)-(11). In fact, since the Coulomb repulsion is spherically symmetric,
only the spherical average [61] of the hole contributes to Ex, i.e.,

Eye =2mN [~ du u (ne(u))sphav., (12)

where
(nxeW)) s, = 3 [ 40 (nce(w) (13)

This real-space analysis [19, 54] is complemented by the wave vector
decomposition [59, 60, 18, 20]. We define the Fourier transform of the
system-averaged hole as

(nxe(k)) = [ d*u e %) (nyo(w), (14)
so that

(el = J 55 < (el (19

Applying this to Eq. (5) yields

3 v
B = 5 | Gy (mxe9) (16)

Furthermore, from Eq. (7), one can easily show that the Fourier trans-
form of the hole is related to the coupling constant averaged static struc-
ture factor S(k) by [18]

(nxe(K)) = [ d\ Sy(k) 1. (17)

Provided that (nyc(u)) is normalized and sufficiently localized, the long
wavelength (i.e., small wave vector) limit of the hole satisfies the perfect
screening sum rule:

lim [(nye(k)) +1] = 0. (18)

For example, if the non-oscillatory part of {nyc(u)) falls off as u™3

faster when u — oo, then [(ny(k)) + 1] is proportional to k* when
k — 0, as in the uniform electron gas [18] or metallic hydrogen [62].

Now consider the gradient expansion of the exchange-correlation hole
itself. The zeroth-order approximation is:

or

niED(r, r+u)= n;?f(m(r),nl(r); u), (19)

wif(n;,ny;u) is the exchange-correlation hole of the uniform elec-

tron gas (jellium) with spin densities ny and n| at separation u from the
electron. Insertion of this hole into Eqs. (5) and (6) reproduces Eq. (2).
Because the exact hole is approximated by the hole of another physical
system, i.e., that of jellium, nLSP(r,r + u) and (nLSP(u)) satisfy the con-
straints of Eqs. (9)-(11). Even satisfying these constraints, LSD often
does not approximate the exact hole very well, as the LSD hole cannot
include any deviation from spherical symmetry [61]. Nonetheless, LSD
yields a good approximation to the spherically- and system-averaged
hole, {nxc(u))sph.av., and satisfaction of the constraints of Eqs. (9)-(11)
implies satisfaction of the spherically- and system-averaged constraints:

where n

(nx(u))sphoav. < 0, (20)
Aw /OOC du u? {ny(u))sphay. = —1, (21)
and
4 ‘/(‘]OO du u? <nc(u)>sph.av. =0 (22)
8



These conditions constrain [19, 61] the integral of Eq. (12), so that LSD
yields a good approximation to Fxc. Any systematic improvement on
LSD should continue to respect Egs. (20)-(22), and should yield an
even better approximation to the system- and spherically-averaged hole,
<nxc (u)>sph.av.-

Egs. (20)-(22) alone do not completely explain the accuracy of LSD
(or GGA) energies in applications to real systems with rapidly-varying
densities. The rest of the story lies in the good accuracy of these approxi-
mations in self-consistent calculations of the on-top hole density (ny.(u =
0)), for reasons that are at least partially understood [63, 64, 65, 40]. This
“nearly-exact” condition links the hole to the local density, even when
the density is not slowly-varying over space.

The gradient expansion approximation (GEA) to second order in V
can be derived as follows: Start with a uniform electron gas, and apply
an external potential v(r) which is both weak and slowly-varying over
space. Evaluate the exchange-correlation hole and the density n(r) to
second order in v(r), then eliminate v(r) to express the hole in terms of
n(r) and its low-order derivatives. We apply this prescription to Eq. (6),
to find the system-averaged GEA hole density

(nSEA ) = + [ dr n(r) nSEA(r,x + ). (23)

The integrand of Eq. (23) contains a term proportional to |Vn|?, and
another proportional to V?n. The latter may be integrated by parts
[66] and so included in the former. In the subsequent expressions in this

paper, we use the symbol #ASE4(r,r +u) to represent the result of this re-

duction in order of derivatives, but note that 7S has no direct physical
significance even for a slowly-varying density, and is simply an interme-
diate quantity for the construction of the system-averaged hole. This
leads to a considerable simplification in the form of the GGA functional
constructed from the real-space cutoff of the GEA hole, while compari-
son of the numerical results of Ref. [19] (based upon nS®4) with those
of Ref. [16] (based upon 7SEA) shows that GGA exchange energies are
little affected by this simplification.

Real-space analysis shows why GEA is typically not an improvement
over LSD. Since nSFA(r,r + u) is an expansion of a hole to finite order,
but not the hole of any physical system, (nGF4(u)) can (and does) violate
the negativity and normalization constraints of Egs. (9)-(11), and hence

also of Egs. (20)-(22), and so is less realistic than LSD.

CUTOFF PROCEDURE

A simple cure for this problem with GEA, suggested by Perdew [19],
is to modify the GEA hole in real space so as to restore Egs. (20)-(22). To
avoid any bias in the procedure, this is done in the most straightforward
and brutal fashion possible. The negativity condition on the exchange
hole is restored by cutting out those pieces where ASEA (r, r + u) becomes
positive, while each normalization condition is restored by introducing a
sharp cutoff radius u, outside which the hole is set to zero. Most of the
resulting discontinuities are smoothed in the system average (Eq. (6)) of
the GGA hole. In the subsections below, we review the details of this
construction and its results for both exchange and correlation.

Of course, where the reduced density gradients (s and ¢ as defined
below, |V?n|/n%3, etc.) are too large, none of these approximations

(LSD, GEA, or GGA) should be trusted.

Exchange

In this subsection, we review the real-space cutoff procedure for ex-
change, whose results were first given by Perdew and Wang [16]. The
gradient expansion of the exchange-hole density ny(r,r + u) is known to
second-[66] and even third-order[67] in V, and the structure [67] of this
expansion is clear : The zeroth-order or LSD term gives the exact hole
density at u = 0, while the first-order term gives the exact contribution
of order u. When the density n(r) varies slowly over space, addition
of each higher-order term improves the description of the hole at small
u, where the m-th order term varies as u™ for m < 3, but worsens the
description for large u, where the m-th order term has a non-oscillatory
component proportional to 4™ * and a sinusoidally-oscillating compo-
nent proportional to u?m=4,

By Eq. (5), only a long-range interaction (such as 1/u) can sample
the spurious large-u contribution to nSE4 or 284 (or to their correlation
counterparts). For a sufficiently short-ranged interaction, the ungeneral-
ized GEA for the exchange-correlation energy would require no real-space
cutoff correction and would probably make small relative errors like those
of the GEA for the non-interacting kinetic energy (which is essentially
its own GGA [68]).

