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1 Introduction

Machine learning (ML) allows us to develop a calculable and reusable surrogate of
any task comprising of regression (including classification or pattern recognition).
After conquering human pattern recognition [1] and some famous games [2, 3], this
technology is rapidly percolating into every branch of quantum chemistry and physics
as a provider of versatile tools. In these fields a general aim is to solve the electronic
many-body Schrödinger equation. The human process of solving the Schrödinger
equation is as follows: first, relevant degrees of freedom must be defined for the
system, e.g. spatial and spin coordinates of atoms and electrons; next, the Hamiltonian
corresponding to the system can be written explicitly. Finally, the Hamiltonian is
diagonalized to find the wavefunctions (eigenvectors) and corresponding energies
(eigenvalues) of the system. The exact numerical solution of the Schrödinger equation
is extremely costly, scaling exponentially in the number of electrons in the system. As
a result, exact diagonalization of the Hamiltonian is seldom computationally feasible
(for realistic Hamiltonians), and approximate methods must be used instead.

The most widely used method, and the focus of this Chapter, is density functional
theory (DFT), for which Walter Kohn shared the Nobel Prize in Chemistry in 1998
[4–6]. DFT is an alternative formulation of the many-electron problem in which the
charge density 𝑛(r) is treated as the fundamental object of interest as opposed to
the wavefunction 𝜓. While 𝜓 is a function of the spatial and spin coordinates of
every electron in the system (for a total of 4𝑀 variables where 𝑀 is the number
of electrons), 𝑛(r) depends only on the three general spatial coordinates (𝑥, 𝑦, 𝑧).
Thus, the framework of DFT dramatically speeds up the process of solving the
many-electron problem. While DFT provides a strong balance between accuracy
and computational cost, the cost of executing a DFT calculation is still significant,
of order 𝑂 (𝑀3). Furthermore, even within DFT, approximations are required so that
calculations can be executed at reasonable cost. Machine learning is a promising
strategy by which to improve both the speed and accuracy of DFT calculations. In
fact, the capacity for ML to accelerate the approximate solution of the Schrödinger
equation spans the entire process outlined above, and is not restricted to DFT alone
[7]. Ongoing research even includes the development of ML methods that can bypass
DFT altogether, such as machine-learned potentials trained on DFT data (see other
chapters). Nonetheless, the contributions of ML to the advancement of DFT methods
is a conceptually rich and a practically significant topic, and the following sections
are devoted to a review of the recent progress.

In Section 2 we explain the basic foundations of DFT, and introduce the problem
of approximating the exchange-correlation functional. In Section 3 we showcase
some historical developments of approximate functionals found by humans in order
to contextualize the more recent developments from ML. We summarize in Section
4 the technical and theoretical achievements enabled by ML. Section 5 is devoted to
discussions on the generalization accuracy of the machines seen in the literature and
potential directions for furthur research. Section 6 concludes the review with some
perspectives on the future.
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2 Background: Almost a century of DFT

Density functional theory begins with the foundational papers of Thomas and Fermi
[8] [9]. Here we summarize modern DFT.

2.1 Foundations

The electronic 𝑁-body dynamics is governed by the following Hamiltonian

𝐻 =

𝑁∑︁
𝑖=1

[
−
∇2
𝑖

2
+𝑉ion (r𝑖)

]
+ 1

2

𝑁∑︁
𝑖≠ 𝑗

1
|r𝑖 − r 𝑗 |

, (1)

and the Schrödinger equation for the 𝑁−body wave function Ψ is

𝐻Ψ(r1, r2, · · · , r𝑁 ) = 𝐸Ψ(r1, r2, · · · , r𝑁 ). (2)

where r𝑖 are the spatial coordinates of the electrons, and Ψ is antisymmetric with
respect to particle exchange.
In this chapter, we restrict ourselves to the non-relativistic, non-magnetic case and
adopt the atomic unit (𝑒 = 𝑐 = ℏ = 𝑚e = 1). We also suppress spin degrees of
freedom in all equations for simplicity–although these are included in all modern
DFT calculations.

This equation determines the series of many-body eigenstates once the one-body
potential 𝑉ion (r) generated by the ionic configuration is given. In this sense, the
eigenstates and their energy ordering are well-defined functionals of𝑉ion (r), a scalar
value on real space.

Hohenberg and Kohn formulated two important theorems [4]. First, the charge
density distribution of the ground state 𝑛(r) determines the corresponding 𝑉ion (r)
unambiguously (if it exists) that has such an 𝑛(r) in the ground state (in the non-
degenerate case). Second, there exists a variational equation with 𝑛(r) as the variable
that yields the ground state energy: Formally, there is a functional of the whole
distribution of 𝑛(r) bounded by the ground state energy for given 𝑉ion (r).

𝐸 [𝑛,𝑉ion] ≡ 𝐹 [𝑛] +
∫

𝑑r𝑛(r)𝑉ion (r) ≥ 𝐸GS [𝑉ion], (3)

for which the equality holds only when 𝑛(r) is equal to that at the true ground state
for 𝑉ion (r). The functional 𝐹 [𝑛], as expressed later by Levy [10] and Lieb [11], is

𝐹 [𝑛] ≡ min
Ψ→𝑛

⟨Ψ|
(
𝑇e + �̂�ee

)
|Ψ⟩, (4)

𝑇e =

𝑁∑︁
𝑖=1

(
−
∇2
𝑖

2

)
, �̂�ee =

1
2

∑︁
𝑖≠ 𝑗

1
|r𝑖 − r 𝑗 |

, (5)
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where the minimization is taken with constraint that the many-body state Ψ yields
the given charge density distribution through

𝑛(r) =
∫

𝑑r2𝑑r3 · · · 𝑑r𝑁 |Ψ(r, r2, · · · , r𝑁 ) |2. (6)

We express the dependence as functional by squared parentheses “[]". The functional
𝐹 [𝑛] is universal, which simply means it is a density functional with no dependence
on 𝑉ion (r).

The Euler equation for the ground state charge density is:

𝛿𝐹 [𝑛]
𝛿𝑛(r) +𝑉ion (r) = 0, (7)

if we fix the particle number. This equation clarifies the input-output relation of the
ground-state quantum theory: Scalar function of space (𝑉ion (r)) in, scalar function
of space (𝑛(r)) out. Of course this equation does not simplify the problem since, to
obtain the exact formula of 𝐹 [𝑛], we are required to solve the Schrödinger equation.
Thus, accurate and calculable models for 𝐹 [𝑛] are essential for efficient calculations.

People have sought two paths for solving the DFT variational equation (7). The
first is the Kohn-Sham (KS) framework, and the second is the older orbital-free
(OF) DFT. For both, the derivation of useful approximations to 𝐹 [𝑛] has been
the challenge. The latter in principle yields cheaper computational workflows but
simultaneously imposes the additional subordinate (and difficult) challenge of how
to calculate the kinetic energy of without the concept of orbitals.

2.2 The Kohn-Sham equations

Kohn and Sham [5] created a reference system that is formally solved more easily
than the many-body Schrödinger equation, but yields the same ground-state charge
density, via a transformation of the variational equation (7), as[

−∇2

2
+𝑉eff [𝑛] (r)

]
𝜑𝑎 (r) = 𝜀𝑎𝜑𝑎 (r), (8)

𝑛(r) =
∑︁
𝑎

𝜃 (𝜇 − 𝜀𝑎) |𝜑𝑎 (r) |2 ≡
∑︁
𝑎:occ.

|𝜑𝑎 (r) |2. (9)

These are the Kohn-Sham (KS) equations. The effective potential𝑉eff [𝑛] (r) is related
to the universal functional 𝐹 [𝑛] through

𝑉eff [𝑛] (r) = 𝑉ion (r) +𝑉H [𝑛] (r) +𝑉xc [𝑛] (r), (10)

where
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𝑉H [𝑛] (r) =
∫

𝑑r′
𝑛(r′)
|r − r′ | , 𝑉xc [𝑛] (r) =

𝛿𝐸xc
𝛿𝑛(r) , (11)

and the exchange-correlation (XC) energy functional is defined as:

𝐸xc [𝑛] = 𝐹 [𝑛] − 𝑇s [𝑛] − 𝐸H [𝑛], (12)

where

𝑇s [𝑛] = min
Φ→𝑛

⟨Φ|𝑇e |Φ⟩, 𝐸H [𝑛] =
1
2

∫
𝑑r𝑑r′

𝑛(r)𝑛(r′)
|r − r′ | . (13)

The kinetic energy functional 𝑇s [𝑛] is defined by the constrained minimization of
Eq. (4). The majority of kinetic energy is thus treated by an auxiliary set of single-
particle orbitals {𝜑𝑎} (𝑎: spin-orbital) that form Φ, while the remaining quantum
effects are condensed into the exchange-correlation energy 𝐸xc [𝑛]. The ground state
total energy 𝐸GS [𝑉ion] is derived from the stationary solution of the KS equations
by

𝐸GS [𝑉ion] =
∑︁
𝑎:occ.

