Time-dependent density-functional theory

Carsten A. Ullrich University of Missouri-Columbia

Neepa T. Maitra Hunter College, CUNY

APS March Meeting 2008, New Orleans

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}_1,...,\mathbf{r}_N,t) = (\hat{T} + \hat{V}(t) + \hat{W}) \Psi(\mathbf{r}_1,...,\mathbf{r}_N,t)$$

kinetic energy operator: $\hat{T} = \sum_{j=1}^{N} - \frac{\hbar^2 \nabla_j^2}{2m}$ electron interaction

$$\hat{W} = \frac{1}{2} \sum_{\substack{j,k\\j \neq k}}^{N} \frac{e^2}{\left|\mathbf{r}_j - \mathbf{r}_k\right|}$$

The TDSE describes the time evolution of a many-body state $\Psi(t)$, starting from an initial state $\Psi(t_0)$, under the influence of an external time-dependent potential $\hat{V}(t) = \sum_{j=1}^{N} V(\mathbf{r}_j, t)$.

From now on, we'll (mostly) use atomic units ($e = m = \hbar = 1$).

Start from nonequilibrium initial state, evolve in static potential:

New J. Chem. 30, 1121 (2006) Nature Mat. Vol. 2 No. 4 (2003)

1. Survey Real-time electron dynamics: second scenario

Start from ground state, evolve in time-dependent driving field:

Nonlinear response and ionization of atoms and molecules in strong laser fields

1. Survey

Coupled electron-nuclear dynamics

- Dissociation of molecules (laser or collision induced)
- Coulomb explosion of clusters
- Chemical reactions

High-energy proton hitting ethene

T. Burnus, M.A.L. Marques, E.K.U. Gross, Phys. Rev. A **71**, 010501(R) (2005)

Nuclear dynamics treated classically

For a quantum treatment of nuclear dynamics within TDDFT (beyond the scope of this tutorial), see O. Butriy et al., Phys. Rev. A **76**, 052514 (2007).

1. Survey

Optical spectroscopy

- Uses weak CW laser as Probe
- <u>System Response</u> has peaks at electronic excitation energies

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

2. Fundamentals

For any system with Hamiltonian of form $H = T + W + V_{ext}$, e-e interaction

Runge & Gross (1984) proved the 1-1 mapping:

$$n(\mathbf{r} t) \longleftrightarrow V_{ext}(\mathbf{r} t)$$

> For a given initial-state ψ_0 , the time-evolving one-body density $n(\mathbf{r} t)$ tells you everything about the time-evolving interacting electronic system, exactly.

This follows from :

 Ψ_0 , $n(r,t) \rightarrow$ unique $v_{ext}(r,t) \rightarrow H(t) \rightarrow \Psi(t) \rightarrow$ all observables

Consider two systems of *N* interacting electrons, both starting in the same Ψ_0 , but evolving under different potentials $V_{ext}(r,t)$ and $V_{ext}'(r,t)$ respectively:

$$v_{\text{ext}}(\mathbf{r}, t) - v'_{\text{ext}}(\mathbf{r}, t) \neq c(t)$$

$$\Psi_{\text{o}} = \sum_{k=0}^{\infty} \frac{1}{k!} v_{k}(\mathbf{r})(t-t_{0})^{k}$$

$$v'(\mathbf{r}, t) = \sum_{k=0}^{\infty} \frac{1}{k!} v'_{k}(\mathbf{r})(t-t_{0})^{k}.$$

RG prove that the resulting densities n(r,t) and n'(r,t) eventually must differ, i.e.

$$v_{\mathrm{ext}}({m r},t)$$
 same $n({m r},t)$

2. Fundamentals **Proof of the Runge-Gross Theorem (2/4)**

The <u>first part</u> of the proof shows that the **current-densities** must differ.

Consider Heisenberg e.o.m's for the current-density in each system,

$$\frac{\partial}{\partial t} \langle \Psi(t) | \hat{Q}(t) | \Psi(t) \rangle = \langle \Psi(t) | \left(\frac{\partial \hat{Q}}{\partial t} - i[\hat{Q}(t), \hat{H}(t)] \right) | \Psi(t) \rangle$$

$$\hat{\mathbf{j}}_{\mathbf{p}}(\mathbf{r}) = \frac{1}{2i} \sum_{j=1}^{N} \left(\nabla_{\mathbf{r}_{j}} \delta(\mathbf{r} - \mathbf{r}_{j}) + \delta(\mathbf{r} - \mathbf{r}_{j}) \nabla_{\mathbf{r}_{j}} \right)$$

$$H = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_{i}; t)$$

At the initial time:
$$\frac{\partial}{\partial t} \{j(r,t) - j'(r,t)\}_{t=0} = -i\langle\Psi_0| \left[\hat{j}(r,t), \{\hat{H}(0) - \hat{H'}(0)\}\right] |\Psi_0\rangle$$
$$= -i\langle\Psi_0| \left[\hat{j}(r), \{v_{\text{ext}}(r,0) - v'_{\text{ext}}(r,0)\}\right] |\Psi_0\rangle$$
$$= -n_0(r)\nabla\{v_{\text{ext}}(r,0) - v'_{\text{ext}}(r,0)\}$$
initial density

 \rightarrow if initially the 2 potentials differ, then *j* and *j* ' differ infinitesimally later \odot

2. Fundamentals **Proof of the Runge-Gross Theorem (3/4)**

If $v_{\text{ext}}(\mathbf{r}, 0) = v_{\text{ext}}(\mathbf{r}, 0)$, then look at later times by repeatedly using Heisenberg e.o.m :

$$\cdots \quad \frac{\partial^{k+1}}{\partial t^{k+1}} \left\{ j(r,t) - j'(r,t) \right\}_{t=0} = -n_0(r) \nabla \frac{\partial^k}{\partial t^k} \left\{ v(r,t) - v'(r,t) \right\}_{t=0} \quad *$$

As $V_{\text{ext}}(r,t) - V_{\text{ext}}(r,t) \neq c(t)$, and assuming potentials are Taylor-expandable at t=0, there must be some k for which RHS $\neq 0 \rightarrow j(r,t) \neq j'(r,t)$

→ proves
$$j(r,t) \xrightarrow{1-1} v_{ext}(r,t)$$
 $\checkmark 1^{st}$ part of RG \odot

The second part of RG proves 1-1 between *densities* and potentials:

Take div. of both sides of * and use the eqn of continuity,

$$\frac{\partial n(\boldsymbol{r},t)}{\partial t} = -\nabla \cdot \boldsymbol{j}(\boldsymbol{r},t) \dots$$

$$\frac{\partial^{k+2}}{\partial t^{k+2}} \{n(r,t) - n'(r,t)\}_{t=0} = \nabla \cdot \left[n_0(r) \nabla \frac{\partial^k}{\partial t^k} \{v_{\text{ext}}(r,t) - v'_{\text{ext}}(r,t)\}_{t=0} \right]$$

$$\equiv u(r) \text{ is nonzero for some } k, \text{ but the transformed of } k = 0$$

 \equiv *u*(*r*) is nonzero for some *k*, but must taking the div here be nonzero? *Yes*!