The exchange hole obeys the spin-scaling relation

(i) = 5 72

n(r)

ny([2ns]; 1, 1'), (24)
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where ng([n];r, ') is the exchange hole as a functional of the density for a
spin-unpolarized system (n; = n; = n/2). This leads to the spin-scaling
relation for the exchange energy [69]

1 1
Ex[ny,ny] = 5 Ex(2n1] + 3 Ex[2n]. (25)

Thus we need only the GEA for a spin-unpolarized system, which we
write as [16, 66]

ﬁSEA(r, r+u)=-n(r) g(r,u)/2, (26)
where

g(r,u) = g(z,s,4) = J(z)+4L(z)ﬁ-s/3—16M(z)(ﬁ-s)2/27—16N(z)5z2/?)>
27

and g(r,0) = 1. Here @ = u/u is a unit vector,
s(r) = Vn(r)/(2kp(r)n(r)) (28)

is the local reduced gradient (which diverges in the exponential tail of
the density),
kr(r) = (3°n(x)) (29)

is the local Fermi wave vector, and
z(r,u) = 2kp(r) u (30)

is a local reduced separation, measured on the scale of the local Fermi
wavelength 27/kp(r). The functions J(z),L(z), M(z), and N(z) are
known, oscillating functions of z, given in Eqgs. (8)-(11) of Ref. [16],
respectively. The function J(z) alone yields the LSD hole. To first order
in u, n$®* = 4A8FA = _n(r 4 u)/2, so that the GEA hole is deeper on
the high-density side of the electron.

In our generalized gradient approximation (GGA), the hole is repre-
sented as

RIOA(r,x +u) = —5n(r) (e, w) O(F(r, ) Olus() —w),  (31)

where 6(z) equals 1 for z > 0, and vanishes otherwise. The first step
function on the right enforces the negativity condition on (nx(u)) of Eq.
(20), while the second involves a cutoff separation uy which is chosen to
enforce the normalization condition, Eq. (21). Inserting this hole into
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the real-space decomposition, Egs. (5) and (6), produces the GGA for
exchange, which may be conveniently written as

ESAfn] = [ d'r n(x) dP(n(x)) Fi(s(x)) 52)

where
5D (n) = kg /(47) (33)

is the exchange energy per particle for a uniform gas of density n. Fx(s)
is the enhancement factor over local exchange, which is given by

1 rz ~
FX(S) = 6 ./0 x dz z ysph_av.(‘Z? 5)7 (34)

where 1
Gighae.(2,5) = 7= [ 0 §(2,5,8) 6(3(2,, 1), (35)

and where zx = 2krpuy is the reduced cutoff separation. zx is a function
of s determined by the normalization condition, Eq. (21), which becomes

1 2 ~
_E/(]Xdz 22 Jsphoav.(2,8) = —1. (36)

The angular integration over (2, in Eq. (35) is performed analytically
(Appendix A) and the z integrations in Egs. (34) and (36) are performed
numerically.

Figure 1 is a plot of —gsph.av.(2,s) 22/(127), the integrand of the
normalization integral Eq. (36), as a function of z for s = 1.0, for the
LSD, GEA, and GGA holes. (For a plot of the GGA hole before spherical
averaging, see Fig. 3 of Ref. [70].) The LSD hole falls off in magnitude as
z — 00, and is correctly normalized. The GEA hole, on the other hand,
oscillates wildly for large z, and its integral is undefined (except with the
help of a convergence factor). The GGA hole is cut off sharply at about
u = 6, ensuring that it has the correct normalization. Note that it is not
equal to the GEA hole for u < uy, because of the step function in Eq.
(35), which produces derivative discontinuities as a function of z, e.g. at
z ~ 1 and z ~ 5. These sharp cutoffs are of course unphysical, in the
sense that the exact hole is smooth, but they are smoothed in (n$%4(u))
by the integration over r that appears in the system-average of Eq. (6),
since zx is a function of r. Any long-range oscillations of the hole are
also to some extent averaged away. We stress that it is the GGA results
for (nSC4A(u)) (and (nS%4(u))) (or better their spherical averages) that
should be compared with exact results (where available); see Figs. 4 and
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Figure 1. Spherically-averaged exchange hole density 7y for s = 1.

5 of Ref. [71] for the He atom. Just as in GEA, AS%4(r,r 4 u) (and
ASCA(r, r + 1)) are only intermediate quantities, without direct physical
significance.

Figure 2 shows numerical results for the reduced cutoff radius (zx =
2kpuy) as a function of the reduced density gradient s of Eq. (28). Ass —
0, the cutoff radius moves out to co, and the GGA exchange hole properly
reduces to the GEA hole. As s — oo, the cutoff radius slowly approaches
zero, and the hole becomes highly localized around the electron. In
between, the steps in zx(s) occur when the normalization cutoff passes
through a negativity cutoff.

Figure 3 shows numerical results for the enhancement factor Fx(s)
over local exchange (Fx = 1) as a function of s, as defined by Eq. (34).
As s — 0, Fx — 1, reducing to LSD, while Fy grows indefinitely as
s — oo. From Fig. 3, it is clear that the GGA enhancement factor Fy(s)
is different from its GEA counterpart [16], being stronger at small s and
weaker at large s.

Correlation

Wave vector space cutoffs [18, 20, 21] provide no GGA correction
to the GEA for exchange. In earlier work (P86) [17 ], the GGA for
correlation was constructed from a Langreth-Mehl [20] wave vector space
cutoff: The LSD piece of n¢(r,k) vanishes as k* when & — 0, but the
gradient piece tends to a positive constant in this limit. To satisfy the
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0 2 4 6
s=|Vn|/2kn

Figure 2. Reduced cutoff separation for the GGA exchange hole as a function of reduced density
gradient. For r, defined in Eq. (40), we find ux <7, when s > 3.

normalization constraint of Eq. (11), the gradient part was replaced by
zero for k = |k| less than a cutoff wave vector k. = f|Vn|/n. The
parameter f was fixed by fitting the correlation energy of the neon atom.

The motivation of Ref. [46] and the present work is to eliminate the
need for this empirically-fitted parameter, and to treat exchange and cor-
relation in a unified way which can take better advantage of the opposi-
tion [23] between the nonlocalities of exchange and correlation for valence
electrons. This opposition arises because the exchange-correlation hole
is deeper and more localized than the exchange hole [40]. In the uniform
electron gas [53, 72], and less completely in finite systems 73], the most
long-ranged non-oscillatory components of the exchange and correlation
holes cancel. It has been found [23] that the present GGA properly ac-
counts for most of the nonlocalities of Ex[nj,n|] and of Ec[n;,n|], and
that these GGA nonlocalities tend to cancel in the range of valence elec-
tron densities. The residue of this cancellation may not always be a
useful correction to LSD, although it often is.

For exchange, the GEA hole is known exactly and analytically, as is
the spin-scaling relation, Eq. (24). Moreover, the density n defines only
one relevant length scale, the Fermi wavelength 27 /kr, and hence only
one reduced density gradient s. As a result, for a given real-space cutoff
procedure, there is neither ambiguity nor uncertainty in the resulting
numerical GGA for exchange.
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Figure 3. Enhancement factor (Eq. (34)) over local exchange (Fx = 1), as a function of reduced
density gradient. The PW91 parametrization is indicated by open circles.