𝜀𝑎 − 𝐸H [𝑛] + 𝐸xc [𝑛] −
∫

𝑑r𝑛(r)𝑉xc (r). (14)

This framework opens a path to practical first-principles calculations for the total
energy of electronic systems such as molecules and solids, if any useful approxima-
tions to 𝐸xc are available. It should be considered as a formalization of Slater’s 𝑋𝛼

method [12]. The development of useful models for 𝐸xc [𝑛] has thus become a grand
challenge in theoretical chemistry, condensed matter physics, and material science.

The reference one-particle system can be taken somewhat arbitrarily, as we can
formulate an equation that is different from the original KS but in principle gives an
identical ground state charge density [13]. For some arbitrary operator �̂� on the KS
orbitals, we can construct the following system:[

�̂� [{𝜑}] +𝑉gKS
eff [𝑛] (r)

]
𝜑𝑎 (r) = 𝜀𝑎𝜑𝑎 (r), (15)

𝛿𝑆[Φ]
𝛿𝜑𝑎 (r)

≡ �̂� [{𝜑}]𝜑𝑎 (r) (16)

𝑉
gKS
eff [𝑛] (r) ≡ 𝑉ion (r) +

𝛿 (𝐹 [𝑛] − 𝐹s [𝑛])
𝛿𝑛(r) , 𝐹s [𝑛] ≡ min

Φ→𝑛
𝑆[Φ] . (17)

Here, 𝑆[Φ] is an arbitrary functional of the Slater state Φ with subtle mathematical
requirements to 𝐹s [𝑛]. This generalized KS framework justifies including supple-
mental one-body operators (such as the Fock exchange) in the KS equations . This
generalization can make ground-state calculations much more convenient while
yielding practically identical ground-state energies. However, the spectrum of eigen-
values can be much improved in a Generalized KS calculation [14].
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2.3 Orbital-free DFT

Orbital-free DFT (OF-DFT) aims to solve the variational equation (7) directly in
terms of the density 𝑛(r). As in KS-DFT, a separation of the universal functional
𝐹 [𝑛] is used; 𝐹 [𝑛] = 𝑇s [𝑛]+𝐸H [𝑛]+𝐸xc [𝑛]. The OF-DFT approach poses additional
challenges: (i) First, 𝑇s [𝑛] has to be modeled without solving for single-particle
orbitals. (ii) Second, treatment of 𝑉ion (r) also raises an issue. In the KS approach
one can omit the core electrons from the equations by using a pseudopotential to
describe the effects of the core states on the valence states by the valence-orbital
dependent projector (this becomes problematic in OF-DFT). We do not discuss
pseudopotentials in depth here, but refer the reader to Ref. [15] for a thorough
review.

3 Human development of the functional

Various conditions on the exact functional are well known [16]. The early devel-
opment of approximate functionals was often grounded in interpolations between
these well-studied exact conditions. Approximations constructed this way automat-
ically satisfy exact conditions–but are also calculable in the intermediate regimes.
Machine learning brings a sophisticated tool to the interpolation step. We review a
few approximate functionals so that the historical context of the more recent ML
development may be clarified.

Conventionally the XC energy models have been developed based on the separa-
tion into the exchange and correlation parts 𝐸xc [𝑛] = 𝐸x [𝑛] + 𝐸c [𝑛]. The exchange
part is defined by the Coulomb exchange integral with an appropriate single-particle
basis. Defined with the KS orbitals, it is functional of 𝑛(r), as each orbital is an im-
plicit density functional (here spin is required, as there is no exchange contribution
from opposite spins):

𝐸x [𝑛] = −1
2

∑︁
𝑎,𝑏:occ.

∫
𝑑r𝑑r′

𝜑∗
𝑎 (r)𝜑∗

𝑏
(r′)𝜑𝑏 (r)𝜑𝑎 (r′)
|r − r′ | . (18)

The correlation part 𝐸c [𝑛] contains all other quantum effects. 𝐸x [𝑛] and 𝐸c [𝑛] can
each be written as an integral over an XC energy per electron, e.g:

𝐸c [𝑛] =
∫

𝑑r𝑛(r)𝜀c [𝑛] (r). (19)

Note that choices of energy per electron are ambiguous since they can have arbitrary
components that integrate to zero in total [17]. The definitions above can also
be reasonably extended for the two-component spin DFT, where the functionals
depend on 𝑛↑ (r) and 𝑛↓ (r) representing the spin-up and down components of the
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electron charge density. The relative spin polarization introduced 𝜁 (r) = (𝑛↑ (r) −
𝑛↓ (r))/(𝑛↑ (r) + 𝑛↓ (r)) is often used to parameterize spin dependence.

3.1 Jacob’s Ladder of Density Functional Approximations

Approximations to the XC functional can be organized into a hierarchy which
Schmidt and Perdew [18] coined as Jacob’s ladder. The ladder spans the distance
between the (crude) Hartree approximation and the sought-after Heaven of Chemical
Accuracy (the ∼ 1 kcal/mol accuracy required to predict the energy of a chemical
reaction). The lowest “rung" of the ladder is the simplest approximation to the XC
functional: the local density approximation (LDA). In the LDA, the XC functional is
constructed as a local functional of the density–that is, it depends on the density at
that point alone. Improvements on the LDA (the higher “rungs") are guided by the
concept of a gradient expansion [4, 5]. Going up the rungs, the approximate models
of the exchange-correlation energy densities incorporate dependence on the charge
density at the site 𝑛(r) [local (spin) density approximation, L(S)DA], its gradient
∇𝑛(r) (generalized gradient approximation, GGA), Laplacian and/or kinetic energy
density (meta GGA), occupied KS orbitals, (hybrid), and unoccupied ones (double
hybrid, RPA). Below we review some example functionals from the various rungs.
An excellent summary of approximate XC functionals can be found in [19].

3.2 Local density approximation

In the LDA, the energies per electron are given by

𝜀LDA
x,c [𝑛] (r) = 𝜀unif

x,c (𝑛(r)). (20)

where 𝜀unif
x,c (𝑛(r)) is the energy per electron of the uniform gas with density 𝑛. To

develop the model for 𝜀x,c (𝑛), people refer to the system’s behavior in the uniform
electron gas limit 𝑉ion = 0. Often the charge density is characterized by the Wigner-
Seitz radius 𝑟s = 3

√︁
3/(4𝜋𝑛) ≡ 𝑟s (𝑛). The dependence on the spin density is also

included, called the local spin density approximation (LSDA):

𝜀LSDA
x,c [𝑛↑, 𝑛↓] (r) = 𝜀unif

x,c (𝑛(r), 𝜁 (r)). (21)

The exchange energy per electron in the uniform electron gas is analytically calcu-
lated to be

𝜀unif
x (𝑛) = −3

4

(
3
𝜋

)1/3
𝑛1/3. (22)

First Bloch [20], then Dirac [21] derived this form for Eq. (20).
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3.2.1 Correlation of the Uniform Gas

Several parameterizations of 𝜀unif
c (𝑛) exist, the most commonly used being VWN

[22], Perdew-Zunger [23], and PW92 [24]. All three were constructed with the
same basic strategy. First, an analytical form is chosen such that it recovers the
correct asymptotic behavior in either the high-density (𝑟𝑠 → 0) or low-density
(𝑟𝑠 → ∞) limit, or both. This is followed by numerically fitting a small number
of free parameters to the Monte Carlo results of Ceperley and Alder[25, 26]; the
interpolation serves to extend the range of 𝑟𝑠 for which the model is accurate.
All three of these parameterizations agree with one another to within a roughly 2-
percent error (which is substantially smaller than the error of LDA for inhomogenous
systems). The parameter determination for the spin-polarized case used Misawa’s
spin scaling for the correlation energy [27].

3.3 Generalized gradient approximation (GGA)

The next rung of Jacob’s ladder corresponds to inclusion of the density gradient

𝜀GGA
xc [𝑛] (r) = 𝜀GGA

xc (𝑛(r), |∇𝑛(r) |), (23)

called generalized gradient approximation (GGA). The development of useful GGA
model functionals has been much advanced through ’80s and ’90s. Although there
have been many proposed models, we here explain the Perdew-Burke-Ernzerhof
(PBE) model [28], that well represents how the analytical human functional devel-
opment proceeds.

The PBE correlation energy per electron is

𝜀PBE
c [𝑛↑, 𝑛↓] (r) = 𝜀unif

c (𝑟s (r), 𝜁 (r)) + 𝐻 (𝑟s (r), 𝜁 (r), 𝑡 (r)), (24)

where 𝑡 is a dimensionless measure of the gradient. The form of 𝐻 is chosen
to satisfy three conditions: (a) In the small-𝑡 limit it reduces to the second order
gradient expansion [29] 𝐻 ∼ 𝛽𝑡2, from which 𝛽 is known to be ≃ 0.066725 . (b) In
the rapidly varying limit 𝑡 → ∞, the correlation energy should vanish: 𝐻 → −𝜀UEG

c .
(c) The total correlation energy must scale to a constant under uniform scaling to the
high-density limit (Ref.[30]).

