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1. Survey Time-dependent Schrodinger equation

ih%‘P(rl,...,rN,t) = €+ I}(t) + Vf/){’(rl,...,rN,t)

. 2v72
Kinetic energy A N h Vj electron
operator: T = E o interaction: 2 Z

J=1 2m ];ék

The TDSE describes the time evolution of a many-body state qj(f ),

starting from an initial state lp(l‘ ) under the influence of an
external time-dependent potential V(f) EV( l‘)

From now on, we’ll (mostly) use atomic units (e =m=h =1).



1. Survey Real-time electron dynamics: first scenario

Start from nonequilibrium initial state, evolve in static potential:

—>

t=0 t>0

Charge-density oscillations in metallic
clusters or nanoparticles (plasmonics)

New J. Chem. 30, 1121 (2006)
Nature Mat. Vol. 2 No. 4 (2003)




1. Survey Real-time electron dynamics: second scenario

Start from ground state, evolve in time-dependent driving field:

—>

Nonlinear response and ionization of atoms
and molecules in strong laser fields

—




1. Survey Coupled electron-nuclear dynamics

e Dissociation of molecules (laser or collision induced)
e Coulomb explosion of clusters
e Chemical reactions

High-energy proton hitting ethene

T. Burnus, M.A.L. Marques, E.K.U. Gross,
Phys. Rev. A 71, 010501(R) (2005)

0.0099 fs

7
() Nuclear dynamics
treated classically

2.9471 fs 4.3886 fs 7.4049 fs

For a quantum treatment of nuclear dynamics within TDDFT (beyond the
scope of this tutorial), see O. Butriy et al., Phys. Rev. A 76, 052514 (2007).




1. Survey Linear response

)

tickle the system /

// observe how the

% system responds
at a later time

n, (r,t) =fa’r'fa’t')((r,t,r',t')V1 (r',t')

density density-density perturbation
response response function




1. Survey Optical spectroscopy

e Uses weak CW laser as Probe

Green
fluorescent

e System Response has peaks at
protein

electronic excitation energies

Na,

Na,
o—o _ ) Exp.1 ——— |
/\ A Exp..?|  —
[ D neutral ------- ]
Theory A i ih \ anionic —-—- 1

Photoabsorption cross section

E i t
Xperimen h " . : _ /g; ;
0 | 2 3 0 1 2 3 . At
Energy (eV) “"/'7"1 a .
2 3 4 5
Vasiliev et al., PRB 65, 115416 (2002) eV

Marques et al., PRL 90, 258101 (2003)
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2. Fundamental theorems in TDDFT N.M.



2. Fundamentals Runge-Gross Theorem

kinetic external potential
For any system with Hamiltonian of form H=T+ W + V,
e-e interaction

xt

Runge & Gross (1984) proved the 1-1 mapping:

n(r -0y (rt)

> For a given initial-state 1, the time-evolving one-body density n(r t) tells you
everything about the time-evolving interacting electronic system, exactly.

/

This follows from :

W, n(rt) = unique vV, (rht) > H(t) > W(f) > all observables




2. Fundamentals Proof of the Runge-Gross Theorem (1/4)

Consider two systems of N interacting electrons, both starting in the same ¥,
but evolving under different potentials v, (r,t) and v, (r,t) respectively:

Vext (t) ’ 'I’(t)

Voxt (7, 1) — l‘z,xt' (r,t) # c(t)
q’o%

Vext ’(t) ’ 'P’(t)

o
Assume Taylor- (v ) = Lo V(4 — 1)E
expandability: (r,0) = 2 o(r)(t = bo)

RG prove that the resulting densities n(r,t) and n'(r,t) eventually must differ,
l.e.

same n(fr'7 t)



2. Fundamentals Proof of the Runge-Gross Theorem (2/4)

The first part of the proof shows that the current-densities must differ.

Consider Heisenberg e.o.m’s for the current-density in each system,

,_-) ‘ o .
(W(0)]Q(1) (1) =~<.\If<f>|( — i[Q(1) 1>I‘I'<>

// the part of H that

T \ o differs in the t
(1) = 5= 3 (Va3 — 1)) + 6(x 1)V, systems
1=1 1 A\ ) 1 N 1 N
H=-2) Vits2 2. Pl
=1 1=17=1 |rl - r]| 1=1
» | : . reon] 1o
At the initial time: — {j(r.t) = j'(r,t)} .o = —i{Fo| |j(r. ). {H(0) = H'(0)}] |2)
~iWo] [5(r). (vt (7, 0) = vl (. 0)}] 16
- —120( )v{fe\t( ) ‘éxt(, O)}
S
initial density

- if initially the 2 potentials differ, then j and j * differ infinitesimally later ©



2. Fundamentals Proof of the Runge-Gross Theorem (3/4)

If v, (1, 0) = V,i(r, 0), then look at later times by repeatedly using Heisenberg e.o.m:

ext
AR PR Y N or o / \
ST (r.t) =g (r.t),_g = —nolr )Vm{t (r.t) —o'(r.t)},_q

AS Vo (rt) — Voy(rt) # c(t), and assuming potentials are Taylor-expandable
at t=0, there must be some & for which RHS % 0-> jlr.t) £ 3 (r.t)

11 ,
> proves j(rt) g Vex(Hd) /1% part of RG ©

The second part of RG proves 1-1 between densities and potentials:

On(r.t)
ot

Take div. of both sides of * and use the eqn of continuity, ==V -j(r.t) ..



2. Fundamentals Proof of the Runge-Gross Theorem (4/4)

- ok , . , oF , ,
pr) {n(r.t) =n'(r.t)},_,=V" 110(1’)VW{1'QXt(7'. t) — Vot (7. 1) be=0
- ~ /

= u(r) is nonzero for some £k, but
must taking the div here be nonzero?

Yes!

By reductio ad absurdum: assume divln (T )V u(T)]=0 with u(T") # const

Then O= fd3r u(T)divlin( f’to)v u(T)] assume fall-off of n, rapid enough
that surface-integral - 0

- —fd%n(?zo)[wm]ug [Vu2(T)]-df
/
integrand =0, so if integral 0, thenVu =0 —> contradiction

Uext (7", IL)
v (7 t)

‘ext

i.e. same n(7, t)

» 1-1 mapping between time-dependent densities and potentials, for a
given initial state



2. Fundamentals The TDKS system

® 1> v for given W, implies any observable is a functional of n and ¥,

-- SO map interacting system to a non-interacting (Kohn-Sham)
one, that reproduces the same n(r,1).