By reductio ad absurdum: assume $\operatorname{div}[n(\vec{r} t_0) \bigtriangledown u(\vec{r})] = 0$ with $u(\vec{r}) \neq \operatorname{const}$

Then
$$0 = \int d^3 r \ u(\vec{r}) \operatorname{div}[n(\vec{r} t_0) \bigtriangledown u(\vec{r})]$$
 assume fall-off of n_0 rapid enough
that surface-integral $\rightarrow 0$
 $= -\int d^3 r \ n(\vec{r} t_0) [\bigtriangledown u(\vec{r})]^2 + \frac{1}{2} \oint n(\vec{r} t_0) [\bigtriangledown u^2(\vec{r})] \cdot d\vec{f}$

integrand ≥ 0 , so if integral 0, then $\nabla u = 0 \rightarrow \text{contradiction}$

i.e. $\begin{array}{c} v_{\mathrm{ext}}({\pmb{r}},t) \\ v_{\mathrm{ext}}'({\pmb{r}},t) \end{array} \xrightarrow{} \mathrm{same} \; n({\pmb{r}},t) \end{array}$

1-1 mapping between time-dependent densities and potentials, for a given initial state

 $\bullet n \rightarrow v$ for given Ψ_0 , implies any observable is a functional of *n* and Ψ_0

-- So map interacting system to a non-interacting (Kohn-Sham) one, that reproduces the same $n(\mathbf{r}, t)$.

All properties of the true system can be extracted from TDKS \rightarrow "bigger-faster-cheaper" calculations of spectra and dynamics

KS "electrons" evolve in the 1-body KS potential:

$$v_{s}[n; \Phi_{0}](\mathbf{r}t) = v_{ext}(\mathbf{r}t) + \int d^{3}r' \frac{n(\mathbf{r}'t)}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[n; \Psi_{0}, \Phi_{0}](\mathbf{r}t)$$

functional of the history of the density and the initial states

-- memory-dependence (see more shortly!)

• If begin in ground-state, then no initial-state dependence, since by HK, $\Psi_0 = \Psi_0[n(0)]$ (eg. in linear response). Then $v_{\rm XC} = v_{\rm XC}[n](\mathbf{r}t)$

2. Fundamentals Clarifications and Extensions

But how do we know a non-interacting system exists that reproduces a given interacting evolution $n(\mathbf{r},t)$?

✓ van Leeuwen (*PRL*, 1999) (under mild restrictions of the choice of the KS initial state $Φ_0$)

The KS potential is *not* the density-functional derivative of any action !

If it were, causality would be violated:

 $\begin{aligned} & \text{Vxc}[n, \Psi_0, \Phi_0](\mathbf{r}, t) \text{ must be causal} - \text{ i.e. cannot depend on } n(\mathbf{r} \ t' > t) \\ & \text{But if} \quad v_{\text{XC}}[n](\mathbf{r}t) = \frac{\delta A_{\text{XC}}[n]}{\delta n(\mathbf{r}t)} \quad \text{then} \quad \frac{\delta v_{\text{XC}}[n](\mathbf{r}t)}{\delta n(\mathbf{r}'t')} = \frac{\delta^2 A_{\text{XC}}[n]}{\delta n(\mathbf{r}t)\delta n(\mathbf{r}'t')} \end{aligned}$

But RHS must be symmetric in $(t,t') \rightarrow$ symmetry-causality paradox.

✓ van Leeuwen (*PRL 1998*) showed how an action, and variational principle, may be defined, using Keldysh contours.

2. Fundamentals Clarifications and Extensions

Restriction to Taylor-expandable potentials means RG is technically not valid for many potentials, eg adiabatic turn-on, although RG is assumed in practise.

van Leeuwen (*Int. J. Mod. Phys. B. 2001*) extended the RG proof in the linear response regime to the wider class of Laplace-transformable potentials.

The first step of the RG proof showed a 1-1 mapping between *currents* and potentials → TD current-density FT

In principle, must use TDCDFT (not TDDFT) for

-- response of periodic systems (solids) in uniform E-fields

-- in presence of external magnetic fields

(Maitra, Souza, Burke, PRB 2003; Ghosh & Dhara, PRA, 1988)

In practice, approximate functionals of current are simpler where spatial nonlocal dependence is important

(Vignale & Kohn, 1996; Vignale, Ullrich & Conti 1997) ... Stay tuned!

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

3. TDKS Time-dependent Kohn-Sham scheme (1)

Consider an *N*-electron system, starting from a stationary state.

Solve a set of static KS equations to get a set of *N* ground-state orbitals:

$$\left(-\frac{\nabla^2}{2} + V_{ext}(\mathbf{r}, t_0) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r})\right) \phi_j^{(0)}(\mathbf{r}) = \varepsilon_j \phi_j^{(0)}(\mathbf{r})$$

The N static KS orbitals are taken as initial orbitals and will be propagated in time:

$$\phi_{j}^{(0)}(\mathbf{r}) = \phi_{j}(\mathbf{r}, t_{0}), \quad j = 1,...,N$$

$$i\frac{\partial}{\partial t}\phi_{j}(\mathbf{r},t) = \left(-\frac{\nabla^{2}}{2} + V_{ext}(\mathbf{r},t) + V_{H}(\mathbf{r},t) + V_{xc}(\mathbf{r},t)\right)\phi_{j}(\mathbf{r},t)$$

Time-dependent density: $n(\mathbf{r},t) = \sum_{j=1}^{N} \left|\phi_{j}(\mathbf{r},t)\right|^{2}$

Only the N initially occupied orbitals are propagated. How can this be sufficient to describe all possible excitation processes?? Here's a simple argument:

Expand TDKS orbitals in complete basis of static KS orbitals,

$$\phi_{j}(\mathbf{r},t) = \sum_{k=1}^{\infty} a_{jk}(t) \phi_{k}^{(0)}(\mathbf{r})$$
finite for $k > N$

A time-dependent potential causes the TDKS orbitals to acquire admixtures of initially unoccupied orbitals.

$$V_{H}(\mathbf{r},t) = \int d^{3}r' \frac{n(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}$$

depends on density at time *t* (instantaneous, no memory)

$$V_{xc}[n](\mathbf{r},t)$$
 is a functional of $n(\mathbf{r}',t'), t' \le t$
The time-dependent xc potential has a memory!