The exchange energy per electron in the unpolarized case 𝜁 = 0 is formulated as

𝜀PBE
x [𝑛] (r) ≡ 𝜀unif

x (𝑛(r))𝐹x (𝑠(r)), (25)

with 𝑠 = |∇𝑛|/(2𝑘F𝑛) and 𝐹x is called the enhancement factor. The spin dependent
formula is derived by the exact spin-scaling relationship for exchange [31]. The
PBE form satisfies the following three conditions: (d) Under the uniform density
scaling described above, 𝐸x must scale linearly (Ref. [32]). (e) It cancels the gradient
correction to the correlation energy as 𝑠 → 0 so that the model recovers the accurate



Contents 11

linear response of LDA. (f) It satisfies the Lieb-Oxford inequality [33] for all 𝑛 and
𝑠, thus ensuring satisfaction for all possible densities.

In the above construction, the formulas have four parameters determined from
the conditions. The artificial aspect is in selecting the forms of 𝐻 [Eq. (24)] and 𝐹

[Eq. (25)], which are mathematically simple for humans and minimally parametrized.
Many variations on the PBE approximation have since been suggested, including
RPBE [34], revPBE [35], and PBEsol [36].

3.4 Physically fitted functionals

Becke initiated a complementary approach for functional development. He intro-
duced a model exchange energy within the GGA with a single parameter and de-
termined it so that it optimally reproduces the Hartree-Fock energies in 6 rare gas
atoms up to Rn [37], called B88. This parametrization satisfied exact conditions on
spin-scaling and recovery of the uniform limit. Moreover, the form of the exchange
energy per electron yields the correct asymptotic behavior in the evanescent region
of an atom or molecule–a crucial property of chemical bonding [38], [39].

3.4.1 Hybrid Functionals

Based on intuitive ideas of the adiabatic connection curves of approximate function-
als (see also Ref.[40] for recent advance), Becke further proposed [41] to modify
his B88 model by replacing a fraction of LSDA exchange with exact exchange, and
adding correlation at the GGA level:

𝐸B3PW91
xc = 𝐸LSDA

xc + 𝑎0 (𝐸x − 𝐸LSDA
x ) + 𝑎x (𝐸B88

x − 𝐸LSDA
x ) + 𝑎c (𝐸PW91

c − 𝐸LSDA
c ),

(26)

where 𝐸PW91
c is from Ref. [42]. He chose the three parameters (𝑎0, 𝑎𝑥 , 𝑎𝑐) so that

experimentally observed reaction energies for approximately 100 reactions are well
reproduced. The variant of this model with 𝐸PW91

c replaced by the Lee-Yang-Parr
form [43] is the B3LYP functional [44, 45], the most used hybrid functional (4th
rung of the ladder) in quantum chemistry. Although Becke himself emphasized the
physics [41], the scheme stimulated researchers, yielding various data-tuned func-
tionals in the next decades (see Ref. [46] for a review). Many of these developments,
not originally declaring themselves as ML, used the same fundamental strategies as
modern ML-DFT; but often were contrary in spirit to Becke’s philosophy.
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4 Machine-learning

Machine learning technology has introduced a paradigm that is in some ways similar
to the variational theory for quantum many-body Hamiltonian. When we calculate
the many-body ground-state wavefunction of an interacting quantum system by the
variational method, we prepare a model wavefunction with numerous parameters
and optimize those so that the energy expectation value is minimized. The derived
wavefunction is used for calculating the observable properties such as correlation
functions, but of course this specific wavefunction is only used for this one system.

This scheme is not regarded as useful for finding approximate functionals in DFT
since the latter aims to utilize the derived functional for systems not referenced in the
optimization step. Even if we could achieve an extreme accuracy for a specific system,
such an optimized model would never be applicable to others. To this field, ML has
provided a framework to optimize a model function for a group of systems, keeping
its accuracy even when applied out of the group (via some form of regularization).
The surge of ML developments in DFT has demonstrated that highly parameterized
functionals may have general accuracy, at least for an appropriately defined range of
applications.

In this section, we attempt to summarize numerous recent results applying ML to
design density functionals, and use these to draw general insights into the possibilities
that ML has opened for improved DFT calculations.

4.1 General discussion

ML in DFT generally concerns modeling of the functionals appearing in the previous
sections, such as exchange-correlation energy 𝐸xc [𝑛]. The tricky thing with DFT is
that the density functionals and 𝑛(r) are, in practice, both outputs of the Hamiltonian
that are simultaneously determined after solving the KS equations. Because of this
there has been no convenient analytic theory that relates 𝑛(r) and functionals as
input and output, unlike the wave-function based perturbation theory that relates the
single-particle basis to physical quantities. Machine learning provides versatile tools
to optimize models relating those using a large number of pairs (𝑛(r), functional)
produced by accurate calculations in specific cases.

The typical procedure starts from modeling of a target functional in DFT, dubbed
as 𝑓 [𝑛], by any regressor that can accept any value of 𝑛(r). Practically this is
implemented as a vector-to-scalar1 mapping 𝑛(r) → 𝑓 [𝑛], where 𝑛(r), a non-
negative distribution in space, is approximately represented as a vector; 𝑛(r) ≈ n.
How to efficiently represent n is also of a matter of ongoing development. The
regressor model chosen has many parameters. We then collect specific examples of
values (𝑛(𝑖) , 𝑓 (𝑖) [𝑛]) for various different potentials to serve as training data. These
reference data must be accurate enough for the intended applications of the ML

1 Hereafter we assume 𝑓 to be a scalar for simplicity but we can also take 𝑓 as vector or tensor.
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model. The optimization of the model parameters is executed so that a loss function

𝐿 =
1

𝑁data

𝑁data∑︁
𝑖=1

𝐷 ( 𝑓 (𝑖) , 𝑓model [𝑛(𝑖) ]) + (reg.). (27)

is minimized. Here 𝐷 ( 𝑓 , 𝑓 ′) represents any non-negative function that measures
distance between inputs 𝑓 and 𝑓 ′; e.g., 𝐷 ( 𝑓 , 𝑓 ′) = ( 𝑓 − 𝑓 ′)2 and “reg." denotes the
regularization term that prevents overfitting to the training data. While the building
blocks for this procedure predate ML, ML technology has provided both powerful
model functions and efficient methods for optimization and regularization.

4.1.1 Universal regressors

In the DFT context, two approaches are often used for the above 𝑓model: Kernel ridge
regression (KRR) and neural network (NN). We explain the features of those models
very briefly.

Kernel ridge regression (KRR) [47] has a form

𝑓 (v∗) =
𝑁data∑︁
𝑗=1

𝛼 𝑗 𝑘 (v 𝑗 , v), (28)

where v denotes any descriptor vector for 𝑓 . The kernel function 𝑘 (x, x′) can have any
form as long as the 𝑁data × 𝑁data matrix formed by any set of data {v1, v2, · · · v𝑁data },
K𝑖 𝑗 = 𝑘 (v𝑖 , v 𝑗 ), is positive definite. Assuming ridge regularization, the weight 𝛼𝑖 is
exactly determined by a matrix inversion of size 𝑁data × 𝑁data.

Neural networks (NN) come in many varieties. The typical fully connected NN
is formed by repetition of non-linear vector-to-vector transformation v → v′

v′ = 𝜙(𝑊v + b), (29)

which is often represented by the celebrated graph (probably seen in other Chapters)
composed of layers of nodes and edges connecting those. Here, 𝑊 and b are the
parameter matrix and vector to be optimized and 𝜙 denotes some non-linear trans-
formation operated on the respective vector components. The intermediate vector
dimensions are arbitrary.

Both KRR and NN are both assured to be universal approximators [48–51], in
the sense that the model can numerically reproduce any reference function–provided
that the model has a sufficient number of parameters. This is achieved by increasing
the reference data and intermediate dimensions for the KRR and NN, respectively.

The universal character of these models is quite beneficial for developing ap-
proximate density functionals. In principle, the functionals 𝑓 [𝑛] have rigorous (but
not directly calculable) forms that are only inferred from specific cases. NN and
KRR-based models are capable of representing any dependences between 𝑛(r) and
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𝑓 , by fitting the specific data. They can also attain some robustness against overfitting
when the optimized models are applied to unseen cases.

Although those two approaches are mathematically equivalent in some limits [52],
a crucial difference between the KRR and NN exists in practice. KRR needs to store
the training data for later calculations, but once the definition of the loss and training
data are specified, the weights {𝛼𝑖} can be rigorously determined. The NN, on the
other hand, treats the training data explicitly only at the model optimization. The
information of the training systems are then encoded implicitly in the NN model
parameters. However, the optimum parameters depend on the optimization methods
and, if one adopts stochastic methods such as dropout and batch optimization, their
specific values are not reproducible even with fixed NN architecture and training
systems. This is quite disturbing from a traditional quantum-chemical viewpoint.