All properties of the true system can be extracted from TDKS - “bigger-faster-
cheaper” calculations of spectra and dynamics

KS “electrons” evolve in the 1-body KS potential:

vs[n; ol (rt) = lext(lf)+/d3 /nr't) +>5[72  Wo, ®ol(rt)

Ir — 1|

functional of the history of the density

and the initial states

-- memory-dependence (see more shortly!)

@ If begin in ground-state, then no initial-state dependence, since by HK,

W, =W [n(0)] (eg. in linear response). Then Uxc = Vxc|n](rt)



2. Fundamentals Clarifications and Extensions

® But how do we know a non-interacting system exists that reproduces a given
interacting evolution n(r,t) ?

v van Leeuwen (PRL, 1999)
(under mild restrictions of the choice of the KS initial state @)

® The KS potential is not the density-functional derivative of any action !

If it were, causality would be violated:

Vxc[n, ¥, ®](r,t) must be causal — i.e. cannot depend on n(r t ">t
0 Axc|n dvxe|n|(rt 62 Ag[n
Butif  Uxc[n(rt) = o) xolnl(rt) el

- h - — — :
on(rt) then on(r't’) on(rt)on(r't’)

But RHS must be symmetric in (f,f) = symmetry-causality paradox.

v'van Leeuwen (PRL 1998) showed how an action, and variational principle, may be
defined, using Keldysh contours.



2. Fundamentals Clarifications and Extensions

@® Restriction to Taylor-expandable potentials means RG is technically not valid
for many potentials, eg adiabatic turn-on, although RG is assumed in practise.

van Leeuwen (Int. J. Mod. Phys. B. 2001) extended the RG proof in the linear
response regime to the wider class of Laplace-transformable potentials.

@ The first step of the RG proof showed a 1-1 mapping between currents and
potentials = TD current-density FT

, must use TDCDFT (not TDDFT) for

-- response of periodic systems (solids) in uniform E-fields
-- in presence of external magnetic fields
(Maitra, Souza, Burke, PRB 2003; Ghosh & Dhara, PRA, 1988)

, approximate functionals of current are simpler where spatial non-
local dependence is important

(Vignale & Kohn, 1996; Vignale, Ullrich & Conti 1997)
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3. Time-dependent Kohn-Sham equation C.U.



3. TDKS Time-dependent Kohn-Sham scheme (1)

Consider an N-electron system, starting from a stationary state.

Solve a set of static KS equations to get a set of N ground-state orbitals:
-+ V01 )4V, )4V, () ]9 (0)= €00 (r)

The N static KS orbitals are taken as initial orbitals and will be propagated in time:

0O@)=¢.(r,0,) j=1...N

z—¢ (r,7)= ——+Vex,(r )+ V, (e,t)+ 7, (1) |9, (1)

N 2
Time-dependent density: n(r, l‘)= E ‘gbj (l‘, t}
7=



3. TDKS Time-dependent Kohn-Sham scheme (2)

Only the N initially occupied orbitals are propagated. How can this be sufficient
to describe all possible excitation processes?? Here’s a simple argument:

Expand TDKS orbitals in complete basis of static KS orbitals,

0, (k1) ga{ ()

finite for k > N

A time-dependent potential causes the TDKS orbitals to acquire admixtures of
initially unoccupied orbitals.



3. TDKS Adiabatic approximation

/
V (r f):fd3r’ n(r ’t) depends on density at time ¢
e ‘l‘ -r (instantaneous, no memory)

ch[n:[r,t) is a functional of Ifl(l",l") ' <t

The time-dependent xc potential has a memory!

Adiabatic approximation: Vx‘édia [n :[r, t)= Vx‘is [n(i):[r )

(Take xc functional from static DFT and evaluate with time-dependent density)

el (n)

dﬁz

2
O 1, 1) = Vol )=

n=n(r,t)




3. TDKS Time-dependent selfconsistency (1)

start with

selfconsistent Pfcﬁahgate
KS ground state until here
| | g

|. Propagate l¢ L—— Old(f)_lb]» ’E[fo»T]

IIl. With the density n(t)= E ‘¢ . (t }2 calculate the new KS potential
o (f) V.., (l)+ V (n(t))+ V.. [n(t)] for all fE[fO,T]

ll. Selfconsistency is reached if OZd (l‘) o (t) A= [Z‘O , T:I



3. TDKS Numerical time Propagation

Propagate a time step AZ : ¢j (rat + At)= e_iﬁm¢j (r9 t)

i 1—iHAt)2
1+iHAt/2

(+ AT p (.0 +Ar)= (=2 AT Jp (r.1)

Problem: [ must be evaluated at the mid point [ + At/2

Crank-Nicholson algorithm: e

But we know the density only for times < f



3. TDKS Time-dependent selfconsistency (2)

Predictor Step:
$,() - 9O+ A1) = HO(t+Ar)

nth Corrector Step:

$,(t)

A s 9D+ Ar) = H"V (¢ +Ar)
H(+At/2)= !

i) 5+ a0)

Selfconsistency is reached if I’l(f) remains unchanged for f & [fo . T]

upon addition of another corrector step in the time propagation.




3. TDKS Summary of TDKS scheme: 3 Steps

@ Prepare the initial state, usually the ground state, by (),
a static DFT calculation. This gives the initial orbitals: ¢j (1',0)

@ Solve TDKS equations selfconsistently, using an approximate
time-dependent xc potential which matches the static one used

in step 1. This gives the TDKS orbitals: ¢ . (l‘, t)% n(r, t)
J

@ Calculate the relevant observable(s) as a functional of n(r,t)



3. TDKS Example: two electrons on a 2D quantum strip

initial-state density

hard walls 0.01
periodic 0,008 L — exact |
boundaries '
! | | - - - —LDA
(travelling ::> ::> 5 0006 )
waves) )
v § 0.004 |
X (standing waves) 0.002 |
0 1
0 2 4 6 8 10
z (a..)