For correlation, the cutoff procedure is more straightforward than for
exchange, as there is no negativity constraint like Eq. (9). Moreover, the
uncertain large-s behavior is less important, since the GGA correlation
hole is cut down to zero in that limit. However, the GEA correlation
hole (especially its nonlocal part) is known only imperfectly. In fact,
the PW91 correlation functional was originally fitted [46] to numerical
results from the cutoff of a relatively crude form for the GEA hole. The
present real-space cutoff construction is based on the recent development
of an accurate analytic representation [53] for the correlation hole in
a uniform electron gas, and of an approximate form for the real-space
decomposition of the gradient correction to that hole (see Appendix B),
incorporating much of what is currently known. The long-range (u — o)
oscillations [18, 53] of the LSD and GEA correlation holes, which are not
well-known, have been neglected.

Correlation introduces a second length scale, the screening length

1/ks, where
ky = (4kp /)2 (37)

is the Thomas-Fermi screening wave vector. Furthermore, unlike the
exchange hole of Eq. (24), the correlation hole does not obey a simple
scaling relation with {, where

((x) = [n1(r) = ny(x)]/n(x), (38)
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is the local relative spin polarization. Even neglecting the small cor-
rections that arise from terms containing V¢ [74, 23, 75], the resulting
numerical GGA defines a function of three variables:

EEn,n)] = [dr n(x) €94, (x), ¢ (x), 5()), (39)

where
ra(r) = 3/ (4mn(x))]* (40)

is the local Seitz radius. Fortunately, correlation simplifies [46, 74, 75, 76]
in the high-density (r; — 0) or long-range (v — co) limits, where the ran-
dom phase approximation is valid. Thus the long-range non-oscillatory
part of the correlation hole, where the GGA cutoffs are performed, can
be accurately constructed. In fact, in Ref. [75], a GGA for correlation
was constructed for the high-density limit. Here and in Ref. [46], we
extend that construction beyond the high-density limit, but using that
limit in many places as a guide.

Since the correlation hole is not required to satisfy a negativity con-
straint like Eq. (9), we do not need the non-spherical component of its
GEA density. Thus, we write the spherically-averaged GEA hole as

AP (r,u) = ng (ry(x), C(x), v(x, w)) + £(x) 671c(rs(x), ((x), v(x, u)),
(41)
where
t(r) = |Vn(r)|/ (2kc(r)n(r)) = es/r}¢ (42)
(with ¢ = (7/4)Y/2(97/4)'/6 = 1.228) is another reduced density gradient,

which scales with the spin-scaled Thomas-Fermi screening wave vector

ke(r) = ¢(C(r)) ks(r)- (43)
The spin-scaling factor {74, 76] is

$(0) =11+ 0P+ (1 =)/, (44)

while v(r,u) is another reduced separation on the Thomas-Fermi length
scale:
v(r,u) = k¢(r)u. (45)
The LSD correlation hole function, ntSP(r,, ¢, v), is accurately given
by the analytic representation of Perdew and Wang, [53] which has been
confirmed by recent quantum Monte Carlo calculations [6]. We write
this hole in the form

neP(r,,¢,0) = ¢° K Ac(rs,,v). (46)

16



0.2 11—
[aV]
v
=01
™~
(@]
NQ [
L 00}
t J— —
< | \r=2.¢=0
,Ol\\\\

0 2 4 6 8 10
V:k(u

Figure 4. Spherically-averaged correlation hole density 7 for 7, = 2 and ( = 0. GEA holes are
shown for four values of the reduced density gradient, ¢ = |Vn|/(2k¢n). The vertical lines indicate
where the numerical GGA cuts off the GEA hole to make f;c dv 47 v? fic(v) = 0.

In the high-density (r; — 0) or long-range (v — oco) limits, Ac depends
on v alone, and may be evaluated exactly using the random phase ap-
proximation [74, 75, 76]. For larger r,, A. is written as the sum of long-
and short-ranged contributions [53].

The gradient contribution to ASFA of Eq. (41) is modeled in a similar
fashion, by writing

btc(ra (,v) = ¢ kf Be(rs,(,0), (47)

where B is also the sum of long- and short-ranged contributions, which
are less precisely known than their LSD counterparts. These contribu-
tions are described in Appendix B, and are constructed to recover the
GEA energy of Eq. (3). A key fact is that Eq. (47) and its normalization
integral are positive. While the LSD correlation hole properly integrates
to zero, the GEA correlation hole does not.

With the GEA correlation hole fully defined, we construct the spherically-

averaged GGA hole
ﬁSGA(rS,C,t,v) =¢° k? [Ac(rs, ¢, v) + 1% Bo(rs,(,0)]0(ve — v),  (48)
where v(r, (, t) is the largest root satisfying the normalization condition
[ dv 4mo? [Ac(re, ¢, 0) + 8 Be(ry,¢,0)] = 0. (49)
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Figure 5. Reduced cutoff separation for the GGA correlation hole, for 7, =2 and ( = 0 or ( = 1.
For ( = 1, vc = 0 beyond ¢ ~ 2.5. For the case 7y = 2 and ( = 0, uc < r, mecans ¢t > 1.4 and s > 1.6.

Figure 4 is a plot of the spherically-averaged GGA correlation hole for
ry = 2 and { = 0, for several different values of ¢. We see that, for a
small value of ¢ (¢ = 0.5), the gradient correction to LSD is small and
so vg is large (=~ 10.0), tending to its GEA value (00) as t — 0. On
the other hand, for ¢t = 1.5, the gradient correction is nine times larger,
causing the cutoff to occur at a much smaller value of ve (ve = 2.3). In
the limit ¢ — oo, v — 0 (Fig. 5), turning off the correlation contribution
altogether. In all cases, the GGA correlation hole is more localized than
either the LSD or GEA holes.

In Fig. 5, we follow v, as a function of ¢ for r, = 2, for both the spin-
unpolarized (( = 0) and the fully spin-polarized (( = 1) cases. Note
that, for small ¢, v. is large, and the curves merge because the long-
range contribution to the hole is independent of . The same qualitative
behavior occurs for all densities, although for higher densities (r; — 0)
the short-range contribution becomes negligible for all ¢ and the two
curves become everywhere identical.

The GGA correlation energy per particle of Eq. (39) is now

€ (1 C,5) = ¢ [ do T AclrC,) + £ B(ri,o)]
= €er5(r,, () + H(ry,(, 1). (50)

In Fig. 6, we plot the difference between the GGA and LSD correla-
tion energies for different values of r;, as a function of ¢ for the spin-
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Figure 6. The function H = €564 — ¢LSD for several values of r, for the spin-unpolarized case
(¢ = 0). The solid lines are the numerical result of the real-space cutoff procedure, while the open
circles are from the PW91 parametrization.

unpolarized case (¢ = 0). For ¢t — 0, this figure recovers the ¢> behavior
of GEA. Since the GGA correlation energy vanishes at large gradients,
the limit as ¢ — oo in this figure is precisely —eL5P. Fig. 7 shows the same
for ( = 1. Comparison of Figs. 6 and 7 demonstrates the approximate
spin-scaling relationship for correlation (when r; < 6):

ecOh(rs, (1) = 9°(C) €% (rs, 05/ (C)) (51)

EXACT CONDITIONS

In this section, we describe several exact conditions for all inhomoge-
neous electronic systems. We show which of these are satisfied by LSD,
which are satisfied by the numerical GGA, and which are not.