4.1.2 Limitation by data

The accuracy of ML-based functionals is limited by the training data, but accurate
data available now for training is still little in amount. The most accurate data are those
from experimental observations, which are limited in number of the systems as well
as in the variety of quantities. Few quantities are measurable with enough accuracy,
like the energy-related quantities and structural properties such as bond lengths and
angles and lattice parameters. Hence, in most of the ML-based DFT developments,
researchers refer to databases augmented by theoretical calculations. In datasets
based on existing theoretical methods, the procedure to generate the training data
pair (𝑛(r), 𝑓 ) is free from any uncertainty like noise in experimental data–allowing
for more consistent benchmarking and comparison across ML models. Currently,
the most accurate and executable solver for molecules is the coupled cluster (CC)
method [53, 54]. Fortunately, in many cases coupled-cluster singles and doubles and
perturbative triples (CCSD(T) [55]) achieves chemical accuracy (errors less than
1 kcal/mol or about 30 meV for covalent bonds in small molecules) and therefore
versatile ML-DFT functionals with CC accuracy are worth aiming for.

4.1.3 ML Usage with DFT

People have explored various fitting tasks concerning the density functionals using
ML. Theoretically there is a nuanced difference among the papers in the level of the
ML usage: They either (i) preserve the rigorous framework of DFT, (ii) supplement
or completely replace the variable 𝑛(r) with atomic potentials 𝑉ion (r), or (iii) with
element labels. Level (ii) is distinct from (iii) as it is based on the potential functional
theory, which takes 𝑉ion (r) as the variable for the corresponding ground state. This
is a formal dual of DFT [11, 56] and therefore is capable of carrying the same
information. Using the element descriptors in addition to 𝑛(r) seems useful for
efficient fitting in some cases, but at the price of departure from the density-potential
functional framework.
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Fig. 1: Illustration of the relation between traditional DF and quantum chemical
theories and ML-based DFT developments. Machine learning can help people climb
(with less computational cost) toward the chemical accuracy heaven by supplement-
ing supporting rungs (=variables) along with DFT. A more convenient path by ML
is available that boosts people from some low rung of Jacob’s ladder to the heaven.
Either way people can sightsee the heaven, as far as the reference data and quantum
chemical theory allow. Researchers yet need to climb the traditional theoretical paths
of quantum chemistry and DFT without ML for working on the ML limitation.

Across the studies we address in this review, ML methodologies fit the Jacob’s
Ladder paradigm to varying degrees. Some try better parametrizations of the func-
tionals used in the KS or OF framework, adapting the definitions of variables in the
ladder rungs. Others seek modified implementations of the ladder, by laying “rungs"
of different variables other than original, like the non-local weighted density [57].
Still others fit the difference of the functionals calculated with the high-level DF or
quantum chemical approximations and low-level DFT by extra variables that may
be of level (ii) or (iii). Such studies would be understood as building an ML path
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to Heaven on the basis of (low-level) DFT, among which we find the current most
successful achievements in the cost-accuracy balance as we will highlight below.
For all those, we again remind that the readers should be aware of the limitation by
data. We sketch the situation by Fig. 1.

4.1.4 Interpolation, extrapolation, and generalization

In principle, a trained model should not be applied to systems that are not represented
in the training data. For a trained machine the target systems are classified into two
groups. Systems for which the model is expected to provide accurate results are called
“in-domain" or “in-sample". Systems that are poorly represented by the training data,
and therefore are not expected to be accurately captured by the model, are termed
“out-of-domain" or “out-of-sample". In this review, we use “interpolation" to refer
to the application of a model to an in-domain system, and “extrapolation" to refer to
the application of a model to an out-of-domain system.

Note that whether a task constitutes interpolation or extrapolation is judged only
after application; the system for which the machine yields accurate predictions is
found to be in the “domain of interpolation". The interesting issue for ML applications
to DFT would be the possibility that any training scheme can result in an interpolation
domain which is broader than one would expect from the training data. Because
within the DFT framework the variable is 𝑛(r), the original atoms are anonymized,
and therefore the interpolation domain can become broader than expected from the
literal atomistic composition of the systems. We call the success of the models to
unseen systems “generalization", rather than extrapolation.

4.2 Fitting of functionals

Here we show some of the successful cases for making well-behaved density func-
tionals 𝑓 [𝑛] ≈ 𝑓 (n) with machine learning. The functional 𝑓 [𝑛] could be the total
energy, the exchange-correlation energy, the exchange-correlation potential, forces,
or any other quantities related to the ground state determined by the specified 𝑛(r).

4.2.1 Kinetic energy

In 2012, Snyder et al. [58, 59] calculated the exact ground-state charge density
and non-interacting kinetic energy in a one-dimensional model, where the model
ionic potential was replaced by a sum of Gaussians controlled by a few parameters.
They demonstrated that the kinetic energy 𝑇s [𝑛] is well fitted by the KRR model as a
functional of 𝑛(r) being a vector {𝑛(𝑥1), 𝑛(𝑥2), · · · } on a discretized spatial grid. This
work is the first demonstration that a fully nonlocal functional can be implemented
for accurate reuse, as long as the range of application is well controlled: In this study
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the training and test potentials were both within the specific range of the Gaussian
model parameter space. This has been also shown to hold for the exchange-correlation
energy in one dimension [60].

The faithful fitting of fully nonlocal functionals in three dimensions is far more
difficult since the representation of [𝑛] requires a large amount of data. Yao and
Parkhill [61] pursued 𝑇s [𝑛] by a convolutional NN form, whereas Brockherde et
al. [62] demonstrated a bypass of the functional relation 𝑉ion → 𝑛 in the KS frame-
work by KRR for molecules in 3D, avoiding even the explicit construction of 𝑇s [𝑛].

Semilocal approaches to 𝑇s [𝑛] with ML have been widely explored. Seino et
al. [63] targeted the kinetic energy density 𝜏(r) defined with a local decomposition
𝑇s [𝑛] =

∫
𝑑r𝜏( [𝑛]; r). They collected the grid data for the converged 𝑛(r) and 𝜏(r)

calculated from KS-DFT for (i) atoms from H to Ne and (ii) 19 small molecules
composed of C, H, O, and N, and separated those into the training and test grid
points in dataset (i) and (ii), respectively. They implemented the semilocal form
𝜏[𝑛] (r) = 𝜏(n(r), |∇n(r) |,∇2n(r), |∇∇2n(r) |) using the NN and examined the
fitting accuracy. Golub and Manzhos dug further into the fitting problem with focus
on the instability near the atom [64] and ML model dependency [65]. Semilocal
modeling tends to suffer from error in molecular reaction energies of order 0.1
Hartree compared with the KS-DFT, which still remains a challenge even with ML.
Still, it may be useful for estimating equilibrium structural properties as shown by
Imoto et al. [66]. Inclusion of the atomic kind and positions as descriptors can
be useful for improvement [67, 68], though is not a conclusive solution. All such
attempts must account for the ambiguity in the energy density discussed earlier.

Nonlocal density descriptors are generally expressed in the following convolution

𝜚(r) =
∫

𝑑r′𝑤(r − r′)𝑛(r′), (30)

and seem useful for capturing the nonlocal nature of 𝑇s [𝑛]. Note that the convolution
weight 𝑤 can also be a target of ML modeling. Ryczko et al. [69] demonstrated a
fitting of a voxel-to-voxel NN model for 𝑛(r) to 𝛿𝑇s/𝛿𝑛(r) for graphene sheet. The
decomposition of 𝑛(r) by atom-centered basis functions has also been used as an
efficient method for incorporating the nonlocality [70, 71]. The nonlocal descrip-
tors [72] are generally found to reduce the fitting error by an order of magnitude
compared to semilocal approximations.

Using machine-learned energies for the variational solution Eq.(7) imposes an-
other challenge since an ML model fitted to energies suffers from numerical noise
when we take derivatives [58]. Training sets can never be dense enough to infer the
derivatives in all directions in the high dimensional descriptor space. The numerical
instability induced by this may be mitigated by stopping the derivatives going out
of the sampling space [58, 73, 74]. The finite difference method is also a stable
choice [65], but with increased computational cost relative to the direct derivatives.
Defining the loss function to include the functional derivatives was also shown to be
effective [66, 75]. For NN models, the noisy behavior may be mitigated by carefully
designing the NN architecture [76].
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The kinetic “potential" used for the variational approach, 𝛿𝑇s [𝑛]/𝛿𝑛(r), has sig-
nificant nonlocality. To fully take advantage of the OF framework than KS, the
nonlocal calculation must be kept as cheap as possible. Ghasemi and Kühne at-
tempted to learn the “source" of the potential rather than the potential itself [77],
which could alleviate the nonlocality.

A remarkable mention goes to a recent result by Zhang et al. [71], in which
they claim that the total energy difference of ML OF-DFT from KS-DFT was well
under the chemical accuracy for broad unlearned molecules. They used the atom-
centered density descriptor and developed a complicated NN architecture using the
transformer [78], which is rapidly gaining popularity in various ML usages for its
performance. This achievement may be the cornerstone on which the OF-DFT can
next aim at true chemical accuracy.