Adiabatic approximation:

$$V_{xc}^{adia}[n]\mathbf{r},t) = V_{xc}^{gs}[n(t)]\mathbf{r})$$

(Take xc functional from static DFT and evaluate with time-dependent density)

ALDA:

$$V_{xc}^{ALDA}(\mathbf{r},t) = V_{xc}^{LDA}(n(\mathbf{r},t)) = \frac{d^2 e_{xc}^{hom}(\overline{n})}{d\overline{n}^2}\Big|_{\overline{n}=n(\mathbf{r},t)}$$

Propagate a time step Δt : $\phi_j(\mathbf{r}, t + \Delta t) = e^{-i\hat{H}\Delta t}\phi_j(\mathbf{r}, t)$

Crank-Nicholson algorithm:

$$e^{-i\hat{H}\Delta t} \approx \frac{1-i\hat{H}\Delta t/2}{1+i\hat{H}\Delta t/2}$$

$$\left(1 + \frac{i}{2}\Delta t\hat{H}\right)\phi_j(\mathbf{r}, t + \Delta t) = \left(1 - \frac{i}{2}\Delta t\hat{H}\right)\phi_j(\mathbf{r}, t)$$

Problem: \hat{H} must be evaluated at the mid point $t + \Delta t/2$ But we know the density only for times $\leq t$

Predictor Step:

$$\phi_j(t) \longrightarrow \phi_j^{(1)}(t + \Delta t) \Rightarrow \hat{H}^{(1)}(t + \Delta t)$$

nth Corrector Step:

$$\phi_{j}(t) \xrightarrow{\hat{H}(t + \Delta t/2) =} \phi_{j}^{(n+1)}(t + \Delta t) \Rightarrow \hat{H}^{(n+1)}(t + \Delta t)$$

$$\frac{1}{2} \left[\hat{H}(t) + \hat{H}^{(n)}(t + \Delta t) \right]$$

Selfconsistency is reached if n(t) remains unchanged for $t \in [t_0, T]$ upon addition of another corrector step in the time propagation.

Prepare the initial state, usually the ground state, by a static DFT calculation. This gives the initial orbitals: $\phi_j^{(0)}(\mathbf{r},0)$

Solve TDKS equations selfconsistently, using an approximate time-dependent xc potential which matches the static one used in step 1. This gives the TDKS orbitals: $\phi_j(\mathbf{r}, t) \rightarrow n(\mathbf{r}, t)$

3

Calculate the relevant observable(s) as a functional of $n({f r},t)$

3. TDKS Example: two electrons on a 2D quantum strip

C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006)

Step 1: solve full 2-electron Schrödinger equation

$$\left[-\frac{\nabla_{1}^{2}}{2}-\frac{\nabla_{2}^{2}}{2}+V(z_{1},t)+V(z_{2},t)+\frac{1}{\left|\vec{r_{1}}-\vec{r_{2}}\right|}-i\frac{\partial}{\partial t}\right]\Psi(\vec{r_{1}},\vec{r_{2}},t)=0$$

Step 2: calculate the exact time-dependent density

$$\sum_{s_1, s_2} \int d\vec{r}_2 |\Psi(\vec{r}, \vec{r}_2, t)|^2 = n(z, t) = 2 |\varphi(z, t)|^2$$

Step 3: find that TDKS system which reproduces the density

$$\left[-\frac{1}{2}\frac{d^2}{dz^2} + V(z,t) + V_H(z,t) + V_{xc}(z,t) + i\frac{\partial}{\partial t}\right]\varphi(z,t) = 0$$

Ansatz:
$$\varphi(\vec{r},t) = \sqrt{\frac{n(\vec{r},t)}{2}} \exp(i\alpha(\vec{r},t))$$
$$\Longrightarrow V_{xc}(\vec{r},t) = -V(\vec{r},t) - V_H(\vec{r},t) + \frac{1}{4}\nabla^2 \ln n(\vec{r},t) + \frac{1}{8} |\vec{\nabla} \ln n(\vec{r},t)|^2$$
$$- \dot{\alpha}(\vec{r},t) - \frac{1}{2} |\vec{\nabla} \alpha(\vec{r},t)|^2$$
$$V_{xc}^{dyn}$$

2D quantum strip: charge-density oscillations 3. TDKS density adiabatic V_{xc} exact V_{xc} 7.5 0 15 x (nm) movie3

- The TD xc potential can be constructed from a TD density
- Adiabatic approximations get most of the qualitative behavior right, but there are clear indications of nonadiabatic (memory) effects
- Nonadiabatic xc effects can become important (see later)

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

$$v_{s}[n; \Phi_{0}](\mathbf{r}t) = v_{ext}(\mathbf{r}t) + \int d^{3}r' \frac{n(\mathbf{r}'t)}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[n; \Psi_{0}, \Phi_{0}](\mathbf{r}t)$$

functional dependence on history, n(r t' < t), and on initial states

Almost all calculations today ignore this, and use an "adiabatic approximation":

Just take xc functional from static DFT and evaluate on instantaneous density

$$v_{xc}^{\mathsf{A}}[n; \Psi_0, \Phi_0](\mathbf{r}t) = v_{xc}^{\mathsf{gs}}[n(\mathbf{r}t)]$$

e.g.
$$v_{xc}^{ALDA}(\mathbf{r}t) = v_{xc}^{LDA}[n(\mathbf{r}t)] = \frac{de_{xc}^{unff}(n(\mathbf{r}t))}{dn}$$

But what about the exact functional?

Hessler, Maitra, Burke, (J. Chem. Phys, 2002); Wijewardane & Ullrich, (PRL 2005); Ullrich (JCP, 2006)

• Development of History-Dependent Functionals: *Dobson, Bunner & Gross (1997), Vignale, Ullrich, & Conti (1997), Kurzweil & Baer (2004), Tokatly (2005)*

periodic potentials.)