Some of these conditions apply to the total-density functional Fx.[n],
for which we write the GGA as

ESSAn] = [ dr n(r) &(n(r)) Fie(rs(r), 5(x)). (52)

For plots of the enhancement factor Fyc(rs,s) = Fx(s) + Fe(rs,s), see
Refs. [23] and [51]. For futher discussions of exact conditions, see Refs.
[22, 54] and [77].
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Figure 7. The function H = €564 — ¢LSD for several values of 7, for the fully spin-polarized case
(¢ =1). The solid lines are the numerical result of the real-space cutoff procedure, while the open
circles are from the PW91 parametrization.

Conditions on the hole

We begin with exact conditions on the (system-averaged) hole of
Egs. (5) and (6). These constraints are among the most important for
an approximate functional to satisfy. LSD respects both the negativity
constraint and the integral constraints of Eqgs. (20)-(22), because the
LSD hole is the hole of a possible physical system. By construction, the
numerical GGA also respects these constraints.

Another condition satisfied by the exact nyc(r,r+ u) is the electron-
electron cusp condition [78, 79]. When u — 0, the Coulomb interaction
dominates, causing a cusp at u = 0. The relation between the cusp and
the value at u = 0 is universal. This cusp condition is most easily stated
in terms of the pair distribution function for coupling constant A,

a(r, 1) = 1+ nye,\(r,1') /n(r'), (53)

where nxc, is the A-dependent hole (the integrand of Eq. (7)). The cusp
condition is then

g\(r,r) = Aga(r,1), (54)

where
gr(x, 1) = 0/Buluzg [ dQu ga(x, 1+ u)/(47). (55)
This cusp condition can be further decomposed into its exchange and
correlation contributions, and also by spin [22, 54]. LSD respects all these
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conditions, because its hole is that of jellium. Furthermore, LSD typically
is a very good approximation [40, 80] (although not exact [63]) for the
hole density at u = 0. As discussed in Appendix B, the numerical GGA
retains the LSD value of both the hole and its cusp at zero separation,
so that GGA also satisfies all these conditions.

Another exact point-wise condition is that the pair distribution func-
tion be symmetric under interchange of r and r'. Whileno local or semilo-
cal approximation can be symmetric, we have recently shown [22, 54] that
the system average of this condition, even if spin-decomposed, is trivially
satisfied by both LSD and our numerical GGA.

Slowly varying densities

By definition, LSD is exact for the uniform electron gas. As seen in
Figs. 3, 6, and 7 the numerical GGA recovers this limit, unlike [51] the
Langreth-Mehl [20, 21] correlation energy functional (which reduces to
the random phase approximation) and the Lee-Yang-Parr [52] functional
(which underestimates the magnitude of the uniform-gas correlation en-
ergy by about a factor of two [40]).

Next we consider the limit of slowly-varying densities, where GEA
is exact. Starting from the GEA exchange hole of Eq. (26), we can get
a finite gradient coefficient for the energy if we replace the Coulomb
interaction 1/u by the Yukawa potential e **/u, and then take the limit
k — 0. This yields

Fy(s) =1+ ps?, (56)

where p = 7/81. However, Kleinman and Lee [15] have shown that,
starting from the infinite-range (i.e., K = 0) Coulomb interaction 1/u,
the correct coefficient for Eq. (56) is not the Sham [13] coefficient 7/81,
but rather (10/7) thereof, i.e., p = 10/81.

We might expect the numerical GGA for exchange to recover Eq.
(56) with Sham’s coefficient y = 7/81 as s — 0, but instead we find a
linear term:

Fy(s) = 140.1241s + O(s?) (s — 0), (57)

as can be seen clearly in Fig. 3. In the small-s regime, the right-hand
side of Eq. (27) is dominated by its first two terms. In the GEA, the lin-
ear term vanishes when the hole is spherically-averaged. The numerical
GGA, however, enforces the negativity of the exchange hole everywhere,
which leaves a linear contribution after spherical averaging. Of course,
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the correct physical behavior is quadratic in s, but the long-range nature
of the Coulomb repulsion, combined with the real-space cutoff procedure,
leads to this anomalous result. Thus the numerical cutoff procedure pro-
duces incorrect results for very small values of s, where Fy =~ 1. We
regard the numerical procedure as yielding a good approximation to Fk,
rather than to Fy — 1.

If desired, the linear term in Eq. (57) can be removed by damping
the gradient terms of the GEA exchange hole by the factor [1 + (bz)4 7},
where z = 2kpu. This factor does not alter the hole’s behavior at small
u. We have not followed this procedure here, but mention that the values
g =2.5,b =1/(2r) yield excellent GGA energies, and generate our most
realistic model for the GGA system-averaged hole [57, 58].

The numerical GGA correlation energy has no negativity constraint
and suffers no such problem, as shown in Appendix B. As ¢t — 0, the
GGA correlation energy reduces to the expected GEA (see Appendices
and ).

Uniform scaling relations

Other important constraints arise from fundamental theorems on
uniform scaling [81]. We define a uniform scaling of the density by

ny(r) = ’n(yr), (58)
so that the total number of electrons N remains fixed. The reduced
density gradients of Egs. (28) and (42) scale as s, (r) = s(yr) and ¢,(r) =
72t (yr).

The exact exchange energy scales homogeneously [81]:
Ex[n,| = v Ex[n], (59)

as do the LSD and GGA exchange energies, as Eq. (32) shows. For a
non-degenerate ground-state density, the exact correlation energy has
the high-density limit [48, 49, 80]

Jim. Ec[n,] > —oo. (60)

Eq. (60) is violated by LSD but respected (Appendix C) by our numerical

GGA. The characteristic Invy divergence of EXP[n,] comes from [76] the

long-range tail of the uniform-gas correlation hole, which GGA cuts off.
A fundamental inequality [81] is

Excn,y] > v Exc[n] (y>1). (61)
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LSD satisfies this condition, because the condition applies to the uniform
electron gas. Numerical GGA also obeys this condition, because its
curves for Fxo(rs, s) versus s do not cross one another [77]. Furthermore,
in the low-density limit,

o1
lim  Exclns] = Bln] < Bl (62)

and B[n] > —oo [49]. Again this relation is obeyed by both LSD and the
numerical GGA [77].

Large density gradients: Non-uniform scaling relations and the Lieb-Oxford
bound

As discussed in Appendix D, it is possible to construct densities in
which the reduced density gradient s(r) is arbitrarily large almost every-
where. As s increases, the GEA provides a less satisfactory description of
the hole even for small separations u, where GEA ignores contributions of
order u? arising from the fourth- and higher-order gradient corrections to
the exchange hole. Moreover, the GGA Fx(s) of Eq. (32) becomes more
sensitive to the difference between sharp and diffuse radial cutoffs on u.
Our numerical GGA seems trustworthy at best for 0 < s < 3, the range
of greatest physical interest [82]. More generally, the LSD form of Eq.
(2) and the GGA form of Eq. (4) are not valid when the reduced density
gradients (s, ¢, etc.) are large.

