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Abstract

The Kohn–Sham scheme of density functional theory is one of the most widely
used methods to solve electronic structure problems for a vast variety of atomistic
systems across different scientific fields. While the method is fast relative to other
first principles methods and widely successful, the computational time needed
is still not negligible, making it difficult to perform calculations for very large
systems or over long time-scales. In this submission, we revisit a machine learning
model capable of learning the electron density and the corresponding energy
functional based on a set of training examples. It allows us to bypass solving the
Kohn-Sham equations, providing a significant decrease in computation time. We
specifically focus on the machine learning formulation of the Hohenberg-Kohn
map and its decomposability. We give results and discuss challenges, limits and
future directions.

1 Introduction

The electron density n(r) is one of the fundamental properties of atomistic systems. According to
the first Hohenberg-Kohn theorem of density functional theory (DFT) the electron density uniquely
determines the ground state properties of an atomistic system [1]. Kohn-Sham density functional
theory [2] (KS-DFT) provides a relatively efficient framework for calculating the electronic energy,
making it one of the most popular electronic structure methods across a wide array of fields [3].

Recently, there has been an increase in the application of machine learning (ML) methods to
various problems regarding atomistic systems[4]. Such machine learning models have been applied
for the prediction of properties of molecules and materials by learning from a large database of
reference calculations [5–13], performing molecular dynamics (MD) by learning the potential energy
surfaces/force fields for particular molecules [14–21], and in few cases for the prediction of electron
densities as a means of performing electronic structure calculations in the DFT framework without
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Figure 1: Overview of the ML-HK map a. General overview of machine learning models for the
total energy. The bottom arrow represents E[v], a conventional electronic structure calculation, i.e.,
KS-DFT. The ground state energy is found by solving KS equations given the external potential, v.
E[n] is the total energy density functional. The red arrow is the HK map n[v] from external potential
to its ground state density. b. How the machine learning Hohenberg-Kohn (ML-HK) map makes
predictions. The molecular geometry is represented by Gaussians; many independent Kernel Ridge
Regression models predict each basis coefficient of the density. We analyze the performance of
data-driven (ML) and common physical basis representations for the electron density. Figure adapted
from Brockherde et al. [24].

solving the expensive Kohn-Sham equations [22–28]. These machine learning methods are often
able to predict properties of atomistic systems or perform MD simulations at a similar accuracy to
DFT calculations while requiring a fraction of the computation costs, which could potentially allow
computational scientists to examine larger systems and/or longer time-scales.

In this submission we will revisit a paper by Brockherde et al. [24], which deals with bypassing the
Kohn-Sham equations by first learning the Hohenberg-Kohn (HK) map from the one-body potential
v(r) to the electron density n(r) of an atomistic system. Subsequently a second model is used to
learn the energy functional from the predicted density to the total energy of the system. This way,
the model provides both approximations to the electron density as well as accurate potential energy
surfaces suitable for molecular dynamics simulations of small atomistic systems.

Here we will focus on the machine learning approach used, especially for the Hohenberg-Kohn map,
and explain in a more didactic manner how this approach enables us to predict the density using
multiple independent models, making the learning problem much simpler.
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2 Methods

2.1 Kohn-Sham density functional theory (KS-DFT)

The KS-DFT computational electronic structure method is based on the Hohenberg-Kohn theorem [1]
which establishes the unique correspondence between the potential and electron density, i.e. at most
one potential can produce a given ground-state electron density. KS-DFT can thus be used to calculate
various properties of many-body atomistic systems using functionals of the electron density.

The KS-DFT scheme models a fictitious system of non-interacting electrons whose density is the
same as the real one, thereby avoiding direct calculation of the many-body effects [2]. The accuracy
of KS-DFT is limited by the accuracy of the used approximation to the unknown exchange-correlation
energy, whereas the main computational bottleneck is computing the solution of the KS equations
describing the non-interacting orbitals, which has a complexity of O(n3).

All 3D DFT calculations used in this submission are performed with the Quantum ESPRESSO
software [29], using the PBE exchange-correlation functional [30] and projector augmented waves
(PAWs) [31, 32] with Troullier-Martin pseudization for describing the ionic cores [33]. All molecules
are simulated in a cubic box (L = 20 bohr) with a wave function cutoff of 90 Ry.