Maitra & Burke, (PRA 2001)(2001, E); Chem. Phys. Lett. (2002).

$$0 = i \sum_{j=1}^{N_{\sigma}} \int_{-\infty}^{t} dt' \int d^{3}r' \left[V_{xc\sigma}(\mathbf{r}',t') - u_{xcj\sigma}(\mathbf{r}',t') \right] \\ \times \sum_{k=1}^{\infty} \phi_{k\sigma}(\mathbf{r}',t') \phi_{k\sigma}^{*}(\mathbf{r},t) \phi_{j\sigma}(\mathbf{r},t) \phi_{j\sigma}^{*}(\mathbf{r}',t') + c.c.$$

where
$$u_{xcj\sigma}(\mathbf{r},t) = \frac{1}{\phi_{j\sigma}^*(\mathbf{r},t)} \frac{\delta A_{xc}[\{\phi_{i\sigma}\}]}{\delta \phi_{j\sigma}(\mathbf{r},t)}$$

exact exchange:

$$u_{xj\sigma}(\mathbf{r},t) = -\frac{1}{\phi_{j\sigma}^*(\mathbf{r},t)} \sum_{k=1}^{N_{\sigma}} \int d^3r' \frac{\phi_{j\sigma}^*(\mathbf{r}',t)\phi_{k\sigma}(\mathbf{r}',t)\phi_{k\sigma}(\mathbf{r},t)}{|\mathbf{r}-\mathbf{r}'|}$$

C.A.Ullrich, U.J. Gossmann, E.K.U. Gross, PRL **74**, 872 (1995) H.O. Wijewardane and C.A. Ullrich, PRL **100**, 056404 (2008)

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

$$\delta n(\mathbf{r}\omega) = \int d^{3}r'\chi[n_{0}](\mathbf{r}\mathbf{r}'\omega)\delta v_{\text{ext}}(\mathbf{r}'\omega)$$

$$= \int d^{3}r'\chi_{s}[n_{0}](\mathbf{r}\mathbf{r}'\omega)\delta v_{s}(\mathbf{r}'\omega)$$

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \sum_{I} \left\{ \frac{F_{I}(\mathbf{r})F_{I}^{*}(\mathbf{r}')}{\omega - \omega_{I} + i0^{+}} - \frac{F_{I}^{*}(\mathbf{r})F_{I}(\mathbf{r}')}{\omega + \omega_{I} + i0^{+}} \right\} \quad F_{I}(\mathbf{r}) = \langle \Psi_{0}|\hat{n}(\mathbf{r})|\Psi_{I}\rangle$$
Poles at true
Poles at true
Poles at KS
$$\frac{1}{|\mathbf{r}-\mathbf{r}'|} + f_{\text{xc}}[n_{0}](\mathbf{r},\mathbf{r}',\omega)$$
adiabatic approx: no ω -dep

Need (1) ground-state $v_{S,0}[n_0](r)$, and its bare excitations

(2) XC kernel
$$f_{xc}[n_0](\mathbf{r},\mathbf{r}',t-t') = \delta v_{xc}(\mathbf{r}t)/\delta n(\mathbf{r}t')|_{n_0}$$

Yields exact spectra in principle; in practice, approxs needed in (1) and (2).

Petersilka, Gossmann, Gross, (PRL, 1996)
5. Linear Response Matrix equations (a.k.a. Casida's equations)

Quantum chemistry codes cast eqns into a matrix of coupled KS single excitations (*Casida 1996*) : Diagonalize

$$\widetilde{\Omega}(\omega)_{qq'} = \delta_{qq'} \omega_q^2 + 4 \sqrt{\omega_q \omega_{q'}} [q|f_{\text{HXC}}(\omega)|q']$$

$$q = (i \rightarrow a)$$

$$[q|f_{\text{HXC}}(\omega)|q'] = \int d\mathbf{r} d\mathbf{r}' \phi_i^*(\mathbf{r}) \phi_a(\mathbf{r}) f_{\text{HXC}}(\mathbf{r}, \mathbf{r}', \omega) \phi_{i'}(\mathbf{r}') \phi_{a'}^*(\mathbf{r}')$$

 \rightarrow Excitation energies and oscillator strengths

<u>Useful tools for analysis:</u> "single-pole" and "small-matrix" approximations (SPA,SMA) Zoom in on a single KS excitation, $q = i \rightarrow a$

Well-separated single excitations: SMA $\omega^2 = \omega_q^2 + 4\omega_q [q|f_{\rm HXC}(\omega_q)|q]$ When shift from bare KS small: SPA $\omega = \omega_q + 2[q|f_{\rm HXC}(\omega_q)|q]$

5. Linear Response How it works: atomic excitation energies

- Energies typically to within about "0.4 eV"
- Bonds to within about 1%
- Dipoles good to about 5%

Vibrational frequencies good to 5%

- Cost scales as N³, vs N⁵ for wavefunction methods of comparable accuracy (eg CCSD, CASSCF)
- Available now in many electronic structure codes

Can study big molecules with TDDFT !

D. Varsano, R. Di Felice, M.A.L. Marques, A Rubio, J. Phys. Chem. B 110, 7129 (2006).

F. Furche and R. Ahlrichs, JACS **124**, 3804 (2002).

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
 Optical processes in Materials Multiple and charge-transfer excitations 	C.U. N.M.
 6. Optical processes in Materials 7. Multiple and charge-transfer excitations 8. Current-TDDFT 	C.U. N.M. C.U.
 6. Optical processes in Materials 7. Multiple and charge-transfer excitations 8. Current-TDDFT 9. Nanoscale transport 	C.U. N.M. C.U. C.U.

6. TDDFT in solids **Excitations in finite and extended systems**

$$\chi(\mathbf{r},\mathbf{r}',\omega) = \lim_{\eta \to 0^+} \left[\sum_{j} \frac{\left\langle \Psi_0 | \hat{n}(\mathbf{r}) \Psi_j \right\rangle \left\langle \Psi_j | \hat{n}(\mathbf{r}') \Psi_0 \right\rangle}{\omega - E_j + E_0 + i\eta} + c.c.(\omega \to -\omega) \right]$$

The full many-body response function has poles at the exact excitation energies

- Discrete single-particle excitations merge into a continuum (branch cut in frequency plane)
- New types of <u>collective excitations</u> appear off the real axis (finite lifetimes)

Excitation spectrum of simple metals:

- single particle-hole continuum (incoherent)
- collective <u>plasmon</u> mode

Metals vs. insulators

Plasmon dispersion of Al

Quong and Eguiluz, PRL 70, 3955 (1993)

- RPA (i.e., Hartree) gives already reasonably good agreement
- ► ALDA agrees very well with exp.

In general, (optical) excitation processes in (simple) metals are very well described by TDDFT within ALDA.

Time-dependent Hartree already gives the dominant contribution, and f_{xc} typically gives some (minor) corrections.