Consequently, exact conditions can lead to inconsistent predictions
for the s — oo behavior of a GGA. For example, the large-s behavior of
the Becke 1988 [45] form for Fi(s) (~ s/lns) yields a correct exchange
energy density (ex — —1/2r) far from a finite system, while a different
behavior (~ s) generates [83] the correct limit for the exchange potential
(vx — —1/r). While we cannot get all point-wise conditions right with
a GGA, we might still hope to get system-averaged conditions right. We
have already seen that our numerical GGA satisfies Eq. (60), a scaling
limit in which t — oco. Several other exact conditions of this sort, which
suggest that Fx(s) should vanish or at least remain bounded as s — oo,
are described below.

Consider the one- and two-dimensional density scalings [48, 49, 50],
respectively

ni(z,y,2) = yn(yz,y, 2), (63)
and
nY(z,y,2) = Yn(yz, vy, 2), (64)
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which keep the electron number N constant. Both the high-density limit
of one-dimensional scaling and the low-density limit of two-dimensional
scaling are equivalent to the limit of rapidly-varying densities. In the
former case,

Jim, Exc[n]] > —oo, (65)
and
lim Ee[n?] =0, (66)
while in the latter, .
‘171_']110 ;Exc[nf/?/] > —o00, (67)
and 1
limy ~ Be[n33] = 0. (68)
These constraints [48, 49, 50] will all be satisfied by a GGA if [77]
Jim s/ Fy(rs, s) < oo, (69)
and
lim 12 Fe(ry, s) < 0. (70)

Another constraint affecting the large-s behavior may be derived as
follows: Lieb and Oxford [47] proved that

Eyepalny,ny] 2 C [ dPr n*3(x), (11)
where, via Egs. (5) and (7),
1
Exc :/0 d\ Exc,A- (72)

They also showed that the optimum bounding constant C' lies between
—1.23 and —1.68. The low-density limit of the uniform gas [10] narrows
[46] the range to —1.43 > C' > —1.68. Since Ec) is a monotonically
decreasing function of A, we find [46, 77

Exc[ny,n)] > C /dgr n*3(r). (73)
Numerical GGA will satisfy Eq. (73) if
Fye(rs,¢,8) < 2.27, (74)

where Fyo(7s,(,s) is the (-dependent generalization of Fxc(rs,s) in Eq.
(52). (To simplify the present discussion, the small V( contributions
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to ESCSA have been suppressed in our notation.) Because there are un-
physical systems for which s(r) is arbitrarily large almost everywhere
(Appendix D), Fx(rs,(,s — o0) < 2.27 is a necessary condition for a
GGA to satisfy the Lieb-Oxford bound for all possible densities.

Clearly, LSD violates Egs. (69) and (70), because of its lack of any
gradient dependence, but LSD satisfies Eq. (74), because the magnitude
of the correlation energy never becomes larger than that of the exchange
energy for the uniform gas.

Next we find the behavior of the numerical GGA in the large-s limit.
For exchange in this limit, zx — 0, and one can expand the coefficients
in Eq. (27) for small z. The resulting hole is dominated by the quadratic
contributions which, when spherically averaged, yield

2 ~ 5.908 s 2/°, (75)

and
Fy(s) ~ 0.8862 s¥/°. (76)

Thus, although z¢ vanishes in the large-s limit, it does not vanish fast
enough to make Fy vanish. Numerical GGA violates Eqgs. (69) and (74).

Similarly, we can deduce the large-t behavior of the correlation en-
ergy. In this case ve becomes very small, and the correlation energy gets
completely annihilated by the cutoff procedure, as shown in Appendix
C. Thus numerical GGA does satisfy Eq. (70). GGA correlation “turns
oft” (eS8A/e8CGA 1) in the limit of large reduced density gradients.
This behavior is correct in the tail of the electron density. In contrast,
LSD correlation “turns on” (k5P /eLSD — 1.96) in any low-density limit,
and thus also in the tail.

ANALYTIC APPROXIMATION TO NUMERICAL RESULTS: PW91

As is the case [8, 9, 10] for LSD in Eq. (2), the usefulness of the
GGA of Eq. (4) is enhanced by an analytic parametrization of the func-
tion f(ny,n|, Vnt, Vny). The real-space cutoff procedure cures some of
the worst problems of GEA, but its numerically-defined functional vi-
olates several known exact conditions, including one (Eq. (74)) which
LSD satisfies. In constructing an analytic fit to the numerical GGA, we
restore some of those exact conditions.
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Table 1. Exchange and correlation energies of spherical atoms and ions,* in
hartrees (1 hartree = 27.2116 ¢V).
Ey E,

B
Atom  LSD GEAP  PW91°®  exact LSD GEAP PW919 cxact®
H -0.268  -0.305  -0.307  -0.313 -0.022 0.044 -0.007 -0.000
He -0.884  -1.007  -1.017  -1.026 -0.113 0.125  -0.046 -0.042

Lit -1.421 -1.618 -1.631 -1.652  -0.135 0.260  -0.051 -0.043
Be?* -1.957 -2.229 -2.245 -2.277  -0.150  0.401  -0.054 -0.044
Li -1.538 -1.734 -1.763 -1.781  -0.151  0.222  -0.058  -0.045
Bet -2.168 -2.441 -2.481 -2.507  -0.173  0.345  -0.062 -0.047
Be -2.312 -2.581 -2.645 -2.667  -0.224 0.314  -0.094 -0.094
NeS+ -6.634 -7.370 -7.545 -7.594  -0.334 1.185  -0.123  -0.180
N -5.893 -6.395 -6.569 -6.596  -0.427 0.567  -0.199  -0.188
Ne -11.033  -11.775  -12.115  -12.108 -0.743 0.780  -0.382  -0.390
Ar -27.863  -29.293  -30.123  -30.189 -1.424 1.534 -0.771 -0.722
Zn'?*  -54.433  -57.018 -58.437  -58.475 -1.800 3.576  -0.924 -
Zn -65.642  -68.105  -69.830  -69.640 -2.655 2.467  -1.525 -
Kr -88.624  -91.651  -93.831  -93.893 -3.269 3.024 -1.914 -
Xe -170.562 -175.300 -178.986 -179.170 -5.177 4.685  -3.149 -

2Hartree-Fock densities from Ref. [86].

bThe GEA is that for & = 0, i.c., Egs. (25), (32), and (56) with p = 10/81.
°Egs. (25), (32) and (78).

dEgs. (50) and (83)-(87).

¢“Exact” corrclation energies from Ref. [89].

