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ABSTRACT OF THE DISSERTATION

Two new approaches for electronic structure:
Partition Density Functional Theory and Potential Functional Theory

By
Peter A Elliott
Doctor of Philosophy in Physics
University of California, Irvine, 2009

Professor Kieron Burke, Chair

In this work | discuss two new approaches to the electronic strtiwe problem. Both
these approaches share the same goal of making electronic stnuetcalculations faster
and more accurate and both involve the popular electronic stcture method of density
functional theory (DFT). The rst is potential functional th eory which makes use
of semiclassical methods to understand and improve density furatal theory. In
particular it explains why local approximations in DFT work as well as they do and
why the generalized gradient approximations developed ihé¢ late 1980's, early 1990's
were needed at all. | also develop direct potential functioma@approximations for the
density and kinetic energy density for particles in an arbitrey potential with hard
walls. As such they avoid solving the di cult Schredinger's equation. | demonstrate
their accuracy on a simple system. The second is partition densitynctional theory
(PDFT) which solves for molecular properties while only requing calculations on
smaller fragments. This would greatly speed up computations drallow much large
systems to be studied. | give a detailed derivation of PDFT beferdemonstrating its
formal exactness on three types of system. Both these approachase the potential
to cure some of the problems DFT su ers from and these possible cogsences are

discussed.



Chapter 1

Introduction

The goal of electronic structure to be able to understand and edict the behavior of
a wide range of materials, be they atoms, molecules, clusters, olids It speci cally
deals with the ground state of the electrons in the system, howavknowledge of this

also provides a great deal of other information (such as the gnod state geometry).

From a certain perspective, this problem is already solved. Bsolution of Schmdinger's
equation in quantum mechanics within the Born-Oppenheimeapproximation gives
us exactly the information we seek. Unfortunately, to solve th@roblem exactly is
essentially impossible if you wish to study systems with 1000's of efens, even 2
electrons can be a very hard problem to solve exactly. This isid to the interaction
between the electrons being extremely di cult to handle. Sahe problem becomes
to solve the Schredinger equation without actually solving he Schredinger equation.
Many di erent approaches for solving this problem have beeneveloped, each one
has advantages and disadvantages usually involving a trade between accuracy and

computational e ciency.

Density functional theory (DFT) is one such method that has beame popular. It



maps the interacting problem to that of a non-interacting systm which may be solved
much more easily. It is based upon the rigorous theorem of Hoheng-Kohn[1] and
the scheme of Kohn and Sham[2]. DFT requires an approximatian an unknown
guantity named the exchange-correlation energy, howevehdre are now many ap-
proximations that work well enough for chemical applicatins. In fact there is a
plethora of such exchange-correlation approxiamtions, du® the fact that there is
no systematic way to approach its approximation. The simplest ahese is a local
density approximation which works far better than one would xpect given its sim-
plicity. Despite working with non-interacting fermions, DFT still scales with roughly
the cube of the system size and eventually becomes computatibpaoo expensive

for large systems.

Semiclassical methods lie somewhere inbetween the non-inteet nano-scale world
of quantum mechanics and the classical Newtonian world of evelgy live. These
methds are also a way to avoid solving the Schredinger equatialirectly giving ap-
proximations that will become exact in certain limits. The~! 0 limit is commonly

called the semiclassical limit.

In this work, | explore two new methods for solving the electrtic structure prob-
lem. In both cases, the goal is to be more accurate and more e cie In the rst,

semiclassical methods are used to develop approximations to thensity and kinetic
energy density as functionals of the potential. These can thdye analyzed from the
perspective of DFT and shed new light on why DFT works. In particlar it answers
why local approximations work so well and why the so called gaadized gradient ap-
proximations needed to be developed ontop of the simple gradt corrections. This
work not only has the potential to improve DFT but also to becone a distinct elec-
tronic structure method in its own right. The second method is artition density

functional theory (PDFT) which solves for molecular properies while only requiring



calculations on smaller fragments. This would greatly speed upmputations and
allow much large systems to be studied, as it, in principle, scaléinearly with system

size.

This dissertation is organized as follows: rst | give the releva background infor-

mation on quantum mechanics, semiclassical methods and nallyAT (including a

detailed look at the generalized gradient approximationg3GAs)). Next is the poten-
tial functional theory section dealing with semiclassical methds and DFT. It includes
the derivation of potential functionals for the density and knetic energy density for a
simple system as well as detailed analysis into what DFT misses amdtihe case of the
GGAs, why they have to be made the way they are. Then we move to PDEFwhich

is introduced via partition theory, before being rigorous drived and investigated, and
then demonstrated on a series of system. Lastly | conclude with atdded overview
of the results for each approach followed by a discussion on howeyhmay in uence

eachother.