2.2 Kernel ridge regression (KRR)

KRR [34] is a machine learning method for non-linear regression. Non-linearity is achieved by
incorporating the kernel trick into linear ridge regression, which finds the optimal linear mapping
from the inpus to the labels under `2 regularization. Let x1, . . . ,xM ∈ Rd be the training data points
and let Y = [y1, . . . ,yM ]

T be their respective labels. The KRR model for a new input sample x∗ is
then given by:

y∗ =

M∑
i=1

αjk(x∗,xi), (1)

where k is a kernel function and α = [α1, . . . , αM ]T are the model weights. The model weights are
obtained by solving the following optimization problem:

min
α


m∑
i=1

∣∣∣∣∣∣yi −
m∑
j=1

αjk(xi,xj)

∣∣∣∣∣∣
2

+ λαKα

 (2)

where λ is a regularization parameter and K is the kernel matrix with Kij = k(xi,xj). The analytical
solution to the minimization problem is then given by

α = (K + λI)
−1

Y. (3)
Here we use the Gaussian (radial basis function) kernel

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
, (4)

where the kernel width σ is a model parameter that needs to be tuned using cross-validation.

2.3 Machine learning Hohenberg-Kohn (ML-HK) map

The ML-HK map was introduced in a paper by Brockherde et al. [24] as a way to avoid minimizing
the total energy using gradient descent, requiring the calculation of gradient the kinetic energy model,
which is often unstable due to missing information about direction outside of the data manifold [35].

As an alternative, the ML-HK map is a multivariate machine learning model that directly learns the
electron density n(r) as a functional of the potential v(r), thereby completely bypassing the need for
calculating the kinetic energy gradient (see Figure 1a).

As a first step, we model the potential of a system using an artificial Gaussians potential, which is
calculated as:

v(r) =

N a∑
α=1

Zα exp

(
−‖r−Rα‖2

2γ2

)
, (5)
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where Rα is the position and Zα the nuclear charge of the α-th atom. The resulting artificial potential
is evaluated on a 3D grid around the molecule and is used in this form as a descriptor for the ML
model. Cross-validation can be used to optimize the width γ of the artificial potential as well as the
spacing ∆ of the grid. We will use v to denote vector representation of the potential evaluated on a
3D grid.

Using this artificial potential as the descriptor, a naive formulation of the ML-HK map would be

nML[v](r) =

M∑
i=1

βi(r)k(v,vi). (6)

In this formulation, each grid point r has its own set of model weights β(r), which means that we
would need to train a separate model for each grid point of the density. Given the cubic growth of
the potential and density grids, it is easy to see that this approach would quickly become intractable
even for small molecules. Additionally, nearby grid-points are strongly correlated, and using inde-
pendent models for nearby points would essentially disregard the information contained in the local
correlations.

To circumvent this obvious drawback, we use a basis representation for the density of the form

n(r) =

L∑
l=1

u(l)φl(r), (7)

where φl are basis functions and u(l) are the corresponding basis coefficients. Here we use the Fourier
basis representation for the electron density, however many other basis representations such as kernel
PCA[24] or atom-centered Gaussian type orbitals [28] can also be used. With this formulation, we
can transform the learning problem from one of predicting the density grid points to one of predicting
the basis coefficients u(l)[v], giving us the following model for the predicted density

nML[v](r) =

L∑
l=1

u(l)[v]φl(r). (8)

Using KRR, the model for each coefficient can be formulated as

uML(l)[v] =

M∑
i=1

β
(l)
i k(v,vi), (9)

with β(l) representing the model weights associated with each basis coefficient and k being the
Gaussian kernel. The resulting contributions of the prediction error to the cost function are given by

err(β) =

M∑
i=1

‖ni − nML[vi]‖2L2

=

M∑
i=1

∥∥∥∥∥ni −
L∑
l=1

uML(l)[vi]φl

∥∥∥∥∥
2

L2

.