Exchange

The GGA for the exchange energy is given by Egs. (25) and (32),
and requires an analytic fit to the numerically-defined Fy(s). The first
such fit was that of Perdew and Wang (PW86) [16]:

FPWS6(5) = (1 4 1.29652 + 14s* 4+ 0.255)1/%5. (77)

This form was designed to fit the numerical results for most s, but to
restore the Sham GEA result [13] for small s. Its large-s behavior is the
same as that of the numerical GGA, i.e. Fy ~ s*° and the coefficient
of this term agrees with Eq. (76) to within 1%. Equation (77) clearly
violates both Eq. (69) and the Lieb-Oxford bound, Eq. (74).

More recently, Perdew and Wang [46] (PW91) proposed the following
more elaborate expression:

140196455 sinh™!(7.79565) + [0.2743 — 0.1508 exp(—100s)]s>

FPWOI(s) T
’ 14 0.19645s sinh™*(7.7956s) + 0.004s*
(78)
where
sinh™'(z) = In[z + V1 + 22], (79)
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found by modifying the Becke functional form [45]. The Becke form was
chosen as it was known to reproduce the exchange energies of atoms
and molecules a little better than PW86. In this sense, the PW91 form
contains a slight empirical bias. However, for physical values of s, the nu-
merical GGA and Becke forms are very similar. The modifications made
appear in Eq. (78) as two additional terms: the Gaussian exponential,
and the s* term in the denominator. The former is chosen to restore the
correct Kleinman [15] GEA for small s. Its Gaussian exponent is some-
what arbitrary, but large enough to recover the original Becke result for
0.2 < s < 3, the range of reduced density gradients that dominates the
exchange energies of atoms [82]. The latter modification changes the
large-s behavior, so that both the Lieb-Oxford bound of Eq. (74) and
the non-uniform scaling condition of Eq. (69) are now satisfied. Figure 3
shows how close Eq. (78) is to the numerical GGA, which can therefore
be considered a first-principles justification of the Becke form.

Although we use Eq. (78), Eq. (77) emerges more directly from the
real-space cutoff and seems to provide a better account of the exchange
interaction between weakly-overlapped rare-gas atoms [84], and a better
description of the hyperfine contact field at the nucleus [85].

In summary, the GGA for exchange may be constructed directly
from the result of the real-space cutoff, as in earlier work [16], or from
minor modifications which incorporate empirical information and global
constraints, as in the present work [46]. Table 1 compares LSD, GEA,
GGA, and exact exchange energies for spherical atoms and ions, using
near-Hartree-Fock densities [86]. (The exact exchange energy was found
by subtracting from the near-Hartree-Fock total energy its kinetic and
electrostatic components.)

Correlation

Next we consider correlation, where the GGA is given by Egs. (39)
and (50). We are faced with the practical problem of finding an analytic
representation for a numerically-defined function (H) of three variables.
We first consider correlation in the simpler high-density limit. In this
limit, we need only find an analytic fit to a single curve, the r; — 0 limit
of Fig. 6, because we know the simple ¢ dependence of H in this limit
from the RPA [74]. We fit this curve with the following analytic form:

132

H,(rs=0,(,t) = ¢3(C)£ln 1+ %tz]_ (80)
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where a and 3 are constants. For small ¢, H,(rs = 0,{,t) becomes

Ho(rs = 0,(,t) = °(Q)[Bt* — at'], (81)

so B = 16(3/m)'/3 Ce(ry = 0) = 0.06673, to recover the x — 0 GEA
value, which is built into the numerical GGA, while @ = 0.09, which
approximates the quartic behavior of the numerical cutoff result (0.11)
given by Eq. (118). For large t we find

Hy(rs =0,(,t) = ¢3%21nt. (82)

The coefficient 32/a = 0.05 in Eq. (82) is smaller than the numerical-
GGA value of 0.06218 (see Eq. (113)), and this discrepancy makes this
analytic GGA violate Eq. (60), which the numerical GGA respects.

Next, we alter this function to allow for the r; dependence seen in
Fig. 6. Clearly, the most important physical feature is to change the
large-t limit, to make H,(rs,(,t) level off as a function of ¢ at exactly
—egSD(rs,C), so as to ensure cancellation of the correlation energy for
large gradients. In an earlier attempt [75], this was achieved by a simple
step function, but the figures indicate that the transition is not so abrupt
(see Appendix C). Thus we generalize the high-density fit to

32 20 1+ At?

—_ _2 -
2o B+ T T

The functional form of the modification is designed to retain the small-¢
behavior, while our choice of A is determined by the requirement that
€SG4 of Eq. (50) vanish as ¢ — oo, yielding

Ho(rs,C,t) = ¢°(C) (83)

A= %‘”[exp (—20€552(r,, ¢)/6%6%) — 17, (84)

This analytic fit is close to the numerical GGA as shown in Figs. 6 and
7.

The PW91 functional adds a little further “window-dressing” to the
analytic fit. As discussed in the section on slowly varying densities,
the gradient coefficient for the GEA exchange energy is different for
the Coulomb interaction 1/u (Kleinman’s [15] x4 = 10/81) than for the
Yukawa e™**/u in the limit k — 0 (Sham’s[13] p = 7/81). Plausible ar-
guments [15, 87, 88] suggest that the GEA for exchange and correlation
together (Eyc) is the same for K = 0 and k — 0. While our analytic
GGA for exchange, Eq. (78), is designed to recover the correct x = 0
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result in the limit s — 0, our numerical GGA for correlation and its
analytic representation of Eq. (83) recover the different x — 0 result for
correlation. To remove this inconsistency, we add a small term H;, which
is negligible unless s < 1:

fgwgl(rs) C’ S) = GESD(T.‘H C) + HPng(/rs, C’ t)’ (85)

H™W9' = [, + H, (86)

where

Hi(r,, (1) = 16(%)”3[@(@) — Ce(0) — 3Cx /T (¢) 26 1004/ 4E - (87)
The k — 0 gradient coefficients Cx = —0.001667, C.(0) = 0.004235, and
Cc(rs) are taken from Rasolt and Geldart [12]. The Gaussian exponential
in Eq. (87) is similar to that of Eq. (78). As pointed out in Ref. [41],
this Hy term improperly makes the left-hand side of Eq. (60) diverge to
+00, but this happens only for unphysically high densities.

Table 1 compares LSD, GEA (k = 0), GGA, and exact correlation
energies for spherical atoms and ions, using near-Hartree-Fock densities
[86].

The functional derivatives § ES%A /6n,(r) and § ESC4/6n,(r), which
serve as exchange and correlation potentials in the Kohn-Sham self-
consistent one-electron Schrodinger equations, are summarized in Egs.
(24) and (26) of Ref. [16], and in Appendix E. Subroutines which evaluate
the energy density and potential from the electron spin densities and their

derivatives are available by either electronic mail (perdew@mailhost tcs.tulane.edu)
or the world-wide web (http://camchem.rutgers.edu/~kieron/dft pubs.html).