Charge-density oscillations
e |nitial state: constant electric field,

which is suddenly switched off

e After switch-off, free propagation of
the charge-density oscillations

C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006)



3. TDKS Construction of the exact xc potential

Step 1: solve full 2-electron Schrodinger equation

V \Y

-—= 4 V(zl,t)+ V(zz,t)+

2 2

—_

""1_2

)

. 0
_l_

Step 2: calculate the exact time-dependent density

Efdz@\\l!(?,?z,tf = n(z,1) = 2g(z,1)

$1,89

ot

W, 7,1)=0

Step 3: find that TDKS system which reproduces the density

eV (. t)l_}gp(z )=0

-——+

[la’2



3. TDKS Construction of the exact xc potential

Ansatz:

::> ch(F’t) =

ol6.1)= " expliatr.r)

2

~V(F,t)-v, (7 t)
|
A

+ —=V2Inn(7, 1)+ é\% In n(f,rf

VA

XC

—_

~ap.0)-1 e




3. TDKS 2D quantum strip: charge-density oscillations

—— density
adiabatic V,

exact V..

|
0 75 15

x (nm)

movie3

e The TD xc potential can be constructed from a TD density

e Adiabatic approximations get most of the qualitative behavior right,
but there are clear indications of nonadiabatic (memory) effects

e Nonadiabatic xc effects can become important (see later)
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4. Memory Memory dependence

valn; Dol (1) = vet (rt) + / dPr ”’“("“' + vxcm)
1 — T

functional dependence on history, n(r t’<t),
and on initial states

Almost all calculations today ignore this, and use an “adiabatic approximation” :

Just take xc functional from static DFT and evaluate on instantaneous density

vieln; Wo, o] (rt) = v [n(rt)]

e.g. vALDA(pt) = oLDA[, (pt)] = ”""(n(rt))

But what about the exact functional?



4. Memory Example of history dependence

Uxc [@1 \Uo, CDO] (rt)
Eg. Time-dependent Hooke’s atom —exactly solvable "\ N al
~ n(rt’),t' <t

2 electrons in parabolic well,
time-varying force constant

k(t) =0.25 — 0.1*cos(0.75 t)

r?”?’s(t)
—_ N W A

parametrizes
density

0.04}
Any adiabatic (or even

semi-local-in-time)
approximation would
incorrectly predict the
same V, at both times.

0.02}

_—
.

—

'v
€3]

_ o}
/ d 3 r ,.,72,(1,15) Ve (I‘ t) -0.02f

-0.04

t

Hessler, Maitra, Burke, (J. Chem. Phys, 2002); Wijewardane & Ullrich, (PRL 2005); Ullrich (JCP, 2006)

* Development of History-Dependent Functionals: Dobson, Bunner & Gross (1997),
Vignale, Ullrich, & Conti (1997), Kurzweil & Baer (2004), Tokatly (2005)



4. Memory Example of initial-state dependence

Uxe|m;

If we start in different W,’s, can
we get the same n(rt) by
evolving in different potentials?
Yes!

Re and Im parts
of 1stand 2nd
Floquet orbitals

Doubly-occupied
Floquet orbital

with same n

» Say this is the density of an interacting
system. Both top and middle are possible

KS systems.

> v, different for each. Cannot be captured

by any adiabatic approximation

periodic potentials. )

Maitra & Burke, (PRA 2001)(2001, E); Chem. Phys. Lett. (2002).

A non-interacting example:
Periodically driven HO

I

1

%)
( Consequence for Floquet DFT: No 1-1 mapping between densities and time-




4. Memory Time-dependent optimized effective potential

/=

g

013 fa el )1, )]

.
I
i

x;¢ka(r’,r'>¢;<r,r>¢ja(r,r>¢;‘fa<r',r’> + ce

1 o4 . H
¢, (r,1) 8¢, (r,1)

J ,¢]a(r t)pko(r t)pka(r t)

where u . (r,1)=

exact exchange: Mx]a(r f)_ ¢ ( t)Zf
jo

C.A.Ullrich, U.J. Gossmann, E.K.U. Gross, PRL 74, 872 (1995)
H.O. Wijewardane and C.A. Ullrich, PRL 100, 056404 (2008)
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5. Linear response and excitation energies N.M.



5. Linear Response TDDFT in linear response

n(rw) = /d3r’x[no](rr’w)&vext(r’w)

B ./ d>r'xs[no] (rr'w)dvs (r'w)

F EF*(r! F*(0\EFAr'
X(l',l";w)zz Ar) ](r)_ 7 (r)F(r")

T |o—w;+i0" wt+w;+i0"

F](I‘) - <\Ifo‘fl(1‘) ‘\If]>

Poles at true Poles at KS
excitatioQS excit/ations 1/|r—r’| + fxc [nO] (r, r', ‘?”)

R =T
X_l(w) — Xs_l(w) — foc(w)

c Need (1)

(2) XC kernel  fic[no](r,x',t — ') = duve(xt) /on(xt’) |0,

adiabatic approx: no w-dep

ground-state v ,[n,/(r), and its bare excitations

Yields exact spectra in principle; in
practice, approxs needed in (1) and (2).
Petersilka, Gossmann, Gross, (PRL, 1996)



5. Linear Response Matrix equations (a.k.a. Casida’s equations)

Quantum chemistry codes cast eqns into a matrix of coupled KS single
excitations (Casida 1996) : Diagonalize

Q( w)qq’ — 5(1(1’ C()é +4 '\"'jwqwq’[q LfHXC( (1)) |q ,]

[Q|fHXC(w)|Q’]:J dl‘dl"g/);k(r)g/)a(l’)fHXC(l',l",a))gb,-r(l")gf)j:,(l")

—> Excitation energies and oscillator strengths

Useful tools for analysis: “single-pole” and “small-matrix” approximations (SPA,SMA)

Zoom in on a single KS excitation, g =i-> a

Well-separated single excitations:| SMA w? = cug + 4w, 19| fraxc (wq)‘Q]

When shift from bare KS small:| SPA W=+ 2[C]|foc( O)q)|CI]




5. Linear Response How it works: atomic excitation energies

TDDFT linear response from

Continuum Atom  Exp. full matrix SMA SPA R
Be 5.28 4.94 5.07 5.43 3.50
gs o Mg 434 434 4.56 4.76 3.39
0 j Ca 294 322 3.36 3.56 239
4s T ——————— —_— ST 2.69 2.96 3.10 3.28 2.22
/n 579 571 6.30 6.54 4.79
3p R — — Cd 541 5.10 5.60 5.86 412
0.841 88 ——— =10
Vasiliev, Ogut, Chelikowsky, PRL 82, 1919 (1999)
0.80
op e
0.761 .~ singlet
2s
Look at other
072 Triplet functional approxs
KS ALDA-SIC fxc EXPT (ALDA, EXX), and

also with SPA. All

From Burke & Gross, (1998); Burke, Petersilka &Gross (2000) quite similar for He



5. Linear response General trends

@® Energies typically to within about “0.4 eV”
@® Bonds to within about 1%

@ Dipoles good to about 5%

@® Vibrational frequencies good to 5%

® Cost scales as N3, vs N° for wavefunction methods of
comparable accuracy (eg CCSD, CASSCF)

® Available now in many electronic structure codes

® Unprecedented balance between accuracy and efficiency
TDDFT Sales Tag




5. Linear response Examples

Can study big molecules with TDDFT !