This is also the case for 2DEGs in doped semiconductor heterostructures

Semiconductor heterostructures

- Donor atoms separated from quantum well: modulation delta doping
- \bullet Total sheet density $N_{\rm s}$ typically ~10^{11} \rm cm^{-2}

Collective excitations

Effective-mass approximation:
$$m^* = \mu m$$
 $e^* = e/\sqrt{\kappa}$
(for GaAs : $\mu = 0.067, \kappa = 13$)

Electrons in a quantum well: plane waves in *x-y* plane, confined along *z*

$$\psi_{jq_{\parallel}}(\vec{r}) = \frac{1}{\sqrt{A}} e^{iq_{\parallel}r_{\parallel}} \varphi_{j}(z) \quad \text{with energies} \quad E_{jq_{\parallel}} = \frac{\hbar^{2}q_{\parallel}^{2}}{2m^{*}} + \varepsilon_{j}$$

$$\begin{array}{c} \text{quantum well}\\ \text{confining potential} \\ \hline \left[-\frac{\hbar^{2}}{2m^{*}} \frac{d^{2}}{dz^{2}} + V_{conf}(z) + V_{H}(z) + V_{xc}^{LDA}(z) \right] \varphi_{j}(z) = \varepsilon_{j}\varphi_{j}(z) \end{array}$$

Quantum well subbands

Intersubband plasmon dispersions

Optical absorption of insulators

G. Onida, L. Reining, A. Rubio, RMP **74**, 601 (2002) S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. **70**, 357 (2007)

6. TDDFT in solids **Optical absorption of insulators: failure of ALDA**

Optical absorption requires imaginary part of macroscopic dielectric function:

$$\operatorname{Im} \{ \varepsilon_{mac} \} = -\lim_{\mathbf{q} \to 0} V_{\mathbf{G}}(\mathbf{q}) \operatorname{Im} \{ \overline{\chi}_{\mathbf{GG}} \}$$
where $\overline{\chi} = \chi_{KS} + \chi_{KS}(\overline{V} + f_{xc}) \overline{\chi}$, $\overline{V}_{\mathbf{G}} = \begin{cases} V_{\mathbf{G}}, \quad \mathbf{G} \neq 0\\ 0, \quad \mathbf{G} = 0 \end{cases}$

$$\mathbf{q} \to 0 \text{ limit:} \qquad \sim q^2 \qquad \text{Long-range excluded,} \\ \text{so RPA is ineffective} \qquad \qquad \operatorname{Needs} 1/q^2 \\ \operatorname{component to} \\ \operatorname{correct} \chi_{KS} \end{cases}$$

$$\operatorname{But ALDA is \ constant}_{for \ \mathbf{q} \to 0:} \\ f_{xc}^{ALDA} = \lim_{q \to 0} f_{xc}^{hom}(q, \omega = 0) \end{cases}$$

6. TDDFT in solids Long-range XC kernels for solids

 LRC (long-range correlation) kernel (with fitting parameter α):

$$f_{xc}^{LRC}(\mathbf{q}) = -\frac{\alpha}{q^2}$$

12

• **TDOEP** kernel (X-only):
$$f_x^{OEP}(\mathbf{r},\mathbf{r}') = -\frac{\left|\sum_k f_k \phi_k(\mathbf{r}) \phi_k^*(\mathbf{r}')\right|}{2|\mathbf{r}-\mathbf{r}'| n(\mathbf{r}) n(\mathbf{r}')}$$

Simple real-space form: Petersilka, Gossmann, Gross, PRL **76**, 1212 (1996) TDOEP for extended systems: Kim and Görling, PRL **89**, 096402 (2002)

6. TDDFT in solids **Optical absorption of insulators**, again

F. Sottile et al., PRB 76, 161103 (2007)

6. TDDFT in solids **Extended systems - summary**

- TDDFT works well for metallic and quasi-metallic systems already at the level of the ALDA. Successful applications for plasmon modes in bulk metals and low-dimensional semiconductor heterostructures.
- ► TDDFT for insulators is a much more complicated story:
 - ALDA works well for EELS (electron energy loss spectra), but not for optical absorption spectra
 - difficulties originate from long-range contribution to f_{xc}
 - some long-range XC kernels have become available, but some of them are complicated. Stay tuned....
 - Nonlinear real-time dynamics including excitonic effects: TDDFT version of Semiconductor Bloch equations
 V.Turkowski and C.A.Ullrich, PRB 77, 075204 (2008) (Wednesday P13.7)

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

- Double excitations
- Long-range charge transfer
- Conical Intersections

Adiabatic approx for fxc fails.

Can use frequency-dependent kernel derived for *some* of these cases

Quantum control phenomena

Single-determinant constraint of KS leads to unnatural description of the true state \rightarrow weird xc effects

• Other strong-field phenomena ? \blacksquare ? Memory-dependence in $v_{xc}[n;\psi_0,\Phi_0](r t)$

- Observables that are not directly related to the density, eg NSDI, NACs...
 Need to know observable as functional of n(r t)
- Coulomb blockade
 Lack of derivative discontinuity
- Coupled electron-ion dynamics

Lack of electron-nuclear correlation in Ehrenfest, but surface-hopping has fundamental problems

7. Where the usual approxs. fail **Double Excitations**

Excitations of interacting systems generally involve mixtures of (KS) SSD's that have either 1,2,3,...electrons in excited orbitals.

single-, double-, triple- excitations

Now consider:

$$\chi(\mathbf{r},\mathbf{r}';\omega) = \sum_{I} \left\{ \frac{F_{I}(\mathbf{r})F_{I}^{*}(\mathbf{r}')}{\omega - \omega_{I} + i0^{+}} - \frac{F_{I}^{*}(\mathbf{r})F_{I}(\mathbf{r}')}{\omega + \omega_{I} + i0^{+}} \right\} \quad F_{I}(\mathbf{r}) = \langle \Psi_{0}|\hat{n}(\mathbf{r})|\Psi_{I}\rangle$$

 χ – poles at true states that are mixtures of singles, doubles, and higher excitations

 $\chi_{\rm S}\,$ -- poles only at single KS excitations, since one-body operator $\hat{n}({f r})\,$ can't connect Slater determinants differing by more than one orbital.

 $\Rightarrow \chi$ has more poles than χ_s

? How does f_{xc} generate more poles to get states of multiple excitation character?

7. Where the usual approxs. fail **Double Excitations**

Exactly Solve a Simple Model: one KS single (q) mixing with a nearby double (D)

KS Exact

$$\begin{array}{c} \mathbf{M} \\ \mathbf{D} \\ \mathbf{Q} \\$$

Invert and insert into Dyson-like eqn for kernel \rightarrow dressed SPA (i.e. ω -dependent):

$$2[q|f_{H\times c}(\omega)|q] = 2\left([q|\chi_{s}^{-1}|q] - [q|\chi^{-1}|q]\right)$$
$$\bar{\omega} = (1 - m^{2})\omega_{a} + m^{2}\omega_{b} = (\bar{\omega} - \omega_{q}) + \frac{\bar{\omega}'\bar{\omega} - \omega_{a}\omega_{b}}{(\omega - \bar{\omega}')}$$
$$\bar{\omega}' = m^{2}\omega_{a} + (1 - m^{2})\omega_{b}$$
Strong non-adiabaticity!