Chapter 2

Background

In this chapter, we review the relevant background in semictgical methods and

density functional theory.

2.1 Quantum Mechanics

| start this chapter with quantum mechanics so that the problenof electronic struc-
ture discussed in later chapters is well de ned. | shall be extresty brief as quantum
mechanics is taught at the undergraduate level. We begin witthe time-independent

Schmedinger equation|[3]:
H =E (2.1)

The Hamiltonian at this stage contains both the nuclei and thelectrons that make
up a given piece of matter. We next make the Born-Oppenheimapproximation that

separates the nuclear and electronic degrees of freedom, avel concentrate on the



electronic Hamiltonian de ned by
h [
T+ Oee"' Oext =E (2.2)

whereT is the kinetic energy of the electrons{.y is the electron-nuclear interaction
de ned explicitly below, and Y. is the coulomb interaction between the electrons. In

co-ordinate space, this is written as

" #
2N 2 I €T ) G0 = E (an
— re+ - — t Vext (I ry;onrn) = E (rq; o
m . 2 e jr r] . ext 1 N 1 N
(2.3)
for N electrons. The external potential is
A 4
Vet (1) = ——— (2.4)
a= JT Ral

which is the coulomb potential fromM nuclei with atomic numbersf Z,g at positions
fR,g. We will not deal with electric or magnetic elds. The probabiity to nd any

electron at a pointr is given by the density of the system as de ned by

Z Z
nr)=N  Eryir Bryj (riregiiirn)j2 (2.5)

This them de nes the electronic structure problem. We wish to nd the ground state

energy for a given number of electrons in a given external peottial.

In all the numerical examples that appear later, we will worlwith non-interacting

fermions in one dimension. The non-interacting Schredingequation for this case is

2
%@ + Vext(x) i(x) = j(x) (2-6)



where @ = d?=dx? and the density is given by

>(\| . .
n(x)=  jjxj (2.7)

j=1

2.2 Green's function

Very closely related to Schredigner's equation is the Gre&nfunction. For non-

interacting fermions in 1d, the Green's function satis es theequation
2
5@+ vea () E GXSE)=  (x X (2.8)

with the appropriate boundary conditions. The Green's fungbn can be written in

terms of the eigenfunctions from Eq. (2.6)

X . .
G(X;XO;E) = M (2.9)
B o
where (X) is chosen to be real in this equation. The density of the system rcde

written as

n(x) = % . dE G(x;E) (2.10)

where G(x;E) = G(x;x;E) and the contour C crosses the real energy axis at the

fermi energyE:.
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Figure 2.1. Contour in the complex energy plane that crossesdlreal axis at the
fermi energy.

In 1 dimension, a di erent form for G(x; x% E) may be used

1(GE) X E) 0

G(x;x%E) W(E) ,for x  x
1(X5E) 2(X;E)
W(E) ,for x  x° (2.11)

where 1-,(X; E) satisfy the Schredinger equation
2
%@+ Vet(X) E  12(X;E)=0 (2.12)

with  ;(x; E) only satisfying the left boundary condition and ,(x; E) the right. The

Wronskian, W (E), is given by

W(E)= 1)@ 20x) 20x)@ 1(x) (2.13)



2.3 Semiclassical Methods

Semiclassical methods exist in the world between the quantum ot@nics of the very
small scale and the classical newtonian mechanics of everydde.li The transition
between these two seemingly contradicting world views is antexmely important
problem in physics and has been well studied over the years[4].eWtill just look
at the most well-known semiclassical approximation, the Wentk&ramers-Brillouin-

Je reys (WKB) approximation.

