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1. Survey              Time-dependent Schrödinger equation 

kinetic energy  
operator: 

electron  
interaction: 

The TDSE describes the time evolution of a many-body state       

starting from an initial state                 under the influence of an 

external time-dependent  potential 

From now on, we’ll (mostly) use atomic units (e = m = h = 1).  



Start from nonequilibrium initial state, evolve in static potential: 

t=0 t>0 

1. Survey                Real-time electron dynamics: first scenario 

Charge-density oscillations in metallic  
clusters or nanoparticles (plasmonics) 

New J. Chem. 30, 1121 (2006) 
Nature Mat. Vol. 2 No. 4 (2003) 



Start from ground state, evolve in time-dependent driving field: 

t=0 t>0 

Nonlinear response and ionization of atoms  
and molecules in strong laser fields 

1. Survey         Real-time electron dynamics: second scenario 



1. Survey                  Coupled electron-nuclear dynamics 

High-energy proton hitting ethene 

T. Burnus, M.A.L. Marques, E.K.U. Gross, 
Phys. Rev. A 71, 010501(R) (2005) 

● Dissociation of molecules (laser or collision induced) 
● Coulomb explosion of clusters 
● Chemical reactions 

Nuclear dynamics 
treated classically 

For a quantum treatment of nuclear dynamics within TDDFT (beyond the  
scope of this tutorial), see O. Butriy et al., Phys. Rev. A 76, 052514 (2007).  



1. Survey                                     Linear response 

tickle the system 
observe how the 
system responds 
at a later time 

density  
response 

perturbation density-density 
response function 



1. Survey                                Optical spectroscopy 

● Uses weak CW laser as Probe 

● System Response has peaks at  
   electronic excitation energies 

Marques et al., PRL 90, 258101 (2003) 

Green 
fluorescent 
protein 

Vasiliev et al., PRB 65, 115416 (2002) 
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2. Fundamentals                       Runge-Gross Theorem 

   Runge & Gross (1984) proved the 1-1 mapping: 

  n(r t)    vext(r t)   

  For a given  initial-state ψ0,  the time-evolving one-body density n(r t) tells you 
everything about the time-evolving interacting electronic system, exactly. 

    

Ψ0


This follows from :  

  Ψ0, n(r,t)    unique vext(r,t)  H(t)  Ψ(t)  all observables 

For any system with Hamiltonian of form H = T + W + Vext    ,  
e-e interaction 

kinetic external potential 



Consider two systems of N interacting electrons, both starting in the same Ψ0 , 
but evolving under different potentials vext(r,t) and vext’(r,t) respectively: 

RG prove that the resulting densities n(r,t) and n’(r,t) eventually must differ, 
i.e.  

vext’(t), Ψ’(t) 
Ψο


vext(t), Ψ(t) 

2. Fundamentals             Proof of the Runge-Gross Theorem (1/4) 

same 

Assume Taylor-
expandability: 



The first part of the proof shows that the current-densities must differ. 

 Consider Heisenberg e.o.m’s for the current-density in each system, 

;t ) 

the part of H that 
differs in the two 
systems 

initial density 

 if initially the 2 potentials differ, then j and j’ differ infinitesimally later ☺   

At the initial time: 

2. Fundamentals             Proof of the Runge-Gross Theorem (2/4) 



* 

Take div. of both sides of * and use the eqn of continuity,                                          … 

… 

As vext(r,t) – v’ext(r,t) = c(t), and assuming potentials are Taylor-expandable 
at t=0, there must be some k for which RHS =  0   

  proves j(r,t)                          vext(r,t) 
1-1 
Ψο


The second part of RG proves 1-1 between densities and potentials: 

2. Fundamentals             Proof of the Runge-Gross Theorem (3/4) 

If vext(r,0) = v’ext(r,0), then look at later times by repeatedly using Heisenberg e.o.m : 

 1st part of RG ☺ 




   1-1 mapping between time-dependent densities and potentials, for a 
given initial state  

≡ u(r) is nonzero for some k, but 
must taking the div here be nonzero?  

Yes! 
By reductio ad absurdum: assume  

Then assume fall-off of n0 rapid enough 
that surface-integral  0 

integrand     0, so if integral 0, then   contradiction 

2. Fundamentals             Proof of the Runge-Gross Theorem (4/4) 

… 

same i.e.  




   n v for given Ψ0, implies any observable is a functional of n and Ψ0 

      -- So map interacting system to a non-interacting (Kohn-Sham) 
one, that reproduces the same n(r,t).  