CONCLUDING REMARKS

The local spin density (LSD) approximation of Eq. (2) transfers in-
formation about ground-state many-body effects from the uniform elec-
tron gas to real atoms, molecules, and solids, in a way that respects the
important hole constraints of Egs. (20)-(22) and contains accurate infor-
mation about the on-top hole. The gradient expansion approximation
(GEA) of Eq. (3) carries additional information about exchange and cor-
relation in non-uniform systems, but violates these constraints. Through
real-space cutoffs of the spurious long-range parts of the GEA exchange
and correlation holes, we have restored these constraints. The result is
a generalized gradient approximation or GGA (Eq. (4)) for the energy
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as a functional of the spin densities. (Closely-related GGA’s have also
been constructed for the correlation contribution to the kinetic energy
[68, 90, 91], for the correlation energy in the random phase approxima-
tion [91], and for the anti-parallel-spin correlation energy [91)]. GGA
nonlocality is easily visualized [23, 51] with the help of an enhancement
factor Fyc like that of Eq. (52). (Like LSD, albeit to a lesser extent,
GGA makes a self-interaction error which could be subtracted out on an
orbital-by-orbital basis [9, 92)].

Although our construction is non-empirical and “first-principles” in
the sense described in the history section, it is neither unique nor perfect.
However, the result has already proved its utility in quantum chemistry
and solid-state physics, and seems to change little under refinements
(such as our use of an improved uniform-gas correlation hole which was
not available when Ref. [46] was written). We intend to continue refining,
simplifying [56], and testing (e.g., through a study of system-averaged
exchange-correlation holes [58, 71]), but we expect [93] that the next
major improvement in density functional approximations must go beyond
the semi-local form of Eq. (4).
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APPENDIX A: ANGULAR INTEGRAL IN THE CONSTRUCTION OF
THE GGA EXCHANGE ENERGY

Let p be the cosine of the angle between u and s. Then the integral
of Eq. (35) is

dQu . ., . 1,1
]z/?yé(y) :§ley (Ap® + Bu+ C)0(Ap® + Bu+C), (88)

where A, B, and C are independent of p. The indefinite integral

F(p) = (AF*/3+ Bu* /2 + Cp) /2 (89)
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is simple, but the step function modifies the upper and lower limits.
Define the roots py of Ap? + Bu+ C =0 by

ui%[—%i'—f], (90)

where T' = B% — 4AC. The value of I can be stated for several different
cases: If ' < 0, or |uy| > 1, then

I=(F(1) - F(=1)8(V), (91)
where V.=A - B+ C;if |py| > 1 but |g_| < 1, then
I=(F(p)— F(=1)0(V)+ (F(1) - F(p))(-V); (92)
if |u_| > 1 but |p4| < 1, then
I'=(F(ps) = F(=1)6(V) + (F(1) — F(pi))6(=V); (93)

finally, if |u4+| < 1, then
1 = (B )~ F(- 1) F(U)— F( )V )+ (F ()~ F(u))0(~V). (94)

APPENDIX B: GRADIENT EXPANSION OF THE CORRELATION HOLE

In real-space construction, the functions Ac(rs,¢,v) and B(rs,(,v)
are used to define the LSD and GEA holes, via Eqgs. (46) and (47),
respectively. Our model for A is taken directly from Ref. [53]. The
gradient correction to the correlation hole is less precisely known, and
we model it in a fashion similar to the LSD contribution.

We first review the model for A, which may be written as

47‘1”02AC(7‘3,C,’U) = f(’I‘S,C,’U) = fl(v) + f2(7’syc7v)7 (95)

where fi(v) is the (non-oscillatory) long-range part, which is known
from the high-density limit [76], and fs is the short-range, density- and
polarization-dependent contribution. The numerical results in the high-
density limit have an analytic fit [46, 53] of the form

a1 + asv + a;;v2

fl(U) 1 + byv + byv? + b3v3 + byt
where the coefficients {a;, b;} are constants (with a; = —0.12436,b4 =
0.0020), and are given in Eq. (22) of Ref. [53]. (Correction to Ref. [53]:
a3 = 0.0024317.) The short-range contribution is modelled as [53]

(96)

fa(v) =[—a1— (a2 — a1b1)v + c10? + cv® + et + C4’U5] exp[—p(rs, C)vz],
(97)
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where the coefficients {c;} are functions of 75 and ¢, given by Egs. (38),
(39), (43), and (44) of Ref. [53]. Note that the first two terms in Eq. (97)
were chosen to cancel the small-v behavior of fi(v), since fi(v) + fa(v)
must vanish as v? for small v, from Eqgs. (95) and (46). The next two
coefficients, ¢; and cq, were chosen to reproduce the correct value of the
jellium pair distribution function at zero separation, and its accompany-
ing cusp, respectively. The last two coefficients, c; and ¢4, were chosen
to simultaneously respect the normalization integral

I dv flr¢v) =0, (98)
and reproduce the LSD correlation energy, as fitted by Perdew and Wang
[10]:

L dv £, ¢ 0)/(20) = e2(r, €) /6" (99)
Lastly,
p(rs,¢) = mhrpd(()/(49") (100)
sets the length-scale of the short-range contribution to the LSD corre-
lation hole, where d({) = 0.305 — 0.136¢* was fitted to quantum Monte
Carlo data.

We apply the same techniques to construct a reasonable GEA corre-
lation hole, writing

Be(rs,¢,v) = BeM(v) [1 = exp(—pv?)] + B(ry,¢) v exp(—pv?), (101)

where BLM(v) is a (non-oscillatory) long-range contribution, and 3(r,, () v? exp(—pv?)

is a short-range, density- and polarization-dependent contribution, with
the same length-scale as the short-range contribution to the LSD corre-
lation hole. The form of hole given in Eq. (101) has several desirable
features: For any finite value of 7, as v — 0, the short-range contribu-
tion dominates, while as v — oo, the long-range contribution dominates.
Furthermore, for high densities (r; < 1) , p > 1, so that only for v < 1
is there any deviation from the long-range contribution, while for low
densities (r; > 1), only for v > 1 (which is energetically irrelevant) does
the long-range piece become significant.

The long-range part is found from the high-density limit, by Fourier
transforming the Langreth-Mehl (LM) exponential approximation [20]
for the wave vector decomposition,

4/3 2v/3

6ﬁSEA’LM(k) = g, OXP [ -

] (102)
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for { = 0, yielding via Eq. (15) the result [46]
BM(v) = 187°(1 ++2/12)4 . (103)

The short-range contribution contains no constant or linear term in v,
so that it does not alter the highly accurate LSD on-top hole or its cusp.
The coefficient §(rs, () is determined by the known GEA correction to the
energy, given in Eq. (3). Considering just the correlation contribution,
and performing the spin sum, we find

AES®A = [ dr Ce(r,,¢) [Vnl?/n*?
= 16(3/m)'/* [ d*r n(r)Ce(r,(x),{(x)) $*(¢(r)) £(x). (104)
We approximate the polarization dependence of C¢ by
OC(T,s;C) = ¢(C) Cc(rs)7 (105)

where Cc(r;) is the unpolarized value. This approximation has been
shown to be very accurate in the high-density limit [74]. From Egs.