We begin by rewriting the 1-d Schredinger equation, Eq. (), as
2 d2 2
~ otk F (0 =0 (2.14)
where

q
kj (X) = 2m( j Vext(X)) (2.15)

Then we write the wavefunctin as

(x) = e SCI= (2.16)
and evaluate Eq. (2.14)

i~S%x) ST+ [k()I? =0 ; (2.17)
which is the Riccati equation. If we expands(x) in powers of~:

X
S(X)=  ~"S.(x) (2.18)

n=0



and split into even and odd powersS(x) = S, (x)+ S (x), we nd

S )= logls? (] (2.19)
which gives
— C iS. (x)=~ .
(9= Pgrse : (2.20)
If we write
Z X
S, (x) = dx° Q; (x9 ; (2.21)

then the wavefunction becomes

4

()= =S —expl - o (Y] (2.22)
Q;j (x) ~

Again using Eq. (2.14), we nd the equation forQ(x)

!
2 3 P’

> OO + Tk ()2 =
2Q;(x) 4 Q(x) [Q ()17 + [k ()" = 0 (2.23)

whereQ(x) will have only even powers of in its expansion. Including just the zero'th
order approximation givesQ(x) = k; (x), which is the usual WKB wavefunction seen

in most quantum mechanics textbooks

-5 C P
j(x) = pmexp[ — ()] (2.24)
where
Z X
)= dx°k(x9 (2.25)



For a at box with an arbitrary potential between two hard wallsatx =0 and x = L,

the boundary conditions are
j@=0= j(L) (2.26)
then the WKB wavefunction for this system is

[(x) = %siné ) (2.27)
|

which is valid when ; >> v (x). The approximation diverges at turning points, where
Vext(@) = j, which we will discuss later and avoid in our examples. The bouady

condition give the quantization condition
= L)=j (2.28)

which discretizes the energy spectrum.

The WKB approximation can be systematically expanded by inclding more orders

of ~. The next order for Q; (x) will be

Qi (x) = kj(x) + QP (x) (2.29)

which when inserted into Eq. (2.23) gives

kPtx)
AKE(x)

kO(x) 2
K3(x)

Q¥ (x) = + g (2.30)

For simplicity, this can be written as

_ . V%) 5vAX))?
QP (x) =+ 2509 +3 00 (2.31)

10



using

V) _ V%) M)
ko(x) = k) k’{x) = 00 o) (2.32)

2.4 DFT

Density functional theory (DFT) is an extremely popular mettod for solving elec-
tronic structure problems in many elds, due to its balance of @asonable accuracy
with computational e ciency[5]. The price you pay for this eciency is that DFT
requires an approximation to an unknown quantity, namely tle exchange-correlation
(XC) energy as a functional of the density. No systematic approhcexists to con-
struct these approximations, which is the reason why so many existnd is part of the
motivation for the semiclassical approach of chapter 3. | shaltroduce DFT in such
a way that the analogies drawn later in chapter 4 are easier toesebefore going into a
detailed review of generalized gradient approximationstfthe XC energy. For a more
complete review of DFT, | recommend thePrimer in DFT [5], The ABC of DFT|[6]
online book and the background chapter of Ref. [7]. During th review, | shall make
general statements about these approximations and it is undgood that more in-
formation can be found by reading these sources. Also, for simpyceverything is
written for the spin-unpolarized case, thus | do not include spilabels. However the
extension to spin-DFT can be found in the sources listed above,dfor our purposes,

everything written has a simple spin-densities equivalent.

In DFT, the Hohenberg-Kohn[1] theorem states that for a given lectron-electron
interaction the external potential is a unique functional 6 the density. Hence if the
density is known, then in principle all other properties of tle system are known as

these are functionals of the external potential. In particidr the total energy of an

11



interacting system can be written as a functional of the density

E[n] = F[n] + Vex[n] (2.33)
where
Z
Vext [n] = dsr n (I’) Vext(r) (2.34)

is the external potential energy and- [n] is the universal functional, as de ned by the

Levy-Lieb constrained search over all wavefunctions yieldig density n(r):
F[n] = min( )h T+ Ve i (2.35)
' n(r

where T and V.. are the kinetic energy and electron-electron interactionperators

respectively.

Now imagine we have solved the interacting problem, and foundaynd-state (gs)
density n(r), then for some perverse reason we want to know the non-interaaj
system for which this is the gs density of. We can apply the HohentgeKohn theorem
again, this time it states that there is a potential for a nondnteracting system that
is a unique functional of the density. We name this potentiallie Kohn-Sham (KS)

potential vs(r). Therefore if we solve the Kohn-Sham equation[2]:
1 2 — n
St ) (=" () (2.36)

for N non-interacting fermions in this KS potential, then the sum © the orbital

densities is the exact same density as if we solved fdr interacting electrons in the

12



external potential, i.e.