All properties of the true system can be extracted from TDKS   “bigger-faster-
cheaper” calculations of spectra and dynamics 

KS “electrons” evolve in the 1-body KS potential: 

      

     

    functional of the history of the density  

    and the initial states 

     -- memory-dependence (see more shortly!) 


   If begin in ground-state, then no initial-state dependence, since by HK,  


 Ψ0 = Ψ0[n(0)] (eg. in linear response). Then   

2. Fundamentals                     The TDKS system 




    The KS potential is not the density-functional derivative of any action !  

If it were, causality would be violated:  

 Vxc[n,Ψ0,Φ0](r,t)  must be causal – i.e. cannot depend on n(r t’>t) 

But if 

2. Fundamentals             Clarifications and Extensions 


   But how do we know a non-interacting system exists that reproduces a given 
interacting evolution n(r,t) ?  

  van Leeuwen (PRL, 1999)  
 (under mild restrictions of the choice of the KS initial state Φ0)  

But RHS must be symmetric in (t,t’)   symmetry-causality paradox. 

 van Leeuwen (PRL 1998) showed how an action, and variational principle, may be 
defined, using Keldysh contours.  

then 



2. Fundamentals             Clarifications and Extensions 


   Restriction to Taylor-expandable potentials means RG is technically not valid 
for many potentials, eg adiabatic turn-on, although RG is assumed in practise. 

van Leeuwen (Int. J. Mod. Phys. B. 2001) extended the RG proof in the linear 
response regime to the wider class of Laplace-transformable potentials. 


   The first step of the RG proof showed a 1-1 mapping between currents and 
potentials  TD current-density FT 

In principle, must use TDCDFT (not TDDFT) for 

 -- response of periodic systems (solids) in uniform E-fields  

  -- in presence of external magnetic fields 

  (Maitra, Souza, Burke, PRB 2003; Ghosh & Dhara, PRA, 1988) 

In practice, approximate functionals of current are simpler  where spatial non-
local dependence is important   
  (Vignale & Kohn, 1996; Vignale, Ullrich & Conti 1997) … Stay tuned! 
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3. TDKS                  Time-dependent Kohn-Sham scheme (1) 

Consider an N-electron system, starting from a stationary state.  

Solve a set of static KS equations to get a set of N ground-state orbitals: 

The N static KS orbitals are taken as initial orbitals and will be propagated in time:  

Time-dependent density: 



3. TDKS                  Time-dependent Kohn-Sham scheme (2) 

Only the N initially occupied orbitals are propagated. How can this be sufficient  
to describe all possible excitation processes?? Here’s a simple argument: 

Expand TDKS orbitals in complete basis of static KS orbitals, 

A time-dependent potential causes the TDKS orbitals to acquire admixtures of 
initially unoccupied orbitals. 

finite for 



3. TDKS                            Adiabatic approximation 

depends on density at time t 
(instantaneous, no memory) 

is a functional of 

The time-dependent xc potential has a memory! 

Adiabatic approximation: 

(Take xc functional from static DFT and evaluate with time-dependent density) 

ALDA: 



3. TDKS                     Time-dependent selfconsistency (1) 

time 

start with 
selfconsistent 

KS ground state 

propagate 
until here 

I. Propagate 

II. With the density calculate the new KS potential 

III. Selfconsistency is reached if 

for all 



3. TDKS                            Numerical time Propagation 

Propagate a time step 

Crank-Nicholson algorithm: 

Problem: must be evaluated at the mid point 

But we know the density only for times 



3. TDKS                     Time-dependent selfconsistency (2) 

Predictor Step: 

nth Corrector Step: 

Selfconsistency is reached if             remains unchanged for 

upon addition of another corrector step in the time propagation. 



1 

2 

3 

Prepare the initial state, usually the ground state, by  
a static DFT calculation. This gives the initial orbitals: 

Solve TDKS equations selfconsistently, using an approximate 
time-dependent xc potential which matches the static one used 
in step 1. This gives the TDKS orbitals:  

Calculate the relevant observable(s) as a functional of  

3. TDKS                       Summary of TDKS scheme: 3 Steps 



3. TDKS               Example: two electrons on a 2D quantum strip 

periodic 
boundaries 
(travelling 

waves) 

hard walls 

(standing waves) 
z 

x 

C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006) 