General case: Diagonalize many-body H in KS subspace near the double ex of interest, and require reduction to adiabatic TDDFT in the limit of weak coupling of the single to the double \rightarrow

NTM, Zhang, Cave, & Burke JCP (2004), Casida JCP (2004)

7. Where the usual approxs. fail **Double Excitations**

Example: Short-chain polyenes

Lowest-lying excitations notoriously difficult to calculate due to significant double-excitation character.

Cave, Zhang, NTM, Burke, CPL (2004)

E.g. Butadiene, dark $2^{1}A_{a}$ state

 2¹A_g Vertical excitation energies (eV) for butadiene and hexatriene

System	CASPT2	ATDDFT	D-TD-TDDFT
C_4H_6	6.27	7.02	6.28
C_6H_8	5.20	5.83	5.16

 $\bullet~2^1A_g$ Vertical and 0-0 excitations for but adiene at the estimated planar stationary point for 2^1A_g

ΔE	CASPT2	ATDDFT	P-TD-TDDFT
Vertical	4.3	5.8	4.16
0-0	5.2	6.8	5.28

 Note importance of accurate double-excitation description in coupled electron-ion dynamics – propensity for curve-crossing Levine, Ko, Quenneville, Martinez, Mol. Phys. (2006)

Example: Dual Fluorescence in DMABN in Polar Solvents

Rappoport & Furche, JACS 126, 1277 (2004).

"Local" Excitation (LE)

Intramolecular Charge Transfer (ICT)

TDDFT resolved the long debate on ICT structure (neither "PICT" nor "TICT"), and elucidated the mechanism of LE -- ICT reaction

Success in predicting ICT structure – How about CT energies ??

TDDFT typically **severely underestimates** long-range CT energies

(light-harvesting in plants and purple bacteria)

Dreuw & Head-Gordon, JACS 126 4007, (2004).

TDDFT predicts CT states energetically well below local fluorescing states. Predicts CT quenching of the fluorescence. ! Not observed !

TDDFT error ~ 1.4eV

Why do the usual approximations in TDDFT fail for these excitations?

We know what the *exact* energy for charge transfer at long range should be:

i.e. get just the bare KS orbital energy difference: <u>missing xc contribution to</u> <u>acceptor's electron affinity, A_{xc,2}, and -1/R</u> (Also, usual g.s. approxs underestimate I)

What are the properties of the unknown exact xc kernel that must be wellmodelled to get long-range CT energies correct ?

 \succ Exponential dependence on the fragment separation *R*,

$$f_{\rm xc} \sim \exp(aR)$$

For transfer between open-shell species, need strong frequency-dependence.

Step in V_{xc} re-aligns the 2 atomic HOMOs \rightarrow near-degeneracy of molecular HOMO & LUMO \rightarrow static correlation, crucial double excitations \rightarrow frequency-dependence!

(It's a rather ugly kernel...)

Gritsenko & Baerends (PRA, 2004), Maitra (JCP, 2005), Tozer (JCP, 2003) Tawada et al. (JCP, 2004)

Outline

1. A survey of time-dependent phenomena	C.U.
2. Fundamental theorems in TDDFT	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

- In general, the adiabatic approximation works well for excitations which have an analogue in the KS system (single excitations)
- formally justified only for infinitely slow electron dynamics. But why is it that the frequency dependence seems less important?

The frequency scale of f_{xc} is set by correlated multiple excitations, which are absent in the KS spectrum.

- Adiabatic approximation fails for more complicated excitations (multiple, charge-transfer)
- misses dissipation of long-wavelength plasmon excitations

Fundamental question: what is the proper extension of the LDA into the dynamical regime?

8. TDCDFT Nonlocality in space and time

Visualize electron dynamics as the motion (and deformation) of infinitesimal fluid elements:

Nonlocality in time (memory) implies nonlocality in space!

Dobson, Bünner, and Gross, PRL **79**, 1905 (1997) I.V. Tokatly, PRB **71**, 165105 (2005) Zero-force theorem:

$$\int d^3 r \, n(\vec{r},t) \vec{\nabla} V_{xc}(\vec{r},t) = 0$$

Linearized form:

$$\int d^3r' \vec{\nabla} n_0(\vec{r}') f_{xc}(\vec{r},\vec{r}',\omega) = \vec{\nabla} V_{xc,0}(\vec{r})$$

If the xc kernel has a finite range, we can write for slowly varying systems:

$$\vec{\nabla} n_0(\vec{r}) \int d^3 r' f_{xc}(\vec{r}, \vec{r}', \omega) = \vec{\nabla} V_{xc,0}(\vec{r})$$
$$\Rightarrow f_{xc}^{\text{hom}}(\vec{k} = 0, \omega)$$

I.h.s. is frequency-dependent, r.h.s is not: contradiction!

 $\longrightarrow f_{xc}(\vec{r},\vec{r}',\omega)$ has infinitely long spatial range!

8. TDCDFT

An xc functional that depends only on the local density (or its gradients) cannot see the motion of the entire slab.

A density functional needs to have a long range to see the motion through the changes at the edges.
8. TDCDFT Harmonic Potential Theorem – Kohn's mode

J.F. Dobson, PRL **73**, 2244 (1994)

A parabolically confined, interacting N-electron system can carry out an undistorted, undamped, collective "sloshing" mode, where $n(\vec{r},t) = n_0 (\vec{r} - \vec{R}(t))$ with the CM position $\vec{R}(t)$

• xc functionals based on local density can't distinguish the two cases!

8. TDCDFT

Point of view of local current

much better chance to capture the physics correctly!

8. TDCDFT Upgrading TDDFT: time-dependent Current-DFT

- Continuity equation only gives the longitudinal current
- TDCDFT gives also the transverse current
- We can find a short-range current-dependent xc vector potential

generalization of RG theorem: Ghosh and Dhara, PRA **38**, 1149 (1988) G. Vignale, PRB **70**, 201102 (2004)

$$\hat{H}_{int}(t) = \sum_{i} \left\{ \frac{1}{2} \left[\vec{p}_{i} + \frac{1}{c} \vec{A}_{ext}(\vec{r}_{i}, t) \right] + V_{ext}(\vec{r}_{i}, t) \right\} + \sum_{i>j} U(\vec{r}_{i} - \vec{r}_{j})$$

$$\int \int \vec{j}(\vec{r}, t) = \vec{j}_{L}(\vec{r}, t) + \vec{j}_{T}(\vec{r}, t)$$

$$\hat{I}(\vec{r}, t) = \vec{j}_{L}(\vec{r}, t) + \vec{j}_{T}(\vec{r}, t)$$

$$\hat{H}_{KS}(t) = \sum_{i} \left\{ \frac{1}{2} \left[\vec{p}_{i} + \frac{1}{c} \vec{A}_{KS}(\vec{r}_{i}, t) \right] + V_{KS}(\vec{r}_{i}, t) \right\}$$

uniquely determined up to gauge transformation

$$\vec{j}_1(\vec{r},\omega) = \int d^3r' \,\vec{\chi}_{KS}(\vec{r},\vec{r}',\omega) \left\{ \vec{A}_{ext,1}(\vec{r},\omega) + \vec{A}_{H,1}(\vec{r},\omega) + \vec{A}_{xc,1}(\vec{r},\omega) \right\}$$