(10)
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By writing the density in terms of its basis representation and assuming orthogonality of the basis
functions we obtain

err(β) =

M∑
i=1

∥∥∥∥∥
L∑
l=1

u
(l)
i φl −

L∑
l=1

uML(l)[vi]φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∥∥∥∥∥
L∑
l=1

(
u
(l)
i − u

ML(l)[vi]
)
φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∫ L∑
l=1

(
u
(l)
i − u

ML(l)[vi]
)
φl(r)

L∑
l′=1

(
u
(l′)
i − uML(l′)[vi]

)
φ∗l′(r)dr

=

M∑
i=1

L∑
l,l′=1

(
u
(l)
i − u

ML(l)[vi]
)(

u
(l′)
i − uML(l′)[vi]

)∫
φl(r)φ∗l′(r)dr

=

M∑
i=1

L∑
l=1

(
u
(l)
i − u

ML(l)[vi]
)2

=

M∑
i=1

L∑
l=1

u(l)i − M∑
j=1

β
(l)
j k(vi,vj)

2

.

(11)

The resulting equation shows that the error can be decomposed into the independent error contributions
for each of the basis coefficients. By viewing the errors independently we obtain L separate KRR
minimization problems, and analogously to equations 2 and 3 we obtain the analytical solutions

β(l) =
(
Kσ(l) + λ(l)I

)−1
u(l), l = 1, . . . , L, (12)

where for each basis function φl, λ(l) is a regularization parameter, u(l) is a vector containing the
training set coefficients for the l-th basis function and Kσ(l) is a Gaussian kernel matrix with width
σ(l).

By independently and directly predicting the basis coefficients, the machine learning model becomes
more efficient and easier to scale to larger molecules. Additionally, the basis representation allows us
to use the predicted coefficients to reconstruct the continuous density at any point in space, making the
predicted density independent of a fixed grid and enabling computations such as numerical integrals
to be performed on the predicted density at an arbitrary accuracy.

Finally after the ML-HK map is learned, modelling the energy functional requires a single KRR
model of the form

EML[n] =

M∑
i=1

αjk(uML[v],uML[vi]). (13)

where uML[v] =
[
uML(1)[v], . . . , uML(L)[v]

]
and k is once again the Gaussian kernel.

2.4 Cross-validation

All hyperparameters used in the model are estimated solely on the training set. The width γ and
spacing ∆ hyperparameters for the artificial Gaussians potential were optimized for all molecules at
the same time, with the resulting optimal values being γ = 0.2 Å and ∆ = 0.08 Å, while the kernel
width σ and the regularization parameter λ were optimized individually for each molecule. In both
cases the hyperparameter optimization was performed using cross-validation [8]. After training, the
model is fixed and is applied unchanged on the out-of-sample test set.

2.5 Functional and density driven error

In order to more accurately measure the error of ML-HK map, we can separate out the effect of
the error in the functional F and the error in the density n(r) from the resulting error in the total
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energy, as shown in [36]. Let F̃ denote an approximation of the many body functional F , and ñ(r)

the resulting approximate ground-state density when F̃ is used in the Euler equation. Defining
Ẽ[n] = F̃ [n] +

∫
d3r n(r) v(r) yields

∆E = Ẽ[ñ]− E[n] = ∆EF + ∆ED (14)

where ∆EF = F̃ [n]− F [n] is the functional-driven error, and ∆ED = Ẽ[ñ]− Ẽ[n] is the density-
driven error. We will use these additional error definitions to measure the accuracy of the ML-HK
map.

2.6 Results

Here we revisit the results of applying the ML-HK map to predict electron densities and energies
for a series of small 3D molecules. Using a set of test molecules, we compare the predictions of the
ML model with the KS-DFT results obtained as described in Section 2.1. Additionally we compare
the ML-HK map using the Fourier basis representation the approach of directly mapping from the
potential grid v(r) to the total energy. We call this approach the ML-KS model, with the resulting
KRR formulation being

EML[v] =

M∑
i=1

αik(v, vi). (15)

The first and most basic molecular prototypes used to evaluate the model were H2 and H2O, with the
datasets being generated with one and three degrees of freedom respectively. For more details on the
composition of the datasets see [24].

For the evaluation of the models, for both datasets a random sample of 50 molecules was taken as an
out-of-sample test set. Additionally, for each of the molecules multiple subsets of varying sizes M
were chosen out of the rest of the samples as training sets for both models.