L 

Charge-density oscillations 

Δ 

initial-state density 

exact 
LDA 

● Initial state: constant electric field,  
   which is suddenly switched off 

● After switch-off, free propagation of  
   the charge-density oscillations 



Step 1: solve full 2-electron Schrödinger equation 

Step 2: calculate the exact time-dependent density 

Step 3: find that TDKS system which reproduces the density 

3. TDKS               Construction of the exact xc potential 



3. TDKS               Construction of the exact xc potential 

Ansatz: 



density 
adiabatic Vxc 

exact Vxc 

3. TDKS               2D quantum strip: charge-density oscillations 

● The TD xc potential can be constructed from a TD density 
● Adiabatic approximations get most of the qualitative behavior right, 
   but there are clear indications of nonadiabatic (memory) effects 
● Nonadiabatic xc effects can become important (see later) 
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Almost all calculations today ignore this, and use an “adiabatic approximation” : 

vxc 

functional dependence on history, n(r t’<t), 
and on initial states  

Just take xc functional from static DFT and evaluate on instantaneous density 

But what about the exact functional?   

4. Memory                               Memory dependence 



parametrizes
density  

Hessler, Maitra, Burke, (J. Chem. Phys, 2002); Wijewardane & Ullrich, (PRL 2005); Ullrich (JCP, 2006) 

Any adiabatic (or even 
semi-local-in-time) 
approximation would 
incorrectly predict the 
same vc at both times. 

Eg. Time-dependent Hooke’s atom –exactly solvable 

2 electrons in parabolic well, 
time-varying force constant 

k(t) =0.25 – 0.1*cos(0.75 t) 

•  Development of History-Dependent Functionals: Dobson, Bunner & Gross (1997), 
Vignale, Ullrich, & Conti (1997), Kurzweil & Baer (2004), Tokatly (2005) 

4. Memory               Example of history dependence 



Maitra & Burke, (PRA 2001)(2001, E); Chem. Phys. Lett. (2002). 

( Consequence for Floquet DFT: No 1-1 mapping between densities and time-
periodic potentials. ) 

If we start in different Ψ0’s, can 
we get the same n(r t) by 
evolving in different potentials? 
Yes! 

•  Say this is the density of an interacting 
system. Both top and middle are possible 
KS systems.  

  vxc different for each. Cannot be captured 
by any adiabatic approximation 

A non-interacting example: 
Periodically driven HO 

Re and Im parts 
of 1st and 2nd 
Floquet orbitals 

Doubly-occupied 
Floquet orbital 
with same n 

4. Memory             Example of initial-state dependence 



4. Memory            Time-dependent optimized effective potential 

C.A.Ullrich, U.J. Gossmann, E.K.U. Gross, PRL 74, 872 (1995) 
H.O. Wijewardane and C.A. Ullrich, PRL 100, 056404 (2008) 

exact exchange: 

where 
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5. Linear Response                      TDDFT in linear response 

Poles at KS 
excitations 

Poles at true 
excitations 

adiabatic approx: no ω-dep  

Need (1) ground-state vS,0[n0](r), and its bare excitations 

          (2) XC kernel  

Yields exact spectra in principle; in 
practice, approxs needed in (1) and (2).  

Petersilka, Gossmann, Gross, (PRL, 1996) 



 Well-separated single excitations:   SMA 

     When shift from bare KS small:   SPA  

Useful tools for analysis: “single-pole” and “small-matrix” approximations (SPA,SMA) 

Zoom in on a single KS excitation, q = i a 

Quantum chemistry codes cast eqns into a matrix of coupled KS single 
excitations (Casida 1996) : Diagonalize 

5. Linear Response       Matrix equations (a.k.a. Casida’s equations) 

q = (i  a)  

 Excitation energies and oscillator strengths 



From Burke & Gross, (1998); Burke, Petersilka &Gross (2000) 

5. Linear Response       How it works: atomic excitation energies 

Look at other 
functional approxs 
(ALDA, EXX), and 
also with SPA. All 
quite similar for He.  

TDDFT linear response from 
exact helium KS ground state: 

Exp. SPA SMA 

LDA + ALDA lowest excitations 

Vasiliev, Ogut, Chelikowsky, PRL 82, 1919 (1999) 

full matrix 



5. Linear response                            General trends 


   Energies typically to within about “0.4 eV” 


   Bonds to within about 1% 


   Dipoles good to about 5% 


   Vibrational frequencies good to 5% 


   Cost scales as N3, vs N5 for wavefunction methods of 
comparable accuracy (eg CCSD, CASSCF) 


   Available now in many electronic structure codes 

TDDFT Sales Tag 

   Unprecedented balance between accuracy and efficiency 



Optical Spectrum of DNA fragments 

HOMO LUMO 

d(GC) π-stacked pair 

D. Varsano, R. Di Felice, M.A.L. Marques, A Rubio, J. Phys. Chem. B 110, 7129 (2006).  

Can study big molecules with TDDFT !  