KS current-current response tensor: diamagnetic + paramagnetic part

$$\chi_{\mu\nu}(\vec{r},\vec{r}',\omega) = n_0(\vec{r})\delta(\vec{r}-\vec{r}')\delta_{\mu\nu} + \frac{1}{2}\sum_{j,k}^{\infty}\frac{f_k - f_j}{\varepsilon_k - \varepsilon_j + \omega + i\eta}P_{\mu}^{kj}(\vec{r})P_{\nu}^{jk}(\vec{r}')$$

where
$$P_{\mu}^{kj} = \varphi_k^* (\vec{r}) \nabla_{\mu} \varphi_j (\vec{r}) - \varphi_j (\vec{r}) \nabla_{\mu} \varphi_k^* (\vec{r})$$

 $\vec{A}_{ext,1}(\vec{r},\omega)$: external perturbation. Can be a true vector potential, or a gauge transformed scalar perturbation:

$$\vec{A}_{ext,1} = \frac{1}{i\omega} \vec{\nabla} V_{ext,1}$$

$$\vec{A}_{H,1}(\vec{r},\omega) = \frac{\vec{\nabla}}{(i\omega)^2} \int d^3r' \frac{\vec{\nabla}' \cdot \vec{j}(\vec{r}',\omega)}{|\vec{r} - \vec{r}'|}$$

gauge transformed Hartree potential

$$\vec{A}_{xc,1}(\vec{r},\omega) = \int d^3r' \vec{f}_{xc}(\vec{r},\vec{r}',\omega) \vec{j}(\vec{r}',\omega)$$

the xc kernel is now a tensor!

ALDA:
$$\vec{A}_{xc,1}^{ALDA}(\vec{r},\omega) = \frac{\vec{\nabla}}{(i\omega)^2} \int d^3r' f_{xc}^{ALDA}(\vec{r},\vec{r}') \vec{\nabla}' \cdot \vec{j}(\vec{r}',\omega)$$

8. TDCDFT TDCDFT beyond the ALDA: the VK functional

G. Vignale and W. Kohn, PRL **77**, 2037 (1996)

G. Vignale, C.A. Ullrich, and S. Conti, PRL 79, 4878 (1997)

$$\vec{A}_{xc,1}(\vec{r},\omega) = \vec{A}_{xc,1}^{ALDA}(\vec{r},\omega) - \frac{c}{i\omega n_0(\vec{r})} \vec{\nabla} \cdot \vec{\sigma}_{xc}(\vec{r},\omega)$$

xc viscoelastic stress tensor:

$$\begin{split} \sigma_{xc,jk} &= \widetilde{\eta}_{xc} \left(\nabla_{j} v_{1,k} + \nabla_{k} v_{1,j} - \frac{2}{3} \vec{\nabla} \cdot \vec{v}_{1} \delta_{jk} \right) + \widetilde{\xi}_{xc} \vec{\nabla} \cdot \vec{v}_{1} \delta_{jk} \\ \vec{v} (\vec{r}, \omega) &= \vec{j} (\vec{r}, \omega) / n_{0} (\vec{r}) \quad \text{velocity field} \end{split}$$

- automatically satisfies zero-force theorem/Newton's 3rd law
- automatically satisfies the Harmonic Potential theorem
- is local in the current, but nonlocal in the density
- introduces dissipation/retardation effects

8. TDCDFT

$$\widetilde{\eta}_{xc}(n,\omega) = -\frac{n^2}{i\omega} f_{xc}^T(n,\omega)$$
$$\widetilde{\xi}_{xc}(n,\omega) = -\frac{n^2}{i\omega} \left(f_{xc}^L(n,\omega) - \frac{4}{3} f_{xc}^T(n,\omega) - \frac{d^2 e_{xc}^{unif}}{dn^2} \right)$$

In contrast with the classical case, the xc viscosities have both real and imaginary parts, describing <u>dissipative</u> and <u>elastic</u> behavior:

$$\widetilde{\eta}(\omega) = \eta(\omega) - \underbrace{S_{xc}(\omega)}_{i\omega} \text{ shear modulus} \qquad \text{reflect the stiffness of Fermi surface against deformations} \\ \widetilde{\zeta}(\omega) = \zeta(\omega) - \underbrace{B_{xc}^{dyn}(\omega)}_{i\omega} \text{ dynamical bulk modulus} \qquad \text{reflect the stiffness of Fermi surface against deformations}$$

8. TDCDFT

xc kernels of the homogeneous electron gas

GK: E.K.U. Gross and W. Kohn, PRL 55, 2850 (1985)
NCT: R. Nifosi, S. Conti, and M.P. Tosi, PRB 58, 12758 (1998)
QV: X. Qian and G. Vignale, PRB 65, 235121 (2002)

$$f_{xc}^{L}(0) = \frac{d^{2}e_{xc}^{unif}(n)}{dn^{2}} + \frac{4}{3}\frac{S_{xc}(0)}{n^{2}}$$
$$f_{xc}^{T}(0) = \frac{S_{xc}(0)}{n^{2}}$$

The shear modulus of the electron liquid does **not** disappear for $\omega \rightarrow 0$. (as long as the limit $q \rightarrow 0$ is taken first). Physical reason:

- Even very small frequencies <<E_F are large compared to relaxation rates from electron-electron collisions.
- The zero-frequency limit is taken such that local equilibrium is not reached.
- The Fermi surface remains stiff against deformations.

8. TDCDFT

TDCDFT for conjugated polymers

M. van Faassen et al., PRL 88, 186401 (2002) and JCP 118, 1044 (2003)

Outline

2 Eundamental theorems in TDDET	NIM
	N.IVI.
3. Time-dependent Kohn-Sham equation	C.U.
4. Memory dependence	N.M.
5. Linear response and excitation energies	N.M.
6. Optical processes in Materials	C.U.
7. Multiple and charge-transfer excitations	N.M.
8. Current-TDDFT	C.U.
9. Nanoscale transport	C.U.
10. Strong-field processes and control	N.M.