4.2.2 Exchange-correlation energy

Fitting of the exchange-correlation energy by ML dates back to 1996 by Tozer,
Ingamells and Handy [79]. For small molecules composed of the first and second
row elements, they calculated accurate charge densities using coupled clusters theory,
solved the inversion problem of the KS equation [80] to obtain the KS potential, fitted
a NN model function, and applied the optimized functional to unseen molecules (still
restricted to the second-row) to see its performance. They found that the optimized
LDA functional deviates from an analytical LDA model to better fit the data. Thanks
to the correct asymptotic behavior of the training KS potential, their NN LDA
functional yields significant improvement for the ionization energy for the restricted
group of test systems. Surprisingly, this study has already established the template
design of the modern ML-DFT developments, as described later.

Other researchers exploited Becke’s three parameter hybrid form (Sec. 3.4) by
making the mixing parameters (𝑎0, 𝑎x, 𝑎c) [Eq. (26)] system-dependent. Zheng et
al. [81] implemented in 2004 a small NN which relates 𝑛(r) calculated with the
B3LYP to (𝑎0, 𝑎x, 𝑎c) for correcting 𝐸xc so that the reaction energies of the reference
molecules are well reproduced, showing fair improvement in the test accuracy relative
to B3LYP. Similar methods, where a small number of parameters entering the hybrid
exchange-correlation functionals are derived from lower-level theories, have been
further developed more recently [82, 83]. This is not strictly DFT since the parameters
are explicitly dependent on atomic numbers. These are modest usages of ML, whereas
we showcase more drastic use below.

Exact fitting of the fully nonlocal 𝐸xc [𝑛] is interesting as it may help to infer the
analytic properties of the exact exchange and correlation. For one-dimensional hy-
drogen chains, Li and coauthors fitted the exact exchange-correlation energy 𝐸xc [𝑛]
calculated with the density matrix renormalization group [60] with KRR, showing
that the test error rapidly converges to zero by increasing the training data. Nagai
et al., and separately, Gavini et. al. [84, 85] performed a fitting of the fully non-
local exchange-correlation potential 𝑉xc (r) in an extremely simple one-dimensional
model derived from the exact diagonalization and KS inversion, as a vector-to-vector
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mapping n → Vxc = {𝑉xc (𝑥1), 𝑉xc (𝑥2), · · · } by the NN. Such exact fitting becomes
demanding when going to three dimensions due to the difficulty of representing
the density distribution in an efficient fashion. Progress in this problem is revisited
below.

ML has also been helpful for development starting from the semilocal approxima-
tion, toward the chemical accuracy world but by going up paths forked from Jacob’s
Ladder (Fig. 1). The semilocal approximation is represented by the vector-to-scalar
relation 𝜀x,c [𝑛] (r) ≈ 𝜀x,c (g(r)) with e.g. g(r) = (𝑛(r), |∇𝑛(r) |) for the GGA. Ex-
tension of the descriptor vector g has been widely explored, exploiting the fact that
the procedure for optimizing ML models is executable for any descriptor.

A variety of nonlocal descriptors in the form Eq. (30) have been pursued, which are
generalizations of the weighted density approximation for the exchange-correlation
hole [57]. Schmidt et al. [86] applied the convolutional NN form to the one dimen-
sional model. Lei and Medford [87] introduced the decomposition of the three dimen-
sional charge density by the Maxwell-Cartesian spherical harmonics and showed that
the B3LYP exchange-correlation functional may be accurately fitted by a NN. Nagai
et al. [88] implemented a NN model including a weighted density descriptor and
applied to the KS equations, achieving accuracy comparable to a hybrid functional,
without resorting to the generalized KS framework including the exact exchange
operator (4th rung). Bystrom and Kozinsky [89, 90] constructed a convolution-
type density descriptor that is invariant under the uniform scaling transformation
𝑛(r) → 𝜆3𝑛(𝜆r), that is necessary for modeling exchange functionals that guarantee
exact scale invariance (see later).

The atomic decomposition of the charge density 𝑛(r) ≈ ∑
𝐼:atom 𝑛𝐼 (r) has also

been pursued for efficient descriptor design for the 3D charge density. The theory by
Bartók et al. [91] on how to represent the atomic configuration surrounding a certain
atom has been utilized by several researchers [92–94]. They generally decompose
the calculated 𝑛(r) in an atom-centered basis and formulate rotationally covariant
descriptors from the coefficients. A scheme of this kind allows for a representation
of the entire distribution which is very sparse compared to those obtained from
system-independent basis like plane-waves. The disadvantage is that one has to
store the labels of atom types and positions: the functionals thus developed are in a
strict sense not density functionals and may lose DFT’s capability of generalizing
across different types of atoms; yet they seem useful if the range of application
is appropriately limited. [94, 95]. Generalization to different atom types could be
recovered by properly encoding the atomic position information, as shown in the
case of OF-DFT [71].

Not only the charge density, but any quantities that are calculated using the con-
verged KS Hamiltonian can also be taken as descriptors since they are all density
functionals. The DeepMind21 (DM21) functional [96] incorporates the local HF
exchange energy density and LDA exchange energy density into the descriptors, the
former of which is a functional of the KS orbitals [97]. Riemelmoser et al. [98]
formulated an extremely nonlocal density descriptor calculable with the fast Fourier
transform. Polak et al. [99] adopt artificial densities calculated from unoccupied KS
states as descriptors for the correlation energy density. A more data-based approach
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a b
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Fig. 2: Dynamics on accurate potential surfaces by Δ-DFT. a The potential for water
molecule calculated by the baseline theory (GGA, top) is corrected to the surface
of CC accuracy (middle). The correction ML term (bottom) shows smooth and
modest behavior, which corrects the minimum from red to blue diamond. Taken
from Ref. [101] under the terms of the CC BY 4.0 license. b The dynamics of
resorcinol on the accurate surface generates rotational trajectories of a branch (light
and dark blue), different from the GGA force field (red). Taken from Ref. [101]
under the terms of the CC BY 4.0 license. c The radial distribution function for O-O
in water from molecular dynamics, calculated by a ML nonlocal 𝐸xc trained by the
water trimer (“NXC-W01" in legend). Taken from Ref. [95] under the terms of the
CC BY 4.0 license.

to the descriptor design would be to use the dimensionality reduction techniques
as preprocessers of the functional input. Gong and coworkers [100] trained an NN
encoder of density distribution in three dimensions so that it can relate the distribu-
tions matched by the translation and scale transformation and utilized the encoded
features as descriptors of the exchange energy.

4.2.3 Baselining and 𝚫-learning

One key to succesful performances of ML-DFT is to leverage the wealth of intuition
around human-made functional forms in concert with ML. One methodology for
doing so is Δ-learning; in which the “baseline" of the model is an existing analytical
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functional form. Then, the difference between the analytical form and the reference
data (i.e the Δ) is learned. Very often, these methods are presented in modest fashion
(sometimes in the supplementary materials rather than the main text) despite their
pivotal importance. We do not delve into the details, but discuss some general
strategies.

In most of the ML applications based on the semilocal-to-nonlocal strategy,
the model definition relies on the traditional decomposition or factorization of the
exchange and correlation energies such as Eqs. (25) and (24). These definitions are
useful for applying constraints on the machines as detailed later.

Ramakrishnan et al. [102] put forward a Δ-ML concept, represented by the
following formula

𝑃t (dt) ≈ 𝑃b (db) + Δ𝑃(db). (31)

Here, one wants to learn a target (“t") property 𝑃t as a function of descriptors of
target value dt, assuming that the descriptor value is also determined self-consistently
referring to 𝑃t (for example 𝑃 and d may be the total energy and optimum atomic
positions of molecules, respectively). In the DFT context d can be 𝑛(r) [101, 103].
For the learning task, one chooses a baseline theory “b" that is calculated with lower
computational costs and lets the machine learn the residual Δ𝑃 as a function of
approximate value of descriptor db derived from the baseline theory. This approach
is straightforwardly applied to Jacob’s ladder, to learn the higher level energies as a
functional of 𝑛(r) derived from lower-level theories. Thanks to this, the calculation
of the total energy with CCSD accuracy has been achieved with DFT cost [101].
The remaining error due to the incorrect db is related to the density-driven error
concept [104], which we revisit later in this text.

4.2.4 Derivatives of the functionals

Similarly to the case of𝑇s [𝑛], using the trained 𝐹model [𝑛] for solving the KS equation
requires some care. Although in 𝐹model [𝑛] we are able to take arbitrary descriptors, to
use it for calculating𝑉Hxc (r) = 𝛿𝐹model [𝑛]/𝛿𝑛(r) the descriptors have to be formally
differentiable, though a large class of descriptors written in the convolutional forms
can be differentiated [105]. Compared with the𝑇s [𝑛] case, the effect of the numerical
noise in 𝛿𝐹model [𝑛]/𝛿𝑛(r) may be mitigated by the explicit use of the kinetic energy
operator 𝑇 = −∇2/2 [84]. Still, stabilizing the KS cycles would be essential for
reliable applications. Regularizations based on perturbation theory [96] and taking
unconverged KS steps into the loss [106] have been proposed.