5. Linear response                  Examples 



Circular dichroism spectra of chiral 
fullerenes: D2C84  

F. Furche and R. Ahlrichs, JACS 124, 3804 (2002).  

5. Linear response                  Examples 
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6. TDDFT in solids            Excitations in finite and extended systems 

The full many-body response function has poles at the exact excitation energies 

x x x x x

finite extended 

► Discrete single-particle excitations merge into a continuum 
     (branch cut in frequency plane) 
► New types of collective excitations appear off the real axis 
     (finite lifetimes) 



6. TDDFT in solids                        Metals vs. insulators 

Excitation spectrum of simple metals: 

● single particle-hole continuum 
    (incoherent) 
● collective plasmon mode 

plasmon 

Optical excitations 
of insulators: 

● interband transitions 
● excitons (bound 
    electron-hole pairs) 



6. TDDFT in solids                Excitations in bulk metals 

Quong and Eguiluz, PRL 70, 3955 (1993) 

Plasmon dispersion of Al 

►RPA (i.e., Hartree) gives already 
    reasonably good agreement 
►ALDA agrees very well with exp. 

In general, (optical) excitation processes in (simple) metals are very well 
described by TDDFT within ALDA.  

Time-dependent Hartree already gives the dominant contribution, and 
 fxc typically gives some (minor) corrections. 

This is also the case for 2DEGs in doped semiconductor heterostructures 



6. TDDFT in solids                   Semiconductor heterostructures 

●semiconductor heterostructures are  
  grown with MBE or MOCVD 
●control and design through layer-by-layer  
 variation of material composition 
●widely used class or materials: 
   III-V compounds 

Interband transitions: 
of order eV 

(visible to near-IR) 

Intersubband transitions: 
of order meV 

(mid- to far-IR) 

CB lower edge 

VB upper edge 



● Donor atoms separated from quantum well: modulation delta doping 

● Total sheet density Ns typically ~1011 cm-2 

6. TDDFT in solids                          n-doped quantum wells 



Intersubband charge and spin 
plasmons: ↑ and ↓ densities 

in and out of phase 

6. TDDFT in solids                     Collective excitations 



Effective-mass approximation: 

Electrons in a quantum well: plane waves in x-y plane, confined along z 

with energies 

quantum well 
confining potential 

6. TDDFT in solids               Electronic ground state: subband levels 



6. TDDFT in solids                        Quantum well subbands 

k=0 
k>0 



6. TDDFT in solids                    Intersubband plasmon dispersions 

k (Å-1) 

ω
 (m

eV
) 

C.A.Ullrich and G.Vignale, PRL 87, 037402 (2002) 

charge plasmon 

spin plasmon 

experiment 



6. TDDFT in solids                  Optical absorption of insulators 

G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002) 
S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007) 

RPA and ALDA both bad! 

►absorption edge red shifted 
   (electron self-interaction) 

►first excitonic peak missing 
   (electron-hole interaction) 

Silicon 

Why does the ALDA fail?? 



6. TDDFT in solids      Optical absorption of insulators: failure of ALDA 

Optical absorption requires imaginary part of macroscopic dielectric function: 

where 

Long-range excluded,  
so RPA is ineffective 

Needs  
component to 
correct 

limit: 

But ALDA is constant  
for 



6. TDDFT in solids                Long-range XC kernels for solids 

● LRC (long-range correlation) kernel 
   (with fitting parameter α): 

● TDOEP kernel (X-only): 

Simple real-space form: Petersilka, Gossmann, Gross, PRL 76, 1212 (1996) 
TDOEP for extended systems: Kim and Görling, PRL 89, 096402 (2002) 

● “Nanoquanta” kernel (L. Reining et al, PRL 88, 066404 (2002) 

pairs of KS  
wave functions 

matrix element of screened 
Coulomb interaction (from 
Bethe-Salpeter equation) 



6. TDDFT in solids                 Optical absorption of insulators, again 

F. Sottile et al., PRB 76, 161103 (2007) 

Silicon 

Kim & Görling 

Reining et al. 