niry="j ) (2.37)
j=1
We split the KS potential into Vs(r) = Vext(r) + Vixe (I), Where vy, (r) is the extra

piece added to the external potential to make the KS potentla

Now suppose we cannot solve the exact system, can we use this nonradeng system
to nd the exact density and energy? The answer is yes, and is dobg considering

all quantities as density functionals. We rst de ne an energyEg[n]:

Eq[n] h «s[n)iT + Vexj «s[n]i (2.38)

Ts[n] + Vext [n] (239)

where «s[n] is the KS wavefunction of densityn(r), and T¢[n] is the non-interacting
kinetic energy. If we then de neE,y [n] as the di erence between the total system

energy and this non-interacting energy:

Euwc [N] = E[N]  Es[n] (2.40)

then minimization of this functional with respect to the dengly yields

_ E HXC [n]
Vixe () = W (2.41)
as the total energy is by de nition stationary and v, (r) = E s[n]=n(r) (as the

KS system is stationary when the potential is/s(r)).
This then de nes a closed loop, oncE . [n] is known (or approximated), thenv,. (r)

13



can be found and an iterative cycle begins where the KS equatiis solved to nd a
new density and the cycle repeats. At self-consistenayr) will be (or approximate)
the molecular density and the total energy is given by Eq. 2.40This is the Kohn-

Sham approach|2].

Finally we note that the universal functional can be written n terms of the KS
guantities, F[n] = Ts[n] + U[n]+ E,: [n], where we separat& . [n] = U[n]+ E [n],
as the Hartree energyJ[n] is known, but the exchange-correlation (XC) is not. The

Hartree energy is de ned as
Z

Z
U[n]=% d®r d3r°% (2.42)

leading to the KS potential being written as

Vs(r) = v(r) + vi,(r) + vic (r) (2.43)
where
Z
_ Uln] _ n(r
VH(r) = n (r) = dsrojr—r(] (244)

is the Hartree potential, and

E « [N]
n(r)

Ve [N](r) = (2.45)

is the XC potential.

With good approximations to E,. [n], some of which are discussed next, this scheme

has proven useful in many applications[5].

14



2.4.1 Exchange-Correlation functionals

The exchange-correlation functionals in common use can be$ely divided into two
classes. Non-empirical functionals, largely developed by Pewdand co-workers[8],
that start from the uniform and slowly-varying gases, and empicdally- tted function-

als that are typically more accurate for systems close to the t $f®, 10, 11]. The
former apply more broadly and are more commonly used in physiosspecially for
bulk metals. The latter are more popular in chemistry, and are wre accurate for

speci ¢ systems and properties, such as transition-state barriers.

We start with the simplest approximation for the XC energy, namby the local density
approximation (LDA)[2]. The LDA can be de ned as follows, for apoint r in space,
with density n(r) at the point, then the XC energy density as this point is that ¢ a
uniform electron gas with constant densityn,,; = n(r). For the exchange part, this

can be found analytically:

Z Z
ELPAIN]= A, Ern*3r)y= & PA(n(r)) (2.46)
where
1=3
A, = Z 3 - 07386 (2.47)

whereas for correlation, Monte-Carlo simulations were pamgeterized[] in order to

write it as a density functional.

LDA works remarkably well given its simplicity, however it das not reach the levels of
accuracy needed for chemical applications. Thus more congalied functionals have
been developed and the widely used analogy is of a ladder ofrgasingly sophisticated

density-functional approximations[12] leading up to heavefchemical accuracy), but

15



at higher computational cost. We shall only concentrate on th@ext step up after

LDA, the generalized gradient approximations.

If in LDA, the information given to the XC functional is just the density at a point,
then to make a more accurate approximation, we could add infmation about how
rapidly the density is varying at that point. Hence we make a semrbcal approxima-
tion, i.e one which includes the gradient of the density. To dso, rst we introduce

the dimensionless measure of the gradient:

_ _Jr n(r)j
s(r) = m (2.48)

wherek:(r) = (3 2n(r))** is the local Fermi wavevector. This is often written in
terms ofx = jr nj2=n*3, which is simply proportional tos. Assuming smoothness is
and no preferred spatial direction, we know any sensible apptimation depends only
ons?. The gradient expansion is de ned as the expansion of the engrags a functional

of the density around the uniform limit. The leading correcton for exchange is:

Z
EPMI = drs¥(r) PA(n(r); (2.49)

where P2 (n(r)) = A,n*® and is a constant. Alternatively, we may write:

X

y4
EPn] = &Br n*3(r) x% (2.50)

with

1=3

3

1
= = (2.51)

In a very slowly-varying electron gas, the gradient is very smialand the exchange

energy will be accurately given byELPA + E®. For such systems, the constant

16



= 10=81[13], so that  0:0024.