Another important derivative is the force on atoms FI = −𝜕𝐸GS [𝑛]/𝜕RI, which
is essential for performing a molecular dynamics simulation. If one can learn an
accurate charge density, for the Coulombic system, the Hellmann-Feynman force
formula [107]
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FI = −
∫

𝑑r𝑛(r) 𝑍𝐼𝑒
2

|R𝐼 − r|3
(R𝐼 − r) +

∑︁
𝐼 ′≠𝐼

𝑍𝐼𝑍𝐼 ′𝑒
2

|R𝐼 − R𝐼 ′ |3
(R𝐼 − R𝐼 ′ ) (32)

enables us to calculate the force with the same accuracy. Dick and Fernandez-
Serra [95] thus executed molecular dynamics with an accurate force field for liquid
phases of small molecules, obtaining accurate radial distribution functions. For
frameworks that do not target accurate charge density, some additional precalcula-
tion is required such as the atomic-position derivative of the atom-centered basis
set [108] similar to the Pulay term [109]. Bogojeski et al. demonstrated accurate
MD simulation of a molecule, by intermittently correcting the baseline force by the
correction term calculated with the finite-difference method to the ML higher-rung
energy [101].

4.2.5 Other quantities

The quantity of central interest in DFT calculations is the energy, while other quan-
tities at the ground state, including responses functions, are also functionals of 𝑛(r).
Moreno, Carleo and Georges [110] attempted the fitting of the many body wavefunc-
tion and two-body correlation function as functionals of 𝑛(r), implying that those
high-dimensional quantities are on a reduced latent dimension of 𝑛(r) in line with
the Hohenberg-Kohn theorems. Applications to single-particle excitations from the
ground states [111] and real-time dynamics [112] have also been demonstrated.

4.3 Learning through the KS cycle

For the training of the universal functionals, one may desire to refer to quantities
other than the functional itself, such as 𝑛(r), from the expectation that the condition
number in the model optimization should be increased and agreement with the
observable quantities are improved. This is also a matter of curiosity that whether
people can improve accuracy of 𝑛(r), the fundamental variable of DFT, even if
accurate observation of it is difficult. The task appears tricky when the quantities are
not dependent explicitly on the model parameters but dependent only through the
KS solution using parametrized functionals. Nagai et al. [88] trained the exchange-
correlation energy density with the loss function defined by 𝑛(r). They optimized
the parameters by derivative-free Monte Carlo sampling and indeed showed that
the training on only three molecules can generalize to 147 molecules, although the
optimization was extremely time-consuming. Similar generalization from a few to
hundreds of molecules has been demonstrated by Wang et al. [113], showing the
efficiency of the training on 𝑛(r). Thankfully, since then, the usual gradient-based
optimization has been already made applicable as we sketch below.

Chen et al. [108] took another approach which may be applied to learning of other
quantities calculated through the self-consistent KS solution. Let 𝑄 be any quantity



Contents 23

Fig. 3: (a)–(c) Learning through the differentiable KS equation, taken from Ref. [106]
under the terms of the CC BY 4.0 license. The exchange-correlation energy [(c)] is
modeled. The loss function is defined with the energies at unconverged steps and
converged charge density [(a)]. The parameter derivatives backpropagate through
the iterative calculations by the chain rule [(b)]. This helps produce a functional
which converges.

to learn which is in theory formulated with the outputs of the converged KS equation;
e.g., 𝑄 = 𝑛. Their learning scheme is then expressed as the following minimization2

min
𝜔

𝑁data∑︁
𝑖=1

[
𝐸

(𝑖)
data − 𝐸

(𝑖)
KS (𝜔)

]
, (33)

where 𝐸
(𝑖)
KS denotes the ground state energy from a modified KS equation modeled

with a set of parameters 𝜔:

𝐸
(𝑖)
KS = min{𝜑 𝑗 },

∑
𝑗:occ. |𝜑 𝑗 |2=𝑛(r)

[
𝐹𝜔 [𝑛] + 𝐸

(𝑖)
ext [𝑛] + 𝜆𝑄𝐷 [𝑄 [𝑛], 𝑄 (𝑖)

data]
]
. (34)

The parametrized universal function 𝐹𝜔 is assumed to be the target to model.
Here 𝐷 [𝑄,𝑄′] is a given nonnegative function which becomes zero only when
𝑄 and 𝑄′ agree., whereas 𝜆𝑄 is the regularization parameter. As a key trick,
they switched the order of the minimizations from min𝜔

(
min{𝜑 𝑗 },

∑
𝑗:occ. · · ·

)
to

min{𝜑 𝑗 },
∑

𝑗:occ. (min𝜔 · · · ). The gradient optimization of the parameter 𝜔 is then

2 We omit the force term in the original work as it is not necessary for the present discussion.
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executed as usual with a fixed set of orbitals {𝜑 (𝑖)
𝑗
} where 𝑖 and 𝑗 run over

the training systems and occupied states, respectively. The orbitals are infre-
quently updated by the parametrized KS equation including a penalty potential
𝑉

(𝑖)
Q = 𝜆𝑄𝛿𝐷 [𝑄 [𝑛], 𝑄 (𝑖)

data]/𝛿𝑛. Those optimizations are repeated until convergence,
after which the optimized 𝐹𝜔 is in hand that is tuned to best yield 𝑄 as well as 𝐸 for
given training systems.

The idea that the KS self-consistent calculation can be made differentiable is
remarkable [106]. Any mathematical algorithm implemented in a programming lan-
guage is executed by sequences of fundamental operations; addition, subtraction,
multiplication, and division. From this, even complicated algorithms can be de-
scribed in terms of composite functions formed by those fundamental operations
and therefore its derivatives can be formulated by the chain rule. The differentiable
implementation of the KS self-consistent cycle has then emerged and enabled us to
differentiate the physical quantities calculated via the self-consistent KS solution.
For a one dimensional model, Li et al. [106] optimized the NN-model exchange-
correlation energy with respect to the loss function referring to the converged charge
density. Soon after Kasim and Vinko [114] and Dick and Fernandez-Serra [115]
demonstrated a three-dimensional implementation for the optimization of the NN-
model meta GGA. This technology is widely applicable to ML-DFT as it extends
the variety of the learning framework, though the differentiable programming has its
own challenges as it requires large memory to store the numerical derivatives.

Table 1: Performance of the ML meta GGA model (“pcNN-based") with exact con-
straints; data taken from Ref. [116]. The model was trained on three molecules.
“NN-based" represents the model from Ref. [88], where the constraints were not
imposed. (a) Atomization energy benckmark on 144 untrained molecules. (b) Opti-
mum lattice constants of 48 solids. Parentheses in column “NN-based" indicates that
6 systems were excluded because of ill convergence of the KS cycle. (MAE, mean
absolute error; ME, mean error; SD, standard deviation of signed error)

(a). Atomization energies of molecules

MAE ME SD
XC (kcal/mol) (kcal/mol) (kcal/mol)

PBE 17.3 16.2 13.1
SCAN 6.2 -4.5 5.7
NN-based 4.8 1.8 6.3
pcNN-based 3.6 0.3 4.5

(b). Optimized lattice constants of solids

MAE ME SD
XC (mÅ) (mÅ) (mÅ)

PBE 38.1 33.9 44.2
SCAN 22.3 -7.5 28.5
NN-based (22.9) (0.8) (32.0)
pcNN-based 19.1 -2.5 26.5
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4.4 Machine-learning and exact conditions

Even with the recent flourish of ML-DFT, the traditional analytical approaches
remain important. Rigorous equalities and inequalities from the latter are useful for
regularizing the behavior of the trained ML models when applied to less familiar
systems. Usage of those as constraints have been explored as summarized below.

Uniform scaling equalities and inequalities are properties satisfied by the exact
functional [117]. Under uniform scale transformation, the charge density transforms
as:

𝑛(r) → 𝑛𝛾 (r) = 𝛾𝐷𝑛(𝛾r), (35)

where 𝐷 denotes the spatial dimension. With this transformation, the exact kinetic
energy transforms as 𝑇s [𝑛] → 𝑇s [𝑛𝛾] = 𝛾2𝑇s [𝑛] and the exact exchange obeys
𝐸x [𝑛] → 𝐸x [𝑛𝛾] = 𝛾𝐸x [𝑛]. Hollingsworth et al. [118] proposed a preprocess to
transform the input 𝑛(r) to a definite scale 𝑛(r) → �̃�(r) so that the density distribu-
tions related by the scaling transformation are identified. The machine then learns
only the processed �̃�(r) and the actual energy is calculated via the exact scaling trans-
formation at the postprocess. A loosened version of the preprocess has also been
proposed by Gong and coworkers [100]. They trained an NN encoder of density
distribution in three dimensions so that it can relate the distributions matched by the
translation and scale transformation and utilized the encoded features as descriptors
of the exchange energy. Bystrom and Kozinsky formulated a weighted-density type
descriptor that is explicitly invariant with respect to the scale transformation [89, 90].
Using this, they implemented an 𝐸x that is forced to satisfy the scaling invariance,
and is succifiently accurate to replace exact exchange in global hybrids [99].