ML-KS ML-HK

∆E ∆E ∆EML
D

Molecule M MAE max MAE max MAE max

5 1.3 4.3 0.70 2.9 0.18 0.54
H2 7 0.37 1.4 0.17 0.73 0.054 0.16

10 0.080 0.41 0.019 0.11 0.017 0.086

H2O

5 1.4 5.0 1.1 4.9 0.056 0.17
10 0.27 0.93 0.12 0.39 0.099 0.59
15 0.12 0.47 0.043 0.25 0.029 0.14
20 0.015 0.064 0.0091 0.060 0.011 0.058

Table 1: Prediction errors on H2 and H2O. Shown for increasing number of training points M for
the ML-KS and ML-HK approaches. In addition, the estimated density-driven contribution to the
error for the ML-HK approach is given. In all cases except at maximum M, the energy error in the
ML-HK map is largely is the energy map, not the density map. Energies are in kcal/mol.

Since the size of some training subsets is very small, careful selection of the samples is required in
order to ensure that the subset covers the complete range of geometries. This is achieved via K-means
sampling, which selects the M training points so that the samples are nearly equally spaced in the
geometry space (see [24]).

The performance of the ML-KS map is evaluated by comparing predicted total energy EML[v] that is
mapped directly from the Gaussians potential with the calculated KS-DFT energies. For the ML-HK
map the total energy EML[n] is obtained by mapping from the predicted density nML[v], which
itself is predicted by mapping from the potential to the ground-state density in a three-dimensional

6



Fourier basis representation (using 25 basis functions for each dimension, for a total of 125000 basis
coefficients).

Table 1 shows the resulting performance of the models when trained on datasets of varying sizes and
evaluated using the out-of-sample test sets. The mean average error (MAE) of energy predicted using
the ML-HK map is significantly smaller than that of the ML-KS map, indicating that learning the
potential-to-density map and subsequently learning the density-to-energy functional is easier then
directly learning the potential-to-energy map, at least when using our representations for the potential
and density.

For H2O, in order to achieve similar accuracies as for H2 we need a larger training set, which is
expected due to the increased degrees of freedom and complexity of the H2O molecule. Considering
that the MAE of PBE energies relative to CCSD(T) calculations is 1.2 kcal/mol for the water dataset,
the additional error introduced by the predicted PBE energies using the ML-HK map is negligible.

For larger molecules, the number of degrees of freedom is much higher, making it difficult to randomly
generate conformers that span the full configurational space. Therefore, large datasets of conformers
for benzene, ethane and malonaldehyde were generated using classical force field molecular dynamics.
The MD simulations were performed at 300 K, 350 K, and 400 K using the General Amber Force
Field (GAFF)[37] in the PINY_MD package[38]. The MD simulations generate a large and varied
set of geometries which are then sub-sampled using the K-means approach to obtain 2,000 points
which constitute the training set for each of the molecules.
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Figure 2: Energy errors of ML-HK along classical MD trajectories. PBE values in blue, ML-HK
values in red. a. A 20 ps classical trajectory of benzene. b. A 20 ps classical trajectory of ethane.
Figure adapted from Brockherde et al. [24].

The training for the ML-HK and ML-KS models is performed as described above using reference
KS-DFT calculations for the density and total energy for a training set size of M = 2000 points. The
performance of each models is then tested on random samples taken from independent trajectories
run at 300 K. Additionally, the performance is evaluated for training sets composed of combined
samples from MD trajectories at 300 K and a higher temperature, since this should increase the span
of the training set geometries, resulting in better generalization. The results of the evaluations for all
three molecules are shown on Table 2.

The MAE achieved on the test snapshots using the ML-HK map trained on a set of 2000 samples is
consistently under 1 kcal/mol for each of the molecules. Additionally, learning from a training set
combining samples from trajectories run at higher temperatures improves the performance, however,
which higher temperature brings the largest benefits depends on the molecule itself. Figure 2
visualizes the differences between the energies from the ML-HK map and the KS-DFT calculations
on the test sets for benzene and ethane. The versatility of the ML-HK map is further demonstrated by
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Training tra-
jectories

∆E ∆EML
D

Molecule MAE max MAE max

300K 0.42 1.7 0.32 1.5
Benzene 300K + 350K 0.37 1.8 0.28 1.5

300K + 400K 0.47 2.3 0.30 1.8

300K 0.20 1.5 0.17 1.3
Ethane 300K + 350K 0.23 1.4 0.19 1.1

300K + 400K 0.14 1.7 0.098 0.62

Malonaldehyde 300K + 350K 0.27 1.2 0.21 0.74

Table 2: Energy and density-driven errors of the ML-HK approach on the MD datasets. Errors
are given in kcal/mol for different training trajectory combinations.