The gradient expansion approximation (GEA) means applying tis form to a nite
system, using the value of from the slowly-varying gas. The GEA for exchange
typically reduces the LDA error by about 50%. However it's canterpart for corre-
lation worsens the LDA error, as its energy density is not everiveays negative. In
many cases, GEA strongly overcorrects LDA leading to positive nelation energies

and giving poor total energies[14].

A generalized gradient approximation (GGA) seeks to includehe information con-
tained in s(r) while improving on the success of LDA. The B88 exchange funatial
was designed to reduce to the GEA form whes is small, but also recover the cor-
rect n(r)=2r decay of the exchange energy density for largein atoms. Thus it

interpolates between two known limits, and has the form:

Z

_ X2
EESS [n] — B88 d3r n4—3(r)

1+6x ®# sinh [21=8x]’

(2.52)

where E, denotes the correction to LDA. Thus the B88 functional[9] cdains one
unknown parameter, ®%¢. In 1988 Becke found this parameter by tting to the
Hartree-Fock exchange energies of the noble gases, nding aueabf Q0053. In fact,
Becke notes that this value is consistent with the observationf@ high-Z asymptote
for . In Ref. [15], Becke calculates what value of in Eq. (2.50) is required in order
to give the HF exchange energy for each atom in the rst two rowsfdhe periodic
table along with the noble gas atoms. Thus, is treated as a function ofZ, and he
observes that it converges for higiz-. Thanks to the previous section on asymptotic
series, we can now understand why this convergence occurs. Altgbithe B88 form
reduces to that of the gradient expansion for small gradientshé value for is about

twice as large as that predicted from the slowly-varying gas.
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Another common GGA for exchange is the Perdew-Burke-Ernzesh(PBE) approximation[8],
usually written in terms of an enhancement factorf, (s), to the LDA exchange energy

density:

Z
EPBE[n]= d FPBE(s) PA[n] (2.53)

where

FioE(s)=1+ ; (2.54)

1+ s2=

and =0:2195 and = 0:8040. This form for the enhancement factor is chosen so
that it reduces to LDA for s = 0 and again recovers the form of the gradient expansion
for small s. For large s it becomes a constant determined by the parameter. Both
and are determined via satisfaction of various exact conditions. he value of
was chosen to preserve the good linear response of LDA for the amh electron
gas under a weak perturbation[16, 17], while is set by the Lieb-Oxford bound[18]
on the exchange-correlation energy. (That condition is olusly violated by B88,
while PBE does not accurately recover the X energy density imé tails of Coulombic

systems).

2.4.2 Thomas-Fermi Theory

Before leaving DFT, we must discuss Thomas-Fermi (TF) theory[1920] which is
now seen as the original DFT. It amounts to making an LDA-like aproximation for
the non-interacting kinetic energy functional, making no pproximation to the XC

energy, and minimizing the total energy functional direci. So we approximate the

18



universal functional as

F[n] F™[n]= TP [n]+ U[n] (2.55)
where
Z
TP = TP = A & n%3(r) (2.56)

with As = (3=10)(3 2)?=3. The total energy is written with this approximation and
then minimized with respect to the density. This approach is ¢én called pure-DFT

or orbital-free-DFT to di erentiate it from the standard KS D FT.

Although TF is not accurate for chemical applications, as we Wisee later, it has many
interesting properties and in fact will serve as the major linkbetween the semiclassical
work of chapter 3 and DFT. In fact the link between WKB and Thonas-Fermi was
studied as early as 1957[21].

Since we will work in 1d non-interacting systems, we will need ¢hTF approximation

in this case. The total energy is written as

,Z z

E[n] = T."[n]+ Vex[n] = 5 9 n’(x)+  dx n(x) Vex(X) (2.57)

Finally note that just as for the GEA exchange energy, the TF kietic energy density

functional has gradient corrections, these will be introduckwhen they are needed in

later chapters.
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Chapter 3

Potential Functional Theory

The name potential functional theory (PFT) is not quite pregse since one can say that
everything is a functional of the potential. It is the potental that de nes the system.
As noted in the introduction, the exact solution of the Sch@ihger equation would
be called a potential functional. To clarify this ambiguity PFT is an approximation
that just uses the potential as input to directly yield a quantty without solving any
Schmedinger equations. The WKB wavefunction of Eq. (2.27)si an example of a

potential functional.