Optical Spectrum of DNA fragments
d(GC) m-stacked pair

61 dcc)avg) \
I 2(G+C)(avg) = ==

S (1/eV)

=D
;

D. Varsano, R. Di Felice, M.A.L. Marques, A Rubio, J. Phys. Chem. B 110, 7129 (2006).



5. Linear response Examples

Circular dichroism spectra of chiral
fullerenes: D,Cg,

300 600

200 - - 400
__ 100 1] 00 .
- W)
£ 3
it o
§ 0 0 ?9
9 00 4 L 200

-200 - - =400

— Exb.
-300 T T -600

300 400 500 600 700 800 900
AE (nm)

F. Furche and R. Ahlrichs, JACS 124, 3804 (2002).
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6. TDDFT in solids Excitations in finite and extended systems

| | (WAl Jw, (W Al @, )
X(r,r ,w)=77lirgl 2 w—E, +E,+in +c.c.(a)% —a))
H_J
2,

The full many-body response function has poles at the exact excitation energies

Imw A

A
Imaw finite extended

Rew

» Discrete single-particle excitations merge into a continuum
(branch cut in frequency plane)

» New types of collective excitations appear off the real axis
(finite lifetimes)




6. TDDFT in solids Metals vs. insulators

plasmon

>
q

Excitation spectrum of simple metals:

e single particle-hole continuum
(incoherent)
e collective plasmon mode

Wavevector k

Optical excitations
of insulators:

e interband transitions
e excitons (bound

\\ electron-hole pairs)

>



6. TDDFT in solids Excitations in bulk metals

25
O
—~ 23p O RPA Plasmon dispersion of Al
% ® TDLDA . e
> 21 ey Quong and Eguiluz, PRL 70, 3955 (1993)
< o
@ 19} © : :
5 . » RPA (i.e., Hartree) gives already
& 7l o oV reasonably good agreement
a .8 . » ALDA agrees very well with exp.
spe
00 02 0.4 06 08 1.0
q(2m/a,)

In general, (optical) excitation processes in (simple) metals are very well
described by TDDFT within ALDA.

Time-dependent Hartree already gives the dominant contribution, and
j;C typically gives some (minor) corrections.

This is also the case for 2DEGs in doped semiconductor heterostructures




6. TDDFT in solids

Semiconductor heterostructures

N\

Interband transitions:
of order eV
(visible to near-IR)

Intersubband transitions:

of order meV
(mid- to far-IR)

esemiconductor heterostructures are

/Al GaAs

<

—_— -

CB lower edge

VB upper edge

grown with MBE or MOCVD
econtrol and design through layer-by-layer
— GaAs variation of material composition
T AIGaAs ewidely used class or materials:
[11-V compounds

%

250 meV

Eg= 1.4 eV

200 meVI

AlGaAs

barrier

GaAs

well

AlGaAs

barrier




6. TDDFT in solids n-doped quantum wells

e Donor atoms separated from quantum well: modulation delta doping

e Total sheet density /V, typically ~10"" cm

S1 donor Si1 donor
atoms atoms
- —I+F
+1— —1+
+1— —1+

electrons accumulate
in quantum well

+++
+++



6. TDDFT in solids Collective excitations

ﬂ — 2D Plasmon

(in-plane motion)

Intersubband charge and spin 2m /K|
plasmons: 1 and | densities

in and out of phase Intersubband Plasmon

(out-of-plane motion)




6. TDDFT in solids Electronic ground state: subband levels

Effective-mass approximation:  m™* = um et =e/ K
(for GaAs: u =0.067, k =13)

Electrons in a quantum well: plane waves in X-y plane, confined along z

2 2

PRl h'q
(P] (Z) with energies qu = | + £ .
I I, * J

. |
v, (F) =

quantum well
confining potential
|

onf(Z) +V (Z) + VxﬁDA(Z) %—(Z) = 8]'(;0]'(2)

h’ d2
- 2m* dz?




6. TDDFT in solids Quantum well subbands




6. TDDFT in solids

Intersubband plasmon dispersions

11

charge plasmon
10 gep
S
()
\E, 8 single—particle|
gle—p
3 excitations
7
spin plasmon
6 L
0 0.001 0.002 0.003
K (A"
E E= E
e —_—

C.A.UlIrich and G.Vignale, PRL 87, 037402 (2002)

Plasmon Energy (meV) Plasmon Energy (meV)

Subband Splitting (meV)

22
20
18
16
14
12
10

8
20
18
16
14
12
10

8
20
18
16
14
12
10

8

. / experiment ]|
B

QI
ol *

K

TDDFT

Single-particle

-1 -0.5 0 0.5 1
Electric Field (mV/nm)



6. TDDFT in solids

Optical absorption of insulators
60 | I | I | I
. e EXP
Silicon . - — RPA
- - = TDLDA
>0 TR a -+ RPANLF ]|
l 1 \ o3 | RPA and ALDA both bad!
RN
0 .§,’ ‘ s 3.. | » absorption edge red shifted
0 -3 . ] (electron self-interaction)
S 30 : J : -
N I /, \ .. » first excitonic peak missing
N e . (electron-hole interaction)
20— If\ A . m
N B \ _
3 s > -.,“"“_ _
10}~ . e <  Why does the ALDA fail??
0/ I!.' ! | ! | !
3 4 5 6
® [eV]

G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002)
S. Botti, A. Schindimayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)



6. TDDFT in solids  Optical absorption of insulators: failure of ALDA

Optical absorption requires imaginary part of macroscopic dielectric function:

Im{emac }= - }1123 Ve (q )Im{;?GG }

B - —_ V., G=0
where X=XKS+XKS(V+fxc))?’ VG=<O(,} G=0

"

- 2 2
q — 0 limit: ~q Long-range excluded, Needs 1/q

so RPA is ineffective component to
correct X

But ALDA is constant
for q —=0:

p=




6. TDDFT in solids Long-range XC kernels for solids

e LRC (long-range correlation) kernel

(with fitting parameter a):

LRC(q)— -—

e TDOEP kernel (X-only):

3 fk¢k<r>¢:<r'f

£ )=~

Simple real-space form: Petersilka, Gossmann, Gross, PRL 76, 1212 (1996)
TDOEP for extended systems: Kim and Gorling, PRL 89, 096402 (2002)

h(r')

e “Nanoquanta” kernel (L. Reining et al, PRL 88, 066404 (2002)

155 (q—0,G,G')= Y &g (vkek;q —0)

vek V'ek'

vek,v'c'k’

@ ) (Vk'k';q —0)

pairs of KS
wave functions

matrix element of screened
Coulomb interaction (from
Bethe-Salpeter equation)