6. TDDFT in solids                 Extended systems - summary 

► TDDFT works well for metallic and quasi-metallic systems already 
     at the level of the ALDA. Successful applications for plasmon modes 
     in bulk metals and low-dimensional semiconductor heterostructures. 

► TDDFT for insulators is a much more complicated story: 

        ● ALDA works well for EELS (electron energy loss spectra), but 
           not for optical absorption spectra 

        ● difficulties originate from long-range contribution to fxc 

            ● some long-range XC kernels have become available,  
           but some of them are complicated. Stay tuned….  

        ● Nonlinear real-time dynamics including excitonic effects:  
           TDDFT version of Semiconductor Bloch equations 
           V.Turkowski and C.A.Ullrich, PRB 77, 075204 (2008) (Wednesday P13.7) 
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meaning, semi-local in space 
and local in time 


   Rydberg states     


   Polarizabilities of long-chain molecules 


   Optical response/gap of solids 


   Double excitations      


   Long-range charge transfer   


   Conical Intersections 

 Local/semilocal approx  inadequate.  
Need Im fxc to open gap.  

Can cure with orbital- dependent fnals 
(exact-exchange/sic), or TD current-
DFT 
  

Adiabatic approx for fxc fails. 

Can use frequency-dependent 
kernel derived for some of these 
cases 

7. Where the usual approxs. fail       Ailments – and some Cures (I) 




   Quantum control phenomena  


   Other strong-field phenomena ? 


   Observables that are not directly related 
to the density, eg NSDI, NACs… 


   Coulomb blockade 


   Coupled electron-ion dynamics 

? Memory-dependence in vxc[n;ψ0.Φ0](r t) 

Single-determinant constraint of KS 
leads to unnatural description of the 
true state  weird xc effects 

Need to know observable as 
functional of n(r t) 

Lack of derivative discontinuity  

Lack of electron-nuclear correlation in Ehrenfest, 
but surface-hopping has fundamental problems 

7. Where the usual approxs. fail       Ailments – and some Cures (II) 



χ  – poles at true states that are mixtures of singles, doubles, and higher excitations 

χ S  --  poles only at single KS excitations, since one-body operator             can’t 
connect Slater determinants differing by more than one orbital. 


   χ has more poles than χs 

? How does fxc generate more poles to get states of multiple excitation character?  

Excitations of interacting systems generally involve mixtures of (KS) SSD’s 
that have either 1,2,3…electrons in excited orbitals. 

single-, double-, triple- excitations 

7. Where the usual approxs. fail       Double Excitations 

Now consider: 



Exactly Solve a Simple Model: one KS single (q) mixing with a nearby double (D) 

Strong non-adiabaticity! 

Invert and insert into Dyson-like eqn for kernel dressed SPA (i.e. ω-dependent): 

7. Where the usual approxs. fail       Double Excitations 



General case: Diagonalize many-body H in KS subspace near the double ex of 
interest, and require reduction to adiabatic TDDFT in the limit of weak coupling of 
the single to the double  

NTM, Zhang, Cave,& Burke JCP (2004),  Casida JCP (2004) 

7. Where the usual approxs. fail       Double Excitations 

usual adiabatic matrix element 

dynamical (non-adiabatic) 
correction 



Example: Short-chain polyenes 

Lowest-lying excitations notoriously difficult to calculate due to significant 
double-excitation character. 
Cave, Zhang, NTM, Burke, CPL (2004) 

•  Note importance of accurate double-excitation description in coupled electron-ion 
dynamics – propensity for curve-crossing 
   Levine, Ko, Quenneville, Martinez, Mol. Phys. (2006) 

7. Where the usual approxs. fail       Double Excitations 



Example: Dual Fluorescence in DMABN in Polar Solvents 

“anomalous”  

Intramolecular Charge Transfer (ICT) 

“normal” 

“Local” Excitation (LE) 

TDDFT resolved the long debate on ICT structure (neither “PICT” nor “TICT”), 
and elucidated the mechanism of LE -- ICT reaction 

Rappoport & Furche, 
JACS 126, 1277 (2004).  

Success in predicting ICT structure – How about CT energies ?? 

7. Where the usual approxs. fail   Long-Range Charge-Transfer Excitations 



Eg. Zincbacteriochlorin-Bacteriochlorin 
complex 
(light-harvesting in plants and purple 
bacteria) 

 Dreuw & Head-Gordon, JACS 126 4007, (2004). 