9. Transport **DFT and nanoscale transport**

9. Transport **TDDFT and nanoscale transport: weak bias**

Current response: $\vec{j}(\vec{r},\omega) = \int d^3r' \,\vec{\sigma}_0(\vec{r},\vec{r}',\omega) \vec{E}_{eff}(\vec{r}',\omega)$

$$\delta I(\omega \to 0) = \frac{T_0(\varepsilon_F)}{\pi} \int d^3 r' \left[\delta E_{ext}(\omega) + \delta E_H(\vec{r}', \omega) + \delta E_{xc}(\vec{r}', \omega) \right]$$

XC piece of voltage drop: Current-TDDFT

PRL 94, 186810 (2005)

Sai, Zwolak, Vignale, Di Ventra,

40 BDT

dynamical resistance: ~10% correction

9. Transport TDDFT and nanoscale transport: finite bias

(A) Current-TDDFT and Master equation

Burke, Car & Gebauer, PRL 94, 146803 (2005)

- periodic boundary conditions (ring geometry), electric field induced by vector potential A(t)
- current as basic variable
- requires coupling to phonon bath for steady current

(B) TDDFT and Non-equilibrium Green's functions

Stefanucci & Almbladh, PRB 69, 195318 (2004)

- localized system
- density as basic variable
- steady current via electronis dephasing with continuum of the leads

(A) and (B) agree for weak bias and small dissipation
 some preliminary results are available – stay tuned!

Outline

10. Strong-field processes and control	N.M.
9. Nanoscale transport	C.U.
8. Current-TDDFT	C.U.
7. Multiple and charge-transfer excitations	N.M.
6. Optical processes in Materials	C.U.
5. Linear response and excitation energies	N.M.
4. Memory dependence	N.M.
3. Time-dependent Kohn-Sham equation	C.U.
2. Fundamental theorems in TDDFT	N.M.
1. A survey of time-dependent phenomena	C.U.

In addition to an approximation for $v_{xc}[n;\Psi_0,\Phi_0](r,t)$, also need an approximation for the <u>observables of interest</u>.

 \rightarrow Is the relevant KS quantity physical ?

Certainly measurements involving only density (eg dipole moment) can be extracted directly from KS – no functional approximation needed for the observable. But generally not the case.

We'll take a look at:

- High-harmonic generation (HHG)
- Above-threshold ionization (ATI)
- Non-sequential double ionization (NSDI)
- Attosecond Quantum Control
- Correlated electron-ion dynamics

Figure 7. Harmonic spectra of helium resulting from the Hartree–Fock equation (without correlation) and the Kohn–Sham equation (with correlation). The laser parameters are $\lambda = 616$ nm and $I = 7.0 \cdot 10^{14}$ W/cm².

Erhard & Gross, (1996)

Nguyen, Bandrauk, and Ullrich, PRA **69**, 063415 (2004).

Knee forms due to a switchover from a sequential to a non-sequential (correlated) process of double ionization.

Knee missed by all single-orbital theories eg TDHF

TDDFT can get it, but it's difficult :

• Knee requires a derivative discontinuity, lacking in most approxs

• Need to express *pair-density* as purely a density functional – uncorrelated expression gives wrong knee-height. (*Wilken & Bauer (2006)*)

10. Strong-field processes **Electronic quantum control**

Is difficult: Consider pumping He from $(1s^2) \rightarrow (1s2p)$

Problem!! The KS state remains doubly-occupied throughout – *cannot* evolve into a singly-excited KS state.

<u>Simple model</u>: evolve two electrons in a harmonic potential from ground-state (KS doubly-occupied ϕ_0) to the first excited state (ϕ_0, ϕ_1) :

KS system achieves the target excited-state density, but with a doubly-occupied *ground-state* orbital !! The exact $v_{xc}(t)$ is unnatural and difficult to approximate.

Maitra, Woodward, & Burke (2002), Werschnik & Gross (2005), Werschnik, Gross & Burke (2007)

10. Strong-field processes Coupled electron-ion dynamics

Classical nuclei coupled to quantum electrons, via Ehrenfest coupling, i.e.

 $M\underline{\ddot{\mathbf{R}}} = -\nabla_R \left(W_{nn} + V_{ext,N}(t) + \langle \Phi_R | H_{el} | \Phi_R \rangle_{\underline{\mathbf{r}}} \right)$ Eg. Collisions of O atoms/ions with

FIG. 2. Kinetic energies of (a) $\mathrm{O}(^3P),$ (b) the graphite cluster, and (c) the entire system.

Isborn, Li. Tully, JCP 126, 134307 (2007)

Freely-available TDDFT code for strong and weak fields:

http://www.tddft.org

Castro, Appel, Rubio, Lorenzen, Marques, Oliveira, Rozzi, Andrade, Yabana, Bertsch

octopus is a program aimed at the ab initio virtual experimentation on a hopefully ever increasing range of systems types. Its main characteristics are:

- Electrons are describe quantum-mechanically within the Density-Functional Theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles.

Electron-nucleus interaction is described within the Pseudopotential approximation.

Classical Ehrenfest method misses electron-nuclear correlation ("branching" of trajectories) !! essential for photochemistry, relaxation, electron transfer, branching ratios, reactions near surfaces...

How about <u>Surface-Hopping</u> a la Tully with TDDFT?

Simplest: nuclei move on KS PES between hops. But, KS PES \neq true PES, and generally, may give wrong forces on the nuclei.

Should use TDDFT-corrected PES (eg calculate in linear response).

But then, trajectory hopping probabilities cannot be simply extracted – e.g. they depend on the coefficients of the true Ψ (not accessible in TDDFT), and on non-adiabatic couplings.

Craig, Duncan, & Prezhdo PRL 2005, Tapavicza, Tavernelli, Rothlisberger, PRL 2007, Maitra, JCP 2006

To learn more...

Time-dependent density functional theory, edited by M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E.K.U. Gross, Springer Lecture Notes in Physics, Vol. 706 (2006)

(see handouts for TDDFT literature list)

Upcoming TDDFT conferences:

- 3rd International Workshop and School on TDDFT Benasque, Spain, August 31 - September 15, 2008 http://benasque.ecm.ub.es/2008tddft/2008tddft.htm
- Gordon Conference on TDDFT, Summer 2009 http://www.grc.org

Acknowledgments

Collaborators:

- Giovanni Vignale (Missouri)
- Kieron Burke (Irvine)
- Ilya Tokatly (San Sebastian)
- Irene D'Amico (York/UK)
- Klaus Capelle (Sao Carlos/Brazil)
- Meta van Faassen (Groningen)
- Adam Wasserman (Harvard)
- Hardy Gross (FU-Berlin)

Students/Postdocs:

- Harshani Wijewardane
- Volodymyr Turkowski
- Ednilsom Orestes
- Yonghui Li
- David Tempel
- Arun Rajam
- Christian Gaun
- August Krueger
- Gabriella Mullady
- Allen Kamal