In this chapter, we will use semiclassical methods to analyze DFAnd provide a
derivation of potential functionals for the density and kinéic energy density that
clearly show what DFT is missing. During the analysis of DFT, two ¢pics emerged
that required treatment in separate sections. Both use the scafirof the potential to
shed new light on density functionals, the rst of these nds new iaqualities that the
universal functional must obey and the second is a derivationn(ithe loosest sense)
of the popular B88 exchange energy density functional. Finglwe look at some of

the implications for DFT that we can already see.
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Semiclassical methods are standard in physics and in a tour-dede, Schwinger[22]
used semiclassical methods to rigorously derive the asymptoticpaxsion of the en-
ergies of neutral atoms for largeZ. Now, in the pre-KS world of pure DFT, i.e.,
Thomas-Fermi and related theories, there is a long history of deation of density

functionals via semiclassical arguments, including the gradieexpansion for both
the kinetic[23] and exchange[13] energies, by considering iamite slowly-varying

electron gas. But its failure for nite systems led to these otheapproaches to XC

functional construction.

To understand the essential di erence between solids of modeeatiensity variation
and all nite systems, consider the cartoons of Fig. 3.1. Both ptotypes can be
treated semiclassically, i.e., via expansion ir, which is equivalent to an expansion
in gradients of the potential. For the valence electrons of simple metal, the Fermi
energy,Er, is everywhere above the (pseudo)-potential, and periodi@bndary con-
ditions apply. This makes semiclassics simple, because there aceturning points,
evanescent regions, or Coulomb cores. In nite systems (and typicinsulators), E¢
cuts the potential surface, leading to turning points and evaescent regions. Without
a pseudopotential, there are also Coulomb cores, which requaecial treatment. The
dominant term (in a sense speci ed below) in all cases is correctjiven by the local
density approximation, but in the latter case, there are impdant quantum correc-
tions, which produce many features missing from semilocal derys@pproximations,

such as shell structure, self-interaction, etc.

Our semiclassical analysis applies to all systems, and explains tiv@versality of local
approximations (without mentioning the uniform gas). For slavly-varying densities,
it is equivalent to the density-gradient expansion, but incldes quantum corrections
for other cases. These corrections explain why the gradient apgimation had to be

‘generalized' and why local and semilocal approximations ssi essential features of
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Figure 3.1: Cartoons of potential and Fermi energy in a simplenetal (left) and

molecule (right).

the kinetic energy. Insights based on our approach have alrgagroduced a revised
version of PBE that is proving successful in many contexts[24]. Uhbately, the theory

suggests that potential functionals[25] provide a more promigj and systematic route

to higher accuracy.

We illustrate this with a model in one dimension, and nd much mee accurate results
by correcting this. We close with a discussion of the implicationfor modern DFT

development.

3.1 What is missing in DFT?

We begin by discussing an asymptotic limit for all matter that coresponds to a
semiclassical expansion, of which Schwinger's results are a sgeekample. The
approach to the limit identi es the essential failure of the gadient expansion for

nite systems. We (re)-introduce a potential scaling[26]:
Ver(N) = e r); NI N; (3.1)

whereve (r) is the one-body potential. For molecules with nuclear posgnsR and

chargesZ , under this scaling,Z ! Z andR ! =R . In an electric eld,
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E ! S5SE. We say an approximation is largeN asymptotically exactto the p-th
degree (AEp) if it recovers exactly the rstp corrections for a given quantity under
the potential scaling of Eq. (3.1). For neutral atoms, scaling is the same as scaling

Z, which is well-known:
E()= 0768745+ 2=2 0:269900 =3+ ::: (3.2)

and is "unreasonably accurate'[22], with less than 10% erravem for H. An approxima-
tion that reproduces these three coe cients is AE2 and is likgl to be very accurate.
Lieb[26] showed that Thomas-Fermi theory becomesxactin the limit ' 1  for
all systems. However, TF theory recovers only the rst term in Eq. (3.2 while

Schwinger derived all three, but only for neutral atoms.