TDDFT predicts CT states energetically well below local fluorescing states. 
Predicts CT quenching of the fluorescence. 
   ! Not observed ! 

   TDDFT error ~ 1.4eV 

TDDFT typically severely underestimates long-range CT energies 

Important process in 

biomolecules, large enough 

that  TDDFT may be only 

feasible approach ! 

7. Where the usual approxs. fail   Long-Range Charge-Transfer Excitations 



We know what the exact energy for charge transfer at long range should be: 

Why TDDFT typically severely underestimates this energy can be seen in SPA 

-As,2 -I1 

 (Also, usual g.s. approxs underestimate I) 

Why do the usual approximations in TDDFT fail for these excitations? 

exact 

i.e. get just the bare KS orbital energy difference: missing xc contribution to 
acceptor’s electron affinity, Axc,2,  and -1/R 

7. Where the usual approxs. fail   Long-Range Charge-Transfer Excitations 

~0 overlap 



What are the properties of the unknown exact xc kernel that must be well-
modelled to get long-range CT energies correct ? 

  Exponential dependence on the fragment separation R,  

 fxc ~ exp(aR) 

  For transfer between open-shell species, need strong frequency-dependence. 

Gritsenko & Baerends (PRA, 2004), Maitra (JCP, 2005), Tozer (JCP, 2003) Tawada 
et al. (JCP, 2004) 

Step  in Vxc re-aligns the 2 atomic 
HOMOs  near-degeneracy of 
molecular HOMO & LUMO  static 
correlation, crucial double excitations  
frequency-dependence! 

(It’s a rather ugly kernel…) 

“LiH” 

7. Where the usual approxs. fail   Long-Range Charge-Transfer Excitations 

step 
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● In general, the adiabatic approximation works well for excitations 
   which have an analogue in the KS system (single excitations) 

● formally justified only for infinitely slow electron dynamics. But 
   why is it that the frequency dependence seems less important? 

Fundamental question: what is the proper  
extension of the LDA into the dynamical regime? 

● Adiabatic approximation fails for more complicated excitations  
   (multiple, charge-transfer) 

● misses dissipation of long-wavelength plasmon excitations 

The frequency scale of fxc is set by correlated multiple 
excitations, which are absent in the KS spectrum. 

8. TDCDFT                       The adiabatic approximation, again 



Visualize electron dynamics as the motion (and deformation) 
of infinitesimal fluid elements:  

Nonlocality in time (memory) implies nonlocality in space! 

Dobson, Bünner, and Gross, PRL 79, 1905 (1997) 
I.V. Tokatly, PRB 71, 165105 (2005) 

8. TDCDFT                   Nonlocality in space and time 



Zero-force theorem: 

Linearized form: 

If the xc kernel has a finite range, we can write for slowly varying systems: 

l.h.s. is frequency-dependent, r.h.s is not: contradiction! 

has infinitely long spatial range! 

8. TDCDFT                   Ultranonlocality in TDDFT 



● 

x x0 

An xc functional that depends only on the local density  
(or its gradients) cannot see the motion of the entire slab. 

A density functional needs to have a long range to see 
the motion through the changes at the edges. 

8. TDCDFT                   Ultranonlocality and the density 



J.F. Dobson, PRL 73, 2244 (1994) 

A parabolically confined, interacting N-electron system can carry 
out an undistorted, undamped, collective “sloshing” mode, where 

with the CM position 

8. TDCDFT             Harmonic Potential Theorem – Kohn’s mode 



Vxc “rides along”: 
undamped motion 

global  
translation 

local com- 
pression and 
rarefaction 

Vxc is retarded: 
damped motion 

xc functionals based on local density can’t distinguish the two cases! 

8. TDCDFT                     Point of view of local density 



uniform velocity oscillating velocity 

much better chance to capture the physics correctly! 

8. TDCDFT                     Point of view of local current 



nonlocal 

nonlocal nonlocal 

local 

● Continuity equation only gives the longitudinal current 
● TDCDFT gives also the transverse current 
● We can find a short-range current-dependent xc vector potential  

8. TDCDFT        Upgrading TDDFT:  time-dependent Current-DFT 



generalization of RG theorem: Ghosh and Dhara, PRA 38, 1149 (1988) 
                                                 G. Vignale, PRB 70, 201102 (2004) 

uniquely determined up to gauge transformation 

full current can be  
represented by 
a KS system 

8. TDCDFT                            Basics of TDCDFT 



KS current-current response tensor: diamagnetic + paramagnetic part  

where 

8. TDCDFT                     TDCDFT in the linear response regime 



external perturbation. Can be a 
true vector potential, or a gauge 
transformed scalar perturbation: 

gauge transformed 
Hartree potential 

ALDA: 

the xc kernel is 
now a tensor! 