1.0 e
—~ [ M r =2 ]
~ 0.8 F s 3
Ao [ {:]L ]
., 0.6F =
mm 04? C',O?
& 02k E
— r ]

Q.O'HH\HH\HH’

0 2 4 6

V:kéu

Figure 8. The function Bc(r,,¢,v) which defines the shape of the gradient correction to the
correlation hole via Eq. (47), for 7, = 2 with ¢ = 0 and { = 1. Also shown is the entire
Langreth-Mehl (r, = ¢ = 0) curve.

(104), (1), and (50),

7r7r1/3

Celrs) = 5(3)

/ dv v Be(ry,(,0), (106)

33

which is used to fix B(rs,():

1) = o551 o) — Buazp) (107)

where E)(z) = = exp(z) [ dt exp(—t)/t, and OIM = (n/3)1/3/(247?) is
the GEA correlation coefficient of the Langreth-Mehl hole. While Rasolt
and Geldart [12] have given a parametrization of the coeficient Co(r;) as
a weak function of r,, we choose here to use just the high-density limit,
as derived from the Langreth-Mehl hole, i.e., we set Cc(rs)/CIM = 1
in Eq. (107). Fig. 8 shows both the Langreth-Mehl curve and how the
short-range contribution changes it for r; = 2 and ( = 0,1. The short-
range contribution is designed not to change the LSD on-top hole, while
preserving the LM gradient contribution to the energy. Note that the
v-length scale of the short-range piece is ~ 1/,/p.

APPENDIX C: LIMITING BEHAVIOR OF NUMERICAL GGA FOR COR-
RELATION

High-density limit

We consider first the limit in which r; — 0, keeping ¢ fixed. In this
case, the short-range contributions to the hole are only significant in an
infinitesimal range of v around v = 0, and make no contribution to the
normalization or energy integrals. Eq. (49) becomes

_ [ hedv filv) ]1/2
T LJge dv 4mv? BLM(v)

, (108)

which implicitly defines v¢, the cutoff as a function of ¢ at r, = 0, and
Eq. (50) becomes

HIE = = [T+ [[dvam BG), (109

which yields H, the correction to the LSD energy for r; = 0. Note that
both v.(t) and H(t)/4® are independent of (. This is very much like the
curve marked r; = 0.05 in Figs. 6 and 7. When ¢t < 1, we find vo > 1,
and Eq. (108) becomes

(l37T\/_

— 0
ve= g +0() (t< 1), (110)
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yielding , )
2t 4byt
HI$* == - ——+0(°) (t<1). (111)

T 372 3n2ag
The first term is the Langreth-Mehl gradient correction. For ¢ > 1,

ve € 1 and
27]aq| 7 s
Ve = 5 1 +0(t %) (t>1). (112)

The singular behavior of the first integrand as v — 0 then dominates the
resulting energy integral of Eq. (109), producing

H/¢ = _%m(t) +OM)  (t>1), (113)

similar to the logarithmic divergence in the LSD correlation energy at
high density, i.e., €20 /¢® — —a;1In(r,)/4 as r, — 0.

To finish this section, we note that, under uniform scaling, #(r) scales
as 712 and becomes very large as r, — 0. Thus, under uniform scaling

to the high-density limit, we find, from Eq. (113),
H/¢® = % In(r;)  (uniform scaling), (114)

exactly canceling the logarithmic singularity in the LSD contribution.
Thus the numerical GGA correlation energy correctly scales to a con-
stant, as in Eq. (60).

Small gradients

We now take limits of ¢, keeping 7, fixed. For small values of ¢, v
becomes very large. We can expand the normalization integral of Eq.
(49) in powers of 1/v, to find
B b47(rs7<)t2
The GEA contribution to the normalization integral is yt2, where

= [“dv 4m® B _ 4 gy 4 37
”/—/(.] v 4TV c(TsyCyv)—m ( P)‘f'wﬁa

(t = 0). (115)

Ve

(116)

and
5 2 oo i
F(a:):l—;/; dy \Jy —1 e 27D /g2, (117)
Performing the same expansion on the energy integral of Eq. (50), we
find 52
(G0A _ (GmA _ PDT (t — 0). (118)

(o] - ~c 4(13
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In the high-density (7, = 0) limit, v = 4/7/3 and bsy?/(4a3) = 0.11, as
in Eq. (111).

Large Gradients

As t — oo, the real-space cutoff procedure makes the GGA corre-
lation energy vanish, by making v — 0. For small values of v, the
correlation hole functions may be expanded about v = 0. For the LSD
correlation hole, inversion of Eq. (46) yields
¢*P(0)

P + O(v) (v — 0), (119)
where the (negative) LSD on-top hole density is given in Ref. [563], while
expansion of Eq. (101) yields

n,

Ac(v) =

Bo(v) = (B+ 135) v’ + O(v") (v — 0). (120)

Insertion of these results into Eq. (49) gives the asymptotic form of v
for large t:

ve=vlrn )t (t— o), (121)
where v = (—5n£‘SD(0)/[¢3kg(3,3 +p/(6773))])1/2. Then Eq. (50) yields
_ wnSP(0)v% 1

While these results apply for all values of ¢ other than 1, at exactly
¢ = 1 the on-top LSD correlation hole vanishes. Then A, becomes
quadratic in v, because the linear term also vanishes, from Eq. (54). Both
the LSD and GEA correlation holes are then quadratic about v = 0, and
Eq. (49) produces a finite value of ¢ beyond which v, vanishes (see Fig.
5).

APPENDIX D: DENSITIES FOR WHICH s(r) IS ARBITRARILY LARGE
ALMOST EVERYWHERE

Start with any physical density n,(r) representing N; electrons, and
replace it by the two-electron density n(r) = 2ny(r)/N;. The reduced
gradient s(r) of Eq. (28) becomes (N1/2)/3s,(r), and tends to infinity
almost everywhere as N; — oco.

Other examples are provided by the non-uniform scaling limits of

Eqgs. (65) and (67).
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APPENDIX E: GGA CORRELATION POTENTIAL

The functional derivative of Eq. (4) is

SESSY  of _v( of )

677,0- B Bno avna .

For €. of Eq. (1) equal to the last line of Eq. (50) (with 74, {, and ¢ defined

by Egs. (40), (38), and (42), respectively, and for any function H), the
correlation potential vZ([n,n|];1) = 6 Ec/ény(r) is

Lsp  Ts OelSD OelSP reOH 1, O*H

€~ 3 g sl Ho gt s b
OH ¢ OH, t0H TR0 _0H

(123)

(S Sgn[a])[aC Py 6t]+6§+?5t ot
Vn- Ve[ OH .0 _18H
~ @k U agat] - St ] + t@t Bl
_Vn-V|Vn| 9 71 Vin 718H
@hopnt Bl ] ~ @R A (124)

where sgn[o] is +1 for o =1 and —1 for ¢ =, and ¢(() is defined in
Eq. (44), with ¢' = d¢/d(. We thank Per Séderlind [94] for pointing out
that the 82H /Or 0t term was omitted in Eq. (33) of Ref. [46]; this term
was present in all our other work, and in our GGA subroutines.

At a nucleus, V?n diverges like (2/r)dn/dr, and so do the GGA

exchange and correlation potentials.
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