Im {g,}

6. TDDFT in solids Optical absorption of insulators, again

60 r - - - - - ; - -
—Bxsmooa [\ Kim & Gorling
50 - = EXX+TDEXX [
LDA + TDLDA | |
n=1 Solid Argon
Optical Absorption
T I T | T | T T
15— —
- = BSE
+  EXP
| —— TDDFT MP
- — o w RPA —
. TDLDA
|
10 — | —
I
J
[ il | @ Silicon
l 60 T l T | T I T
r . . Exp.
., | Reiningetal. ~ A | RPA
or i) . |=+—- TDLDA []
| PR /v |-=-— GWRPA|]
. © \ |==— BSE
40 -
£ 30l
g
o (eV) L
20 -
F. Sottile et al., PRB 76, 161103 (2007) s
10 - ;
I Y
0 == l-:—:-.o-/- — - ~|g@ 1 | 1 | 1
2 3 4 5 6



6. TDDFT in solids Extended systems - summary

» TDDFT works well for metallic and quasi-metallic systems already
at the level of the ALDA. Successful applications for plasmon modes
in bulk metals and low-dimensional semiconductor heterostructures.

» TDDFT for insulators is a much more complicated story:

e ALDA works well for EELS (electron energy loss spectra), but
not for optical absorption spectra

e difficulties originate from long-range contribution to f .

e some long-range XC kernels have become available,
but some of them are complicated. Stay tuned....

e Nonlinear real-time dynamics including excitonic effects:
TDDFT version of Semiconductor Bloch equations
V. Turkowski and C.A.Ullrich, PRB 77, 075204 (2008) (Wednesday P13.7)
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7. Multiple and charge-transfer excitations  N.M.



7. Where the usual approxs. fail  Ailments —and some Cures (l)

meaning, semi-local in space
and local in time

T
® Rydberg states Local/semilocal approx inadequate.

Need Im fxc to open gap.
@® Polarizabilities of long-chain molecules™— _ _
Can cure with orbital- dependent fnals

(exact-exchange/sic), or TD current-
DFT

@® Optical response/gap of solids

@ Double excitations Adiabatic approx for fxc fails.

Can use frequency-dependent
kernel derived for some of these
cases

® Long-range charge transfer

&® Conical Intersections _



7. Where the usual approxs. fail  Ailments — and some Cures (ll)

Single-determinant constraint of KS

® Quantum control phenomena 4« |eads to unnatural description of the
true state - weird xc effects

® Other strong-field phenomena ?  <«— ? Memory-dependence in v, [n;y,.®](r t)

® Observables that are not directly related
y <«—\eed to know observable as

to the density, eg NSDI, NACs... functional of n(r t)

® Coulomb blockade <+ Lack of derivative discontinuity

® Coupled electron-ion dynamics
Lack of electron-nuclear correlation in Ehrenfest,

but surface-hopping has fundamental problems



7. Where the usual approxs. fail Double Excitations

Excitations of interacting systems generally involve mixtures of (KS) SSD’s
that have either 1,2,3...electrons in excited orbitals.

single-, double-, triple- excitations

Now consider:

FArFH(r') FHr)F(r) o
)= L L TR ) = ()| )

T |w—w;+i0" w+w+i0"

v — poles at true states that are mixtures of singles, doubles, and higher excitations

Xs - poles only at single KS excitations, since one-body operator "fL(I‘) can’t
connect Slater determinants differing by more than one orbital.

®»  has more poles than y

2 How does f_. generate more poles to get states of multiple excitation character?



7. Where the usual approxs. fail Double Excitations

Exactly Solve a Simple Model: one KS single (q) mixing with a nearby double (D)

KS Exact

) ?
-1t :m o,

( X m% 1-m?
/ l = 25

\s(rq I',, J./') o~ A(r,r',(w)) q:D \

W—w

q

1 —m? m>
x(r.r';o)=~A(r,r' ;o) +
w— W, O W,
Invert and insert into Dyson-like egn for kernel > dressed SPA (i.e. m-dependent):
2[q| fuee (W) ]q] = 2 ([g|xTta] — [glxtq])
Ww — WaWp

=)
™~

O = m2w, 4+ (1 —m?)wy Strong non-adiabaticity!

o= (1=m?)wg+mZw



7. Where the usual approxs. fail Double Excitations

General case: Diagonalize many-body H in KS subspace near the double ex of
interest, and require reduction to adiabatic TDDFT in the limit of weak coupling of
the single to the double -

usual adiabatic matrix element

o |H,p|?

2[q| fxc(w)|q] = 2[q] fie (wq) |l

w— (Hpp — Hpo)

(& J
Y

dynamical (non-adiabatic)

correction

NTM, Zhang, Cave,& Burke JCP (2004), Casida JCP (2004)



7. Where the usual approxs. fail Double Excitations

Example: Short-chain polyenes

Lowest-lying excitations notoriously difficult to calculate due to significant
double-excitation character.

Cave, Zhang, NTM, Burke, CPL (2004)

e 21A, Vertical excitation energies (eV) for butadiene
E.g. Butadiene, dark 21A, state and hexatriene

2bo‘|/‘ System CASPT2 ATDDFT cTD-TDDF

| y CaHe 6.27 7.02 6.28
2ap —— K ; CeHsg 5.20 5.83 .16
Iy —7— L ‘ e 21A4 Vertical and 0-0 excitations for butadiene at the

1 y AN A estimated planar stationary point for 21Ag
ay l

/ AF CASPT2 ATDDFT -TD-TDD
Vertical 4.3 5.8 4.16
0-0 5.2 6.8 5.28

* Note importance of accurate double-excitation description in coupled electron-ion
dynamics — propensity for curve-crossing
Levine, Ko, Quenneville, Martinez, Mol. Phys. (2006)




7. Where the usual approxs. fail Long-Range Charge-Transfer Excitations

Example: Dual Fluorescence in DMABN in Polar Solvents

Rappoport & Furche,
JACS 126, 1277 (2004).

“normal” “anomalous’

“Local” Excitation (LE) Intramolecular Charge Transfer (ICT)

TDDFT resolved the long debate on ICT structure (neither “PICT” nor “TICT”),
and elucidated the mechanism of LE -- ICT reaction

Success in predicting ICT structure — How about CT energies ??



7. Where the usual approxs. fail Long-Range Charge-Transfer Excitations

TDDFT typically severely underestimates long-range CT energies

Eg. Zincbacteriochlorin-Bacteriochlorin
complex

(light-harvesting in plants and purple
bacteria)

Dreuw & Head-Gordon, JACS 126 4007, (2004).

TDDFT predicts CT states energetically well below local fluorescing states.
Predicts CT quenching of the fluorescence.
I Not observed !