8. TDCDFT                     Effective vector potential 



   ● automatically satisfies zero-force theorem/Newton’s 3rd law 
   ● automatically satisfies the Harmonic Potential theorem 
   ● is local in the current, but nonlocal in the density 
   ● introduces dissipation/retardation effects 

xc viscoelastic stress tensor: 

velocity field 

8. TDCDFT        TDCDFT beyond the ALDA: the VK functional 

G. Vignale and W. Kohn, PRL 77, 2037 (1996) 
G. Vignale, C.A. Ullrich, and S. Conti, PRL 79, 4878 (1997) 



In contrast with the classical case, the xc viscosities have both real 
and imaginary parts, describing dissipative and elastic behavior: 

shear modulus 

dynamical 
bulk modulus 

reflect the 
stiffness of  
Fermi surface 
against defor- 
mations  

8. TDCDFT                        XC viscosity coefficients 



GK: E.K.U. Gross and W. Kohn, PRL 55, 2850 (1985) 
NCT: R. Nifosi, S. Conti, and M.P. Tosi, PRB 58, 12758 (1998) 
QV: X. Qian and G. Vignale, PRB 65, 235121 (2002)   

8. TDCDFT          xc kernels of the homogeneous electron gas 



The shear modulus of the electron liquid does not disappear for 
(as long as the limit q0 is taken first). Physical reason: 

● Even very small frequencies <<EF are large compared 
   to relaxation rates from electron-electron collisions. 
● The zero-frequency limit is taken such that local  
   equilibrium is not reached. 
● The Fermi surface remains stiff against deformations. 

8. TDCDFT                       Static limits of the xc kernels 



ALDA overestimates 
polarizabilities of long 
molecular chains. 
The long-range VK 
functional produces 
a counteracting field, 
due to the finite shear 
modulus at  

M. van Faassen et al., PRL 88, 186401 (2002) and JCP 118, 1044 (2003) 

8. TDCDFT                   TDCDFT for conjugated polymers 
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Koentopp, Chang, Burke, and Car (2008) 

two-terminal Landauer formula 

Transmission coefficient, usually obtained from 
DFT-nonequilibrium Green’s function 

9. Transport                       DFT and  nanoscale transport 

Problems:  ● standard xc functionals (LDA,GGA) inaccurate 
                   ● unoccupied levels not well reproduced in DFT 
                            transmission peaks can come out wrong 
                            conductances often much overestimated 
                            need need better functionals (SIC, orbital-dep.) 
                            and/or TDDFT              



Current response: 

XC piece of voltage drop: Current-TDDFT 

Sai, Zwolak, Vignale, Di Ventra,  
PRL 94, 186810 (2005) 

dynamical resistance: ~10% correction 

9. Transport              TDDFT and  nanoscale transport: weak bias 



(A) Current-TDDFT and Master equation 
 Burke, Car & Gebauer, PRL 94, 146803 (2005) 

(B) TDDFT and Non-equilibrium 
Green’s functions 

Stefanucci & Almbladh, PRB 69, 195318 (2004) 

9. Transport              TDDFT and  nanoscale transport: finite bias 

● periodic boundary conditions 
   (ring geometry), electric field 
   induced by vector potential A(t) 
● current as basic variable 
● requires coupling to phonon 
   bath for steady current 

● localized system 
● density as basic variable 
● steady current via electronis 
   dephasing with continuum of 
   the leads 

► (A) and (B) agree for weak bias and small dissipation 
► some preliminary results are available – stay tuned! 
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In addition to an approximation for vxc[n;Ψ0,Φ0](r,t), also need an 

 approximation for the observables of interest. 

Certainly measurements involving only density (eg dipole moment) can 
be extracted directly from KS – no functional approximation needed for 
the observable. But generally not the case. 

We’ll take a look at: 

     High-harmonic generation (HHG) 

     Above-threshold ionization (ATI) 

     Non-sequential double ionization (NSDI) 

     Attosecond Quantum Control 

     Correlated electron-ion dynamics 

  Is the relevant KS quantity physical ?  