Various asymptotic formulas and inequalities are available [16] as constraints on
an ML model. Building models which strictly satisfy such constraints–and therefore
avoid overfitting to training data–is now possible [28]. Cuierrier et al. [119] and
Sparrow et al. [120] included the variance from the exact constraints to the loss
function, with which the model is regularized to comply with those approximately.
Lagrange interpolation to the end point of an ML model [116] can force the model
more strictly to converge to the desired asymptotic limits. Inequality constraints can
also be enforced by using any bounded activation functions at the output [115]. Nagai
et al. [116] have shown that, by designing an ML model which recovers the uniform
electron limit and other constraints used in the strictly constrained and appropriately
normed (SCAN) meta GGA [16], the resulting functional is reliably applicable to
solid systems, even when it was trained only on molecules (Table 1).

Linear dependence of the total energy on total number/spin of electrons is a
significant exact constraint. DFT applied to non-integer 𝑁 =

∫
𝑑r𝑛(r) by defining

the non-integer ground state as a linear superposition of the ground state density
matrices with integer electrons [121, 122]. Ultimately, this is simply the 𝑇 → 0 limit
of Mermin’s finite-temperature generalization of the Hohenberg-Kohn theorems to
the grand canonical ensemble [123]. From this definition, the ground state energy
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as a function of 𝑁 , 𝐸GS (𝑁), is linear between integer values of 𝑁 [122, 124].
This linearity condition, which is usually violated by approximate functionals, is
found to be tied to a proper description of charge transfer within the system with
definite 𝑁 , affecting the accuracy of molecular dissociation and the charge gap [125,
126]. Researchers implemented the charge-spin linearity conditions to the model by
construction [127] or training of the model with data enforcing the linearity [96].
In particular, the DM21 functional by Kirkpatrick and colleagues [96] succeeds in
reproducing the dissociation curves of various molecules, passing the stringent test
for DFT. Unfortunately, that approximation is costly to evaluate, and has significant
convergence issues.

An important insight on using the exact constraints can be found in Hollingsworth
et al. [118]. In their test of learning 𝑇s [𝑛] compliant to the scaling relationship in one
dimensional models, significant improvement was seen in the case of the Hooke’s
atom, whereas for the stretched 1D H2 the performance improvement was marginal.
This is due to the failure of learning the size consistency because of the scaling
preprocess 𝑛(r) → �̃�(r). The effective use of the constraints thus requires knowledge
of which constraints regularize which physics [128]. It would be of great interest to
apply such conditions with more modern ML methods to quantities such as the exact
exchange.

5 Where do we go from here?

There has been much progress in the proofs of new concepts in the DFT thanks to
ML. In this section we attempt to summarize the achievements and raise an issue of
the importance for the DFT framework deduced from the ML applications.

5.1 Generalization: Summary

We classify the types of generalization presented in published papers: Configura-
tional generalization [58–60, 62, 64, 67–70, 73–75, 77, 84, 86, 94, 95, 101, 106,
110, 118, 127, 129–133] means generalization within a fixed system, where the
training is performed for various atomic configurations and test is done for untrained
configurations of the same system. Compositional generalization [63, 66, 71, 72, 79,
88, 90, 96, 98, 108, 111, 114–116, 134–143] denotes the case where the training
is performed for a certain group of compounds and the test is done for other com-
pounds not seen during training. The latter generalization is the very goal of DFT
development, whereas the former generalization is also useful for thermodynamic
methods like molecular dynamics. Some studies indicate that ML can achieve config-
urational generalization by skipping rungs in Jacob’s ladder while retaining coupled
cluster accuracy, based on the Δ-learning framework. Bogojeski et al. [101] imple-
mented a KRR model that relates n to the energy difference between CC and GGA,
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Δ𝐸CC−GGA
model [𝑛DFT

model] 3, and built models optimized for molecular H2O, ethanol and
resorcinol; all of which yielded accurate potential surfaces with errors < 1 kcal/mol
from the CC results. Dick and Fernandez-Serra [95] also built a model for the energy
difference from the baseline functional (GGA) that is also which yields more accu-
rate 𝑛 than the baseline approximation. Their model trained on the H2O trimer was
used for molecular dynamics with supercell containing 96 H2O molecules, yielding
very accurate radial distribution functions. Both studies attain chemical accuracy at
GGA cost, skipping three steps of the ladder Fig. 1.

We can find some unexpected generalizations from the configurational studies,
where the machines retain accuracy even in the regimes to which we would not
anticipate extrapolation. In Brockherde et al. [62], a model was trained on malon-
aldehyde, where configurations on the verge of the proton transfer were not present.
Nevertheless, it accurately described the proton transfer process when applied to the
molecular dynamics (Fig. 4b), though less accurately than for other configurations.
Generalization of this kind is what physics-oriented researchers hope to achieve in
ML applications, i.e. that the machine finds some apparent extrapolation is actually
an interpolation, according to the latent space embedded in the training model. The
configurational studies also give us clear insights where the models do not general-
ize and why. Nagai et al. [84] examined a simple one-dimensional Hamiltonian with
variable number of electrons bound in a potential. They showed that the machine
trained solely on potentials which bind only one electron never generalizes to poten-
tials which bind two (Fig. 4a), and vice versa. Closer analysis of such successful and
failed generalizations in the literature may give us insights that are brought back to
the analytical DFT development.

The compositional kind of generalizations are usually shown by the study design
where researchers take training data for compound databases and divide them into
training, validation and test groups. In such studies the DM21 functional [96] should
be worth highlighting (Fig. 4c). They prepared exchange-correlation energies with
CCSD(T) accuracy for a training set consisting of 1161 molecular reactions and 1074
cases of fractionally charged or spin-polarized atoms from H to Ar. The exchange-
correlation energy density was modeled as a functional of the semilocal density
descriptor calculated with the B3LYP functional (fourth rung). Training was done
with an additional regularization term in the loss that is intended for stabilizing the
KS self-consistent loop. The trained NN model for the exchange-correlation energy
density was tested by the KS self-consistent calculations for over 105 systems from
the GMTKN55 and QM9 datasets, showing accuracy of double hybrid (fifth rung);
one level skipped. The similarity between the training and test data seems low,
which may indicate that the machine learned some latent dimensions in which the
test systems are regarded interpolation.

The most interesting goal for the compositional models would be to use it for
exploration of new compounds. For this, the models have to attain some confidence
when they are applied to undiscovered materials in in silico , but this goal still seems

3 The model accepts approximate 𝑛DFT
model, which is calculated by another KRR model that relates

the ionic potential and 𝑛 calculated from the semilocal DFT; the calculation of this term only can
therefore be done by further reduced cost.
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distant. For instance, some “out-of-paper" tests for DM21 reported untested systems
where the DM21’s accuracy declines, such as water clusters [144] and transition
metal compounds [145]. Analyses of the latent space in the trained compositional
functionals in some way would help human to judge if the functionals is applicable
to any given undiscovered systems. As an related effort let us recall Pokharel et
al. [136] which examine how broadly a functional which learned a few selected
“norm" systems, to which the model is assured to agree, may generalize. A more
data-based approach to formulate the similarity measure between the databases is
also interesting [146].
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(a)

(b)

(c)

Fig. 4: Suggestive results concerning generalization. a Clear example of failed gen-
eralization. In a 1D model the ionic potential is controlled by two parameters 𝐴 and
𝐵. The machine exclusively trained on data in a single phase (yellow frame) does
not generalize beyond the phase boundary. Reprinted from R. Nagai, R. Akashi,
S. Sasaki and S. Tsuneyuki “Neural-network Kohn-Sham exchange-correlation po-
tential and its out-of-training transferability", J. Chem. Phys. 148, 241737 (2018)
with the permission of AIP Publishing [84]. b Configurations of malonaldehyde. The
model trained with red points generate geometries including the proton transfer when
applied to MD (blue), that agree well with those generated by the first-principles
MD. Taken from Ref. [62] under the terms of the Creative Commons CC BY. c (top)
Performance of the DM21 functional reaching the accuracy of double hybrid, at the
cost of a single hybrid. (bottom) The training and test data, whose overlap seems
small. From J. Kirkpatrick et al., “Pushing the frontiers of density functionals by
solving the fractional electron problem", Science 374, 1385 (2021) [96]. Reprinted
with permission from AAAS.
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Fig. 5: “Charge density" as an intermediate field value in a trained machine, which
was not directly referenced in the training, taken from Ref. [134] under the terms of
the CC BY 4.0 license.