Figure 3a, where the model manages to interpolate the energies for a proton transfer in malonaldehyde,
even though such geometries were not generated by the classical force field MD and thus were not
present in the training set.
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Figure 3: Energy errors of ML-HK along ab-initio MD and ML generated trajectories. a.
Energy errors of ML-HK along a 0.25 ps ab initio MD trajectory of malonaldehyde. PBE values in
blue, ML-HK values in red. The ML model correctly predicts energies during a proton transfer in
frames 7 to 15 without explicitly including these geometries in the training set. b. Energy errors of
ML-HK along a 1 ps MD trajectory of malonaldehyde generated by the ML-HK model. ML-HK
values in red, PBE values of trajectory snapshots in blue.
Figure adapted from Brockherde et al. [24].

Finally, the ML-HK map for malonaldehyde can also be used to generate an MD trajectory at 300 K,
obtained by finite-difference approach to determine the atomic forces from the predicted energies (see
Figure 3b). Despite some molecular configurations where the energy is underestimated (maximum
absolute error of 5.7 kcal/mol), the resulting forces are still large enough to bring the molecule to
the equilibrium, resulting in a stable trajectory. Being able to run MD simulations using the ML-HK
map can greatly reduce the computation effort compared to running MD simulations with DFT, while
at the same time providing results that are very close to DFT accuracy. It is important to note that
there are multiple ML models capable of providing even more accurate MD simulations by directly
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learning the force field [14, 17, 16, 19–21, 11], however this experiment demonstrates that stable MD
simulations can also be produced using a force free machine learning model.

3 Discussion

The work revisited in this submission was one of the first ML models capable of efficiently and
accurately predicting both the electron density and total energy of small atomistic systems. While
there are many machine learning models that directly predict the total energy with greater accuracy,
predicting the density as an intermediate step opens up many different possibilities, such as using the
density as an universal descriptor to predict other properties (due to the Hohenberg-Kohn theorem[1])
or plugging the predicted density directly into DFT codes to perform calculations.

Here we showed once again in more detail how the problem of modelling a 3D electron density
can be simplified by using a basis representation and learning to predict the basis coefficients, and
how for orthogonal basis functions problem of predicting the coefficients can be decomposed into
independent learning problems for each of the coefficients. This greatly improves the simplicity and
efficiency of the resulting machine learning model.

Since the model is not dependent on the reference calculations used for training, the ML-HK map can
be trained using electron densities obtained by other methods besides KS-DFT, such as Hartree-Fock
or even CCSD densities. The same holds for the energy functional map, giving us the possibility of
predicting total energies using electron densities obtained using different levels of theory, potentially
leading to even larger gains in computational efficiency.

There is also plenty of room for improvement of the current model in the future. One of the main
challenges of the current model is its handling of the many symmetries in the data. While the
potential used as a descriptor is invariant to permutational symmetries, rotational symmetries have to
be explicitly tackled by rotating each of the molecules to optimally align with a reference geometry,
which can often be a source of noise, since the conformers often do not perfectly match the reference.
Additionally, the current descriptor has no way to handle mirror symmetries, meaning that the
model would require a larger number of training samples to learn these symmetries. The same
holds for the Fourier basis representation, which is also not invariant to symmetries of the O(3)
group. Consequently, an obvious avenue for improvement would be to incorporate descriptors that
are invariant to the various symmetries, both for the atomistic systems [39, 6, 40] and the electron
densities [41].

Finally, since the ML-HK map is independent from the subsequent density-to-energy map, the model
can be easily extended to predict various other properties of the atomistic system, for example by
replacing the density-to-energy map by a density-to-forces map, which has the potential of drastically
improving the accuracy the MD simulations produced using the machine learning model.

This demonstrates the flexibility of the formulation of the ML-HK map and provides many potential
directions in which the results discussed here can be further expanded and improved.
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