10. Strong-field processes        TDDFT for strong fields 



Erhard & Gross, (1996) 

Eg.  He 

correlation reduces 
peak heights by ~ 2 or 3 

TDHF 

10. Strong-field processes         High Harmonic Generation 

HHG: get peaks at 
odd multiples of 
laser frequency 

Measures dipole moment,  

|d(ω)|2 = ∫ n(r,t) r d3r 

so directly available from TD KS 
system 

L’Huillier (2002) 



Nguyen, Bandrauk, and Ullrich, PRA 
69, 063415 (2004). 

Eg. Na-clusters 

30 Up 

λ= 1064 nm                    
I = 6 x 1012 W/
cm2 pulse 
length 25 fs 

•  TDDFT is the only computationally 
feasible method that could compute ATI for 
something as big as this! 

•  ATI measures kinetic energy of electrons 
– not directly accessible from KS.  Here, 
approximate T by KS kinetic energy.  

• TDDFT yields plateaus much longer than 
the 10 Up predicted by quasi-classical one-
electron models 

10. Strong-field processes        Above-threshold ionization 

ATI: Measure 
kinetic energy of 
ejected electrons 

L’Huillier (2002) 



Knee forms  due to a switchover from a sequential to a non-sequential 
(correlated) process of double ionization. 

Knee missed by all single-orbital theories eg TDHF 

TDDFT can get it, but it’s difficult  : 

•  Knee requires a derivative discontinuity, lacking in most approxs 

•  Need to express pair-density as purely a density functional – uncorrelated 
expression gives wrong knee-height. (Wilken & Bauer (2006)) 

10. Strong-field processes       Non-sequential double ionization 

TDDFT 
1 

2

TDDFT c.f. TDHF 

Exact c.f. TDHF 

2 
1

Lappas & van Leeuwen (1998), 
Lein & Kummel (2005) 



TDKS 

Is difficult: Consider pumping He from (1s2)  (1s2p) 

Problem!! The KS state remains doubly-occupied throughout – cannot evolve into a 
singly-excited KS state.  

Simple model: evolve two electrons in a harmonic potential from ground-state  
 (KS doubly-occupied φ0) to the first excited state (φ0,φ1) : 

 KS system achieves the target  excited-state density, but with a doubly-occupied 
ground-state orbital !! The exact vxc(t) is unnatural and difficult to approximate. 

,  
10. Strong-field processes       Electronic quantum control 

Maitra, Woodward, & Burke (2002), Werschnik & Gross (2005), Werschnik, Gross & Burke (2007) 



Eg. Collisions of O atoms/ions with 
graphite clusters  

Isborn, Li. Tully, JCP 126, 134307 (2007) 

10. Strong-field processes       Coupled electron-ion dynamics 

Classical nuclei coupled to quantum electrons, via Ehrenfest coupling, i.e.  

http://www.tddft.org 
Castro, Appel, Rubio, 
Lorenzen, Marques, 
Oliveira, Rozzi, 
Andrade, Yabana, 
Bertsch  

Freely-available TDDFT code for 
strong and weak fields: 



10. Strong-field processes       Coupled electron-ion dynamics 

!! essential for photochemistry, relaxation, 

electron transfer, branching ratios, 

reactions near surfaces... 

How about Surface-Hopping a la Tully with TDDFT ? 

Simplest: nuclei move on KS PES between hops. But, KS PES ≠ true PES, 
and generally, may give wrong forces on the nuclei. 

Should use TDDFT-corrected PES (eg calculate in linear response).  

But then, trajectory hopping probabilities cannot be simply extracted –  
e.g. they depend on the coefficients of the true Ψ (not accessible in TDDFT), 
and on non-adiabatic couplings.  

Craig, Duncan, & Prezhdo PRL 2005, Tapavicza, Tavernelli, Rothlisberger, PRL 2007, Maitra, 
JCP 2006  

Classical Ehrenfest method misses electron-nuclear correlation 

(“branching” of trajectories) 



To learn more… 

Time-dependent density functional theory, edited by  
M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio,  
K. Burke, and E.K.U. Gross, Springer Lecture Notes  
in Physics, Vol. 706 (2006)  

Upcoming TDDFT conferences: 

● 3rd International Workshop and School on TDDFT    
   Benasque, Spain,  August 31 - September 15, 2008 
   http://benasque.ecm.ub.es/2008tddft/2008tddft.htm 

● Gordon Conference on TDDFT, Summer 2009  
   http://www.grc.org 

(see handouts for TDDFT literature list) 
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