TDDFT error ~ 1.4eV



7. Where the usual approxs. fail Long-Range Charge-Transfer Excitations

Why do the usual approximations in TDDFT fail for these excitations?

We know what the exact energy for charge transfer at long range should be:

exact

_ - —————
- -—a
- o

@ @ AS H — OO | WOT = [ 1 — -12 — ]./R

0=0,+2[q|fuxc(®,)|q]
v

Why TDDFT typically severely underestimates this energy can be seen in SPA

o= ek — el 4 [ [ drd? 9l (£)05(x) foe(r.1'0) 61 ()0 (1)
LN v v
-AS,Z 'I1

~0 overlap
~ Il - AS.Q

i.e. get just the bare KS orbital energy difference: missing xc contribution to
acceptor’s electron affinity, A, . o, and -1/R

(Also, usual g.s. approxs underestimate |)



7. Where the usual approxs. fail Long-Range Charge-Transfer Excitations

What are the properties of the unknown exact xc kernel that must be well-
modelled to get long-range CT energies correct ?

» Exponential dependence on the fragment separation R,

Jyc ~ exp(ar)

» For transfer between open-shell species, need strong frequency-dependence.

1

Step in V, re-aligns the 2 atomic “T
HOMOs - near-degeneracy of 0
molecular HOMO & LUMO - static 05 X
correlation, crucial double excitations =
frequency-dependence!

(It’s a rather ugly kernel...)

Gritsenko & Baerends (PRA, 2004), Maitra (JCP, 2005), Tozer (JCP, 2003) Tawada
et al. (JCP, 2004)
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8. TDCDFT The adiabatic approximation, again

e In general, the adiabatic approximation works well for excitations
which have an analogue in the KS system (single excitations)

e formally justified only for infinitely slow electron dynamics. But
why is it that the frequency dependence seems less important?

The frequency scale of f, is set by correlated multiple
excitations, which are absent in the KS spectrum.

e Adiabatic approximation fails for more complicated excitations
(multiple, charge-transfer)

e misses dissipation of long-wavelength plasmon excitations

Fundamental question: what is the proper
extension of the LDA into the dynamical regime?




8. TDCDFT Nonlocality in space and time

Visualize electron dynamics as the motion (and deformation)
of infinitesimal fluid elements:

e md A
= r,t
r,t ’

Nonlocality in time (memory) implies nonlocality in space!

Dobson, Bunner, and Gross, PRL 79, 1905 (1997)
|.V. Tokatly, PRB 71, 165105 (2005)



8. TDCDFT Ultranonlocality in TDDFT

Zero-force theorem: fd37” n(?,fﬁch (I_;,f)= 0

Linearized form: f r'VnO r')fxc q'aw)=§ch,o (’7)

If the xc kernel has a finite range, we can write for slowly varying systems:

VnO(V fd r fxc q'Dw)=§ch,O(]7)

homQ\' Oa)}

|.h.s. is frequency-dependent, r.h.s is not: contradiction!

I:> fxc F, F',CU) has infinitely long spatial range!




8. TDCDFT Ultranonlocality and the density

n(x.o»t)

>

|
X0

An xc functional that depends only on the local density

(or its gradients) cannot see the motion of the entire slab.

A density functional needs to have a long range to see
the motion through the changes at the edges.



8. TDCDFT Harmonic Potential Theorem — Kohn’s mode

J.F. Dobson, PRL 73, 2244 (1994)

A parabolically confined, interacting N-electron system can carry
out an undistorted, undamped, collective “sloshing” mode, where

n(?, f)= n, @ — jé(f )) with the CM position E(f)



8. TDCDFT Point of view of local density

Kohn mode Plasmon

A n(r,t) A
global ol < local com-
translation — pression and

~ "~ TN TS rarefaction
N o SN

* » I
o

o = — o

¢ on(r,,t) 4

AAAAAS . AAAAAAS

V.. “rides along”: V,. Is retarded:
undamped motion damped motion

mmm) xc functionals based on local density can’t distinguish the two cases!



8. TDCDFT Point of view of local current

Kohn mode Plasmon
A n(r,t)

>

______ —— 1 LX A X o

uniform velocity oscillating velocity

mmm) much better chance to capture the physics correctly!



8. TDCDFT Upgrading TDDFT: time-dependent Current-DFT

n(f:,l‘) ) nonlocal X ch (F,l‘)

nonlocal nonlocal
. on ~
V- j=—— — 0A
VIV G =—%*
ot xc Yy

j(F.1) A,F.1)

local

) B ) P ) W A ) S

e Continuity equation only gives the longitudinal current
e TDCDFT gives also the transverse current
e \We can find a short-range current-dependent xc vector potential




8. TDCDFT Basics of TDCDFT

generalization of RG theorem: Ghosh and Dhara, PRA 38, 1149 (1988)
G. Vignale, PRB 70, 201102 (2004)

a,,()- {[pl iG]+, o} +SUE-7)

>]
full current can be

represented by j(?, t)= jL (F, t)+ jT (F, I)

a KS system

A 0)= { Iz { z)]}m,f)}

uniquely determined up to gauge transformation



8. TDCDFT TDCDFT in the linear response regime

jl(’j’a))=fd3r' )?KS(?ﬂj:'ﬂa))ﬁext,l(F’a))-l- ‘;iH,l(’j:9w)+ ‘Zxc,l(?9a))J

KS current-current response tensor: diamagnetic + paramagnetic part

Ko C7'0)= 0, F B -7, + 22 L _piert )

€, +W+in

where Pfj =¢Z(’7)VM§UJ(’7)“PJ(’7)VM<PZ(’7)



8. TDCDFT Effective vector potential

extl(r a)) external perturbation. Can be a
true vector potential, or a gauge _, 1

transformed scalar perturbation: Aext,1 =— VVex,,l

‘ZH,I (F,a))= (lZ)z fd3r' V'.{ 17':60) gauge transformed

‘I" — r" Hartree potential

A G0)= [ . GF0) 6 0) [Besinel

ALDA: AMPA(F,w)=

xc,1

(ZZ)Z fd3r'fALDA — —».)V.] w)



8. TDCDFT TDCDFT beyond the ALDA: the VK functional

G. Vignale and W. Kohn, PRL 77, 2037 (1996)
G. Vignale, C.A. Ullrich, and S. Conti, PRL 79, 4878 (1997)

Exc,l(?9a)) A)i’LlDA(r CU) (—») V .6:xc(’79a))
My,

XC viscoelastic stress tensor:

2 -

Oxc,jk = 7/Ixc Vjvl,k + Vkvl,j o EV . Vl(sjk + Cxcv . Vl(sjk

‘_})(’79&))= ](’79 CU)/ nO (77) Ve|OCity field

e automatically satisfies zero-force theorem/Newton’s 3 law
e automatically satisfies the Harmonic Potential theorem

e is local in the current, but nonlocal in the density

e introduces dissipation/retardation effects



8. TDCDFT XC viscosity coefficients

2
.. (n,0)= —’f’—f;(n,w)

£ () ——(fxc(n )2 f1w)- L )

In contrast with the classical case, the xc viscosities have both real
and imaginary parts, describing dissipative and elastic behavior:

(a)) (a)) @ shear modulus \ reflect the

stiffness of
Fermi surface
against defor-

C (CU) C (60) den (CU Sﬁ?karr;‘i)cdalljlus mations




8. TDCDFT xc kernels of the homogeneous electron gas
Or= T T T 0 T T
N N Qv —
_ NCT -
GK g -0.04
0.04 T
-------- 00
0.08 | . i v )
i I 016 ; .
Im fxc rS= = Re f;CC ! rS= -
-0.12 ' — ' ' 0.2 ' ' ' :
0 1 2 3 4 A 0 1 2 3 4 3
0

-0.02

0.04
0.06
- T . T NCT ---
o0s Im fxc =3 1 o0t Re f;cc =
0 '1 '2 13 p 5 0 '1 Iz 13 p
m/o)p co/(op

GK: E.K.U. Gross and W. Kohn, PRL 55, 2850 (1985)
NCT: R. Nifosi, S. Conti, and M.P. Tosi, PRB 58, 12758 (1998)
QV: X. Qian and G. Vignale, PRB 65, 235121 (2002)



8. TDCDFT Static limits of the xc kernels

d’e" (n) 45,00
dn 3 n’
ch(())

I’l

/2 (0) =
/e (0) =

The shear modulus of the electron liquid does not disappear for (0 — 0.
(as long as the limit =0 is taken first). Physical reason:

e Even very small frequencies <<E. are large compared
to relaxation rates from electron-electron collisions.

e The zero-frequency limit is taken such that local
equilibrium is not reached.

e The Fermi surface remains stiff against deformations.



8. TDCDFT TDCDFT for conjugated polymers
Polyacetylene . Polymethineimine
— 250 — = 180 A — T
3 s [ ] ]
— = 160 |- -
= € PRJ202 N ) ]
S 200 | ] ; ol \(\//]ngA\l.SSOA ]
£ E | 118.7°? .
S 150 ] S0} l_l|.088A ]
3 N — :
‘g S 100 |- ¢ > ;
Emo ] g ol ]
= = 80 :
-CE L g 60 [ ]
5 5 . 8 I ]
g I 8. 40 | ]
s | s f ]
8 00 24 6 é 10 ‘.12.H14.H16 3 zooulé'“; é 8'”‘10‘” 1'4'“16
number of oligomer units number of oligomer un

ALDA ovgrgstlmates V. V..(VK)

polarizabilities of long

molecular chains. 2 A =

The Iong_range VK .\ \\Iu .......... ‘-— ot ! Lo v — ...................................................... .. “\ .......... .

functional produces s M N

a counteracting field,
due to the finite shear
modulus at w — 0.

M. van Faassen et al., PRL 88, 186401 (2002) and JCP 118, 1044 (2003)
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9. Transport DFT and nanoscale transport

Koentopp, Chang, Burke, and Car (2008)

Left lead Molecule Right lead
Y
AV
) <
I = —fd L(E)— fr (E)] two-terminal Landauer formula
JU
— 00

Transmission coefficient, usually obtained from
DFT-nonequilibrium Green’s function

Problems: e standard xc functionals (LDA,GGA) inaccurate
e unoccupied levels not well reproduced in DFT
——> transmission peaks can come out wrong
——> conductances often much overestimated
——> need need better functionals (SIC, orbital-dep.)
and/or TDDFT




9. Transport TDDFT and nanoscale transport: weak bias

Current response: j(l_;, a))=fd3r' g, (17, r', a))E‘eﬁ (7' , a))

8w —0)= Tie) fa’%’[éEext (@)+0E, F'.w)+0E_(F' w)]

JT

XC piece of voltage drop: Current-TDDFT P _ 4 fn (azn)2 o
LHLVBDT  Sai, Zwolak, Vignale, Di Ventra, 382/1 n4
- PRL 94, 186810 (2005) c

dynamical resistance: ~10% correction
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9. Transport

TDDFT and nanoscale transport: finite bias

(A) Current-TDDFT and Master equation
Burke, Car & Gebauer, PRL 94, 146803 (2005)

* %
*
* %
oL
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%

*
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*
*

*
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H ¥
3
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* % ¥
*
*

KX %
* %
X
*
*
* %

* i * ¥
**;****
*

*%

*
% ¥ ¥
***
>*
* ¥op

e periodic boundary conditions
(ring geometry), electric field
induced by vector potential A(t)

e current as basic variable

e requires coupling to phonon
bath for steady current

(B) TDDFT and Non-equilibrium

Green’s functions
Stefanucci & Almbladh, PRB 69, 195318 (2004)

Region L Region C Region R

l — |

€0 -O- €.

L _— EC (!)  — _—

¥

Ty g

Left electrode Right electrode

e |localized system

e density as basic variable

e steady current via electronis
dephasing with continuum of
the leads

» (A) and (B) agree for weak bias and small dissipation
» some preliminary results are available — stay tuned!
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10. Strong-field processes and control N.M.



10. Strong-field processes TDDFT for strong fields

In addition to an approximation for v, [n;¥,,®p](rt), also need an

approximation for the observables of interest.

- Is the relevant KS quantity physical ?

Certainly measurements involving only density (eg dipole moment) can
be extracted directly from KS — no functional approximation needed for
the observable. But generally not the case.

We'll take a look at:
High-harmonic generation (HHG)
Above-threshold ionization (ATI)
Non-sequential double ionization (NSDI)
Attosecond Quantum Control

Correlated electron-ion dynamics



10. Strong-field processes High Harmonic Generation
A

HHG: get peaks at ("o~
odd multiples of \
laser frequency

Eg. He

1! T T T T T T T T T T T T T 1
d without correlation © 7 ?
10-3 b with correlation + |

— i ——
i i i~

— i i

](I —.\ p—
i - TDHF correlation reduces . y (Y T¢VY
S \ peak heights by ~2 or 3

BREaa T

10-9 b 29900 . L’Huillier (2002
s +$@+*¥$$$$$$$¢A . ( )

10-11 |- "’4*@% i
u ¢+ _ _

1018 b R : Measures dipole moment,
B oo

-15 | | | | | | | | | | | | | | +T b 2 3

. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Id((D)I - -[ n(r!t) r d r

Harmonic order

so directly available from TD KS
Figure 7. Harmanic spectra of helinm resulting from the Hartree Fock equa- System

tion (without correlation) and the Kohn Sham equation (with correlation).
The laser parameters are A = 616 nm and 7 = 7.0- 10" W/em?.