Because of this exactness for any system, as1 ,
n(r)! 2 nT(2r)+n(;n=""+u (3.3)

wheren®¢ becomes negligible compared 10'" everywhere except in regions whose
size is vanishing. So consider instead scaling the density rathdrah the potential,

denoted by a subscript:
nr)= 2n( *3r): (3.4)

This density-scaling is unusual, in that both the coordinate[2] and the particle num-

ber are scaled[28]N to N ). The universal functional is
FIn]=minh jT + Vuej i (3.5)
I'n
where is any antisymmetric wavefunction with density n(r) and T and V.. are the
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kinetic and Coulomb repulsion operators, respectively. Forige , we nd:
FIn]l= F™[n]+ FFYP[n]+ Fn]+:: (3.6)

using the arguments of Ref. [29], i.e., that the gradients ohe density become small
almost everywhere under this scaling. HerE ™" [n] = TO [n] + U[n], where Ty is
the non-interacting KS kinetic energy,U the Hartree energy, and a superscriptj §
denotes thej -th order contribution to the gradient expansion of a functimal. The
second term iF WP [n] = TP +EDL ie. the leading gradient correction to the kinetic
energy, TV =9, whereT%W = Rd3r jr nj?=(8n) is the von Weizsacker term[23], and the
Dirac correction, i.e., the local approximation to exchang, while F,[n] = T+ ED.
Thus, scaling the density in this way justi es using the complete W correction to

TF theory (rather than just one or the other).

Next, we compare the expansion of Eq. (3.2) with that of Eq. (3)6 SinceT = E
for atoms, andT T to the order we are working with, we see that -scaling the
density produces Eq. (3.6), which is the usual gradient expawsi, but misses the 2
term of Eq. (3.2). This quantum correction has long been regaized as missing from
TF theory, but the gradient expansion misses it altogether. If F theory is AEOQ,
why is TFWD not AE1? The answer is that, for systems like those on thieft of Fig
3.1, without turning points, edges, or Coulomb cores, there iorguantum correction,
and the gradient expansion is the asymptotic expansion. For atlithers, there are
guantum corrections to the energy, qualitatively changingts asymptotic expansion.
BecauseEr !'1 as !1 |, these can be calculated with semiclassical techniques,

just as Schwinger did for atoms.

To give an explicit example of these principles, we consider narteracting spinless

fermions in 1d in a potentialv(x) with in nite walls at x = 0 and L. For this case,
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v (x)= “4v( x), and the analog of Eq. (3.6) is
Tin]= °TOmM]+ 3T@Mn]+ T®@n]+ (3.7)

R
whereT® = 2 dxn3(x)=6, T® = TW=3, etc. [30]. Even a at box {(x) = 0)
yields some insight. Then:
2

3 1
— 5pn1 3 4 2 3 .
T =gz 'N°+ ONZ+ OON (3.8)

and the exact ground-state density is

_k sin(2ke x)
N )= Sl eing xal ) (3.9)

where ke = (N +1=2)=L. As !'1 ,n! 2N=L and T is dominated by
its leading term, agreeing with TF theory[26]. ForN =1, T[n]= 2(5° 23+
:)=(12L 2), missing the quantum correction. The second term in Eq. (3.9)ontains
guantum oscillations and is ofO( ), i.e., one order less, everywhere but at the edges

(a region of sizeL= ), where it cancels the dominant term.

How can one calculate exactly the leading correction to the donant term in E[v ] for
any system? As !'1 v (r) dominates over kinetic energy, and the system becomes
semiclassical. Ind dimensions, the diagonal Green's function for non-interactg

particles satis es:

glv I(~rE) = * Flgvi(~= Y i E= ) (3.10)
Soas !1 ,eectively ~! 0. Furthermore, in 1d[31]:
g(x;E)= g®M(x;E) 1+0O Lo (3.11)
' ’ E 32 dx '
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where g™ is approximated semiclassically. We can extract, e.g., the dgity from
the Green's function, via Eq. (2.10), withC any contour in the complex energyE -
plane that encloses all the eigenvaluds,;::;; Ey along the real axis. By choosing a
vertical line alongE = E: + i , which is then closed by a large circle enclosing all the
occupied poles, the smallegE|j used isE., which is growing with . The semiclassical
approximation is combinedwith the best choice of contour to give a density error of

o(1=).

To illustrate how these quantum corrections can be found for o the density and
the kinetic energy density, we use a 1d system with an arbitrary pential but with
hard walls at x = 0 and x = L. Using the WKB approximation for this problem

requires that Er > v (x) everywhere.