5.2 How to measure the accuracy of the density

Ground-state DFT is a theory based on the ground-state charge density. However,
it really only uses the density as an auxillary variable. Its chief use is to produce
approximate energies for various different configurations of nuclear potentials. That
is what the thousands of applications that are published each year mostly do.

However, whether we need accurate densities for accurate machine learning can
also be in question [104, 147–149]. As a matter of fact, there is much fascination
about development of models that bypass DFT altogether, by formulating the ma-
chines with descriptors derived from atomic positions and compositions of the system
concerned, from which it is implied that for well-controlled interpolation tasks we
do not have to refer to the charge density. This is used to make both machine-learned
potentials and also models for other properties, such as dipole moments, that we
would usually extract from integrals over the density.

Table 2: Relevant dimension estimation of approximate densities for describing
energies; data taken from Ref. [101].

Density/Energy 𝐸DFT
SML 𝐸CC

SML 𝐸CC
SA-DFT 𝐸SAD

SA 𝐸CC
SA-SAD

𝑛DFT 1196.56 1208.05 4335.93 n/d n/d
𝑛DFT
𝑠 1162.68 1161.95 4010.18 n/d n/d

𝑛SAD 661.39 623.38 3639.97 677.66 374.98

n/d = not determined

If we do not need too accurate 𝑛(r) for practical accuracy, it should further
accelerate our development since the accurate calculation of 𝑛(r) beyond Hartree-
Fock or semilocal DFT for training is itself a demanding task, and also the storage of
accurate 𝑛(r) requires much more disk resources than energy-related observables.
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On this issue let us refer to Brockherde et al. [62]. Two machines were tested
there: one is a machine that maps the one-body potential 𝑉ext to the total energy
(termed machine-learning Kohn-Sham map), and the other is a composite machine
in which two machines respectively map 𝑉ext (r) to 𝑛(r) (termed machine-learning
Hohenberg-Kohn map) and 𝑛(r) to 𝐸 . The latter 𝑛(r) → 𝐸 machine then learns the
functional relating the approximate 𝑛(r) to the total energy, say, 𝐸 [𝑛approx.], that is
of course different from the exact density functional. Interestingly, the latter machine
𝑉ext (r) → 𝑛(r) → 𝐸 achieved reduction of the test errors more easily. This scheme
has been further sophisticated asΔ-DFT for learning the exchange-correlation energy
with the coupled-cluster accuracy [101].

Tsubaki and Mizoguchi [134] also showed an interesting demonstration. They
developed a machine composed of two functionals that commonly use the LCAO
coefficients of the orbitals as input. One relates the coefficients to the atomization
energy as the NN output. The other first calculate the charge density 𝑛(r) by the exact
KS formula (Eq. 9) and next calculate the external potential from the calculated 𝑛(r)
through a NN. The two NNs are optimized so that the end data, atomization energy
and the potential, agree well with the training data. On training it does not appear to
matter whether the intermediate 𝑛(r) is accurate; however, the trained machine gave
plausible (but of course inaccurate) 𝑛(r) (Fig. 5). Incorporating the orbital-to-𝑛(r)
relation into the machine thus seems effective for efficient learning of the energy,
even if the machine does not learn 𝑛(r) directly.

Bogojeski et al. [101] examined the accuracy of 𝐸xc [𝑛] with different levels of
approximation to 𝑛(r). They applied the relevant dimension estimation method in
the data science [150] and calculated the signal-noise ratio, finding that, as 𝑛(r)
becomes inaccurate, the noise in the input-output pair becomes larger (Table 2),
which indicates that an accurate 𝑛(r) carries more information relevant to 𝐸xc.

For understanding the issue of learning accurate densities, the framework of
density-corrected DFT (DC-DFT) [104] should prove useful. A general analysis
(formalized in a broader context than ML alone) allows for the decomposition of the
error of a DFT calculation into two pieces: (i) the error due to the approximation
used for the form of 𝐸XC and (ii) the error due to the approximate density which
is found by minimizing the approximate functional. Letting �̃� and �̃�(r) denote the
approximate energy functional and density respectively; with 𝐸 and 𝑛(r) being the
exact functional and density, the total error can be written as:

Δ𝐸 = �̃� [�̃�] − 𝐸 [𝑛] = (�̃� [𝑛] − 𝐸 [𝑛]) + (�̃� [�̃�] − �̃� [𝑛]) (36)

where �̃� [𝑛]−𝐸 [𝑛] is called the “functional driven error" and �̃� [�̃�]−�̃� [𝑛] is called the
“density driven error". In the majority of cases, the functional-driven error dominates,
but in some important systems, such as those containing radicals, the density-driven
error is dominant. A DC-DFT calculation specifically seeks to reduce the density-
driven error by evaluating an approximate functional on a different density than
its variational minimum. Such a calculation is refered to as “inconsistent" in the
literature, as opposed to the self -consistent solution of KS equations [151]. Often,
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Hartree Fock densities are used for this purpose (such a calculation is called HF-
DFT), and for many molecules, this greatly reduces the density-driven error [148].
While HF-DFT has so far been the main practical manifestation of density correction,
the principle of DC-DFT is much broader, and is not restricted to Hartree Fock
densities alone. This opens a path for constructing highly accurate ML functionals
by learning the energy as a functional of a non-self-consistent density.

6 The future?

The application of machine learning in the physical sciences is producing a paradigm
shift in these fields, creating many new capabilities that are driven by data and
compute power. This was recognized by the Nobel prize in both physics and chemistry
in 2024. A generation from now, ML will be as much a part of science as calculus is
today.

In the specific area of electronic structure, the greatest impact so far has been the
development of meachine-learned potentials (MLPs), which are already being used
to generate new science (see other chapters). A great example is the MD simulation
of a shock wave passing through a slab of carbon, with 18 billion carbon atoms [152].
Such a calculation is both impossible with DFT and not desirable, if (essentially) the
exact same results are produced by the MLP. More recently, foundational models,
trained on the entire periodic table, have appeared [153]. While less accurate and
robust than is desirable, the ability to perform much larger simulations on almost any
phase of matter will totally alter all sciences it is applied to, at both the computational
and experimental levels. Such codes will be used by theorists and experimentalists
alike.

Where does this leave DFT itself? Will it be no more than the starting point for
such models, by generating their training data? The answer is yes and no. It will be
used to generate training data, but also used to validate the models in places where
they fail. It also seems likely that it will also be used to fine-tune to improve accuracy
in specific situations. This is very analogous to how high-level quantum chemical
and sometimes Monte Carlo data are used to benchmark and check DFT calculations
today.

Which brings us to the topic of this chapter. The use of ML to directly improve
approximate density functionals. We have discussed two specific functionals, the KS
kinetic energy functional and the XC functional. While important pioneering steps
have been made so far, no all purpose approximation has yet appeared that has been
widely adopted by the user community. The hopes of DM21 have been dashed by its
high computational cost and the difficulties with convergence.

We also want to make another distinction. Some work is aimed at taking a human-
designed approximate form, and trying to improve over human attempts with that
approximate form. Examples are GGA’s and meta-GGA’s and hybrids. An early
example is the 𝜔B97 series of functionals [46, 154], which were data driven, and
essentially regularized fits to avoid overfitting. Such attempts are unlikely to work on
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problems where the human-designed counterparts fail, e.g. for strongly correlated
systems. What they aim to do is improve accuracy on the systems that already work.
A clever aspect of DM21 was to take a (relatively) little-explored human-designed
form, so both improved accuracy and new capabilities could both be possible.

On the other hand, the rest of the work creates functionals that look nothing like
anything suggested by people, i.e., which use density inputs that are not the usual
semilocal suspects. Some even use the entire density itself, allowing the possibility
of creating the exact functional defined by HK long ago. With enough data in the
right form, it seems one can drive down errors far below the current forms, and create
functionals that work even for strongly correlated systems.

So why has this approach not been more broadly explored? Ultimately, it creates
a new and unexpected problem: it tends to generalize poorly. The amount of training
data needed to allow generalization across chemical species appears daunting and
impractical. This difficulty can be traced back to use of the entire density. A tiny
change in a density anywhere can, in principle, substantially change the ML energy.
In practice, this almost never happens, but occasionally it is important. It is very
difficult for a general scheme to reproduce this behavior. It is useful to muse on the
generality of the KS scheme with the simple LDA approximation, using only the
density at a single point to generate the XC energy– it has zero dependence on what
the chemical or material species is.

This suggests that for such methods to become more useful, and go beyond proofs-
of-principle, one needs to identify a limited set of specific features in the density that
can be calculated relatively easily and allow generalization across systems. These
obviously include the usual semilocal features, but also must include some that
capture effects relevant to electron localization, such as the electron number in the
vicinity of a nucleus. Much experimentation is likely to be needed to discover such
features.

The next decade should provide widespread use of foundational MLPs, with (we
hope) some spectacular scientific progress based on these capabilities. We can also
hope to see XC or orbital-free approximations developed with ML becoming widely
available and used, improving in accuracy over human-designed approximations in
at least some areas, and maybe even working in new areas where traditional DFT
approximations fail.

We shall see.
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