Erhard & Gross, (1996)



10. Strong-field processes Above-threshold ionization

A

A

<

- |
ATI: Measure \ \ A
kinetic energy of ‘\/3 ‘t— = 2
ejected electrons | A
lp N =[]
}
Eg. Na-clusters !
18 et —r—r—r—s f
oo | [ ' w left — } L’Huillier (2002)
glo_wkm ,’M' M 2= 1064 nm |
E o1l ' M =6 x 102 W/ « TDDFT is the only computationally
(§. 12' z' u'\_ cm? pulse feasible method that could compute ATI for
= 107 30 Up "1&'9”9”‘ 25fs 1 something as big as this!
< 1n-13[ ' ]
0 l % * ATl measures kinetic energy of electrons
10714} ‘(a‘) one-co. or‘ Mﬂl A - — not directly accessible from KS. Here,
10-80' 5 130 IS 20 .25 n;(l); 135 approximate T by KS kinetic energy.
*TDDFT yields plateaus much longer than
Ekin/w the 10 Up predicted by quasi-classical one-
Nguyen, Bandrauk, and Ullrich, PRA electron models

69, 063415 (2004).



10. Strong-field processes

Non-sequential double ionization

Laser intensity (Wic m°)

10°

1OC r T ¥ -O'F,'
- Exact c.f. TDHF /---_::‘_:__,,,_*.HZ,;,;;f@’
-4 : ' \ -1
107 | * y 10
ke o
;‘l_:)
107 107

Lappas & van Leeuwen (1998),

LI | - ',3‘.
- 1 O-Q-f=-Oe=iQ« ’ ]
/"'v‘/n" B /-/.\’u <
TODFT /5" ae g et
o ‘ W]
2 /‘ / ‘," .‘ LS
— .,."'r ! ‘_."' o ’ D- '." =
[ ' :" ,. "' \
VA .
V4 v o
/ /

/.
[
i

TDDFT c.f. TDHF -

10

| 1‘01'5
Laser intensity (W.-’cmg)
Lein & Kummel (2005)

Knee forms due to a switchover from a sequential to a non-sequential

(correlated) process of double ionization.

Knee missed by all single-orbital theories eg TDHF

TDDFT can get it, but it’s difficult :

* Knee requires a derivative discontinuity, lacking in most approxs

* Need to express pair-density as purely a density functional — uncorrelated
expression gives wrong knee-height. (Wilken & Bauer (2006))



10. Strong-field processes Electronic quantum control

" Is difficult: Consider pumping He from (1s2) = (1s2p)

Problem!! The KS state remains doubly-occupied throughout — cannot evolve into a
singly-excited KS state.

Simple model: evolve two electrons in a harmonic potential from ground-state
(KS doubly-occupied ¢,) to the first excited state (¢y,¢1) :

1 T T T 1 T T T

T.arget cle11§1t}f of nex) " Same density as that
singlet excited | . {v of target state
0

state 0

-

Two orbitals Ir ) N
. % V(x)
of s.mgly 1 ‘./Doublx —occupied
excited state oF T B Y A KS orbital reached by 1
of KS potential ! ! ! TDKS
-2 0 2

KS system achieves the target excited-state density, but with a doubly-occupied
ground-state orbital !! The exact v,(t) is unnatural and difficult to approximate.

Maitra, Woodward, & Burke (2002), Werschnik & Gross (2005), Werschnik, Gross & Burke (2007)



10. Strong-field processes Coupled electron-ion dynamics

Classical nuclei coupled to quantum electrons, via Ehrenfest coupling, i.e.

J[E — _VR (Uvnn + ":arf.;\"(f) + <(I)R H"[ (I)R>£>

—[d¥rn(rt) Vg VE

~

Eg. Collisions of O atoms/ions with
graphite clusters

0 % % e M0 12 1% 8 Freely-available TDDFT code for
5 -5 .
o] . (4 strong and weak fields:
34 On-top "‘-‘ | L3
2] (a)- - - - Bridge ".'l‘ L2
P Center ' 4
jg S -° http://www.tddft.org
3 -3
3 [ Castro, Appel, Rubio,

Lorenzen, Marques,
Oliveira, Rozzi,
Andrade, Yabana,
Bertsch

OCTOPUS

octopus is a program aimed at the ab initio virtual experimentation on a hopefully ever

0 2‘5 5[0 7'5 160 155 1},0 1-}5 200 increasing range of systems types. Its main characteristics are:
Time (fs)
FIG. 2. Kinetic energies of (a) O(*P), (b) the graphite cluster, and (c) the - Electrons are describe quantum-mechanically within the Density-Functional Theory
entire system. (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are

described classically as point particles.

Isborn, Li. Tully, JCP 126, 134307 (2007)

- Electron-nucleus interaction is described within the Pseudopotential approximation..




10. Strong-field processes Coupled electron-ion dynamics

Classical Ehrenfest method misses electron-nuclear correlation :
emistrys relaxatiom

otoch L1i0S)

1! essentialforpr pranching '

e
electront traﬂfw s;tr faces-

(“branching” of trajectories)

How about Surface-Hopping a la Tully with TDDFT ?

Simplest: nuclei move on KS PES between hops. But, KS PES # true PES,
and generally, may give wrong forces on the nuclei.

Should use TDDFT-corrected PES (eg calculate in linear response).
But then, trajectory hopping probabilities cannot be simply extracted —

e.g. they depend on the coefficients of the true W (not accessible in TDDFT),
and on non-adiabatic couplings.

Craig, Duncan, & Prezhdo PRL 2005, Tapavicza, Tavernelli, Rothlisberger, PRL 2007, Maitra,
JCP 2006



To learn more...

LECTURE NOTES
IN PHYSICS

Time-dependent density functional theory, edited by
- M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio,
gx}gegue:cd“e;:a] K. Burke, and E.K.U. Gross, Springer Lecture Notes
Theory in Physics, Vol. 706 (2006)

(see handouts for TDDFT literature list)

Upcoming TDDFT conferences:

e 3rd International Workshop and School on TDDFT

Benasque, Spain, August 31 - September 15, 2008
http://benasque.ecm.ub.es/2008tddft/2008tddft.htm

e Gordon Conference on TDDFT, Summer 2009
http://www.grc.org
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