3.2 Semiclassical Density

If the WKB approximation, Eq (2.27), is used for 1(x) and ,(x) in Eqg. (2.11) and
then this Green's function inserted into Eq. (2.10), then an gproximation to the
density can be found. Also note that WKB yields the exact resultsof v = 0, but
only once the boundary conditions are imposed. The WKB waveiation satisfying
the boundary conditions on the left is sin(x):Io k(x), (x) = R(j‘ dx® k(x9 is the

semiclassical phase, yielding

cos (L) cos[2(x) (L)]

g E) = k() sin (L)

(3.12)

where for brevity we drop the E argument of (x), (L), and k(x). The rst term
yields the TF result using cot[ (L)] ! i as the dominate piece when we shift o the

real axis and perform the contour integral as shown in Fig. 3.2
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Figure 3.2: The contour in the complex energy plane is split ioa two parts due to
the branch cut along the real axis, starting atE = v(x).

Thus we nd that the dominate correction is

nTF(x) = <EX) (3.13)

where the subscript F implies evaluation aEr. This then leaves the quantum cor-

rection to TF as

1 dE & ) 4+ g 2( () (L)
nC(x)= — . (3.14)
4  ; Kk(x) e L) 1
The semiclassical quantization condition is(L)= an integer, so (L) = (N +

); 0 1. The most convenient choice is = 1=2. AsN !'1 |, E. >> for
the dominant contributions to the integral, so we expand all gantities to rst order
in . This is the same as the contour used in Ref. [31]. Substitutingu = T and

y= (X)=T,

=f &2 F(X)gz 1 e VU4 e (1 yu

ACxy= — =
) 2T eke(X) o - ev+1 ’ (3.15)

R
with - (x) = Oxdxozkp(x‘b the classical time for a particle atE; to travel from 0 to

X, Te = (L), and nally

K (X) sin2 . (x) _
2T, k. (x)sin (x)’

nsemi(x) = (316)

where (x)= (X)=T:.
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— Exact

-- Semi

Figure 3.3: Densities forv(x) = 80sirf(2 x ) for N = 4.

We plot results for v(x) = 80sirf(2 x ), a well with two deep valleys. The four
lowest single particle energies are46.:32, 4250, 10:18, 37:25, so that the lower two
have turning points. In Fig. 3.3, we show the density, both exacind approximate,
for N = 4 particles. The density is not automatically normalized, buaiits error is less

than 0:2%.

Evaluating T tests the accuracy of a density: The exact value is 153.0, it i43.5

in self-consistent TF, 114.6 in non-self-consistent TFW, and 15Lfor nse™,

Although the lower two eigenstates will have turning points whare vex(a) = j, the
Fermi energy does not, allowing us to use Eq. (3.16). We do noea with turning
points in this work, prefering to work with this type of system & it is less complicated
and easily to see the quantum corrections. We use the semiclassigabraximation

of Airy functions to deal with this case, but this is work as yet apublished.

The exact solution was found numerically by solving the solvinghe Schmdinger
equation on a real space grid using a nite-di erence method fdhe derivative in the
kinetic energy. The Fermi energies are found using the Newtonethod described in

the appendix B.
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3.3 Semiclassic Kinetic Energy Density

The kinetic energy density (KED) may be de ned in two ways:

= 2 @
0= 5 0@ ;X (3.17)
j=1
and
2 = 1->(\| . i2
0=+3 i@ () (3.18)

=1
Both integrate to the same quantity T, the total kinetic energy,

Z Z
T = Yx)dx = 2(x)dx (3.19)

as can be seen by an integration by parts with the requiremenhat ;(x) ! 0 as
x 1 1 . This will not be true for systems with periodic boundary condions. We

will use the de nition:

X
)= (5 v 052 (3.20)
j=1
This de nition will yield the same KED as !(x), as can be seen by inserting the
de nition of ; from Eq. (2.6) into Eq. (3.20). In the 1DSE code written, thisis the
de nition used. We may use a similar de nition to write (x) in terms of the Green's

function

i. dE k*(X)G(x;E) (3.21)
21 ¢

(x)

We use the same Green's function as for the density, Eq. (3.12hdinsert into Eq.
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(3.21).

I
(x) = % dE K(x) cos[(L)] cos[2(x) (L)]

c sin[ (L)] (5:22)

Picking out the dominate piece of Eq. (3.22) whert has a small imaginary part
and either the particle number or the box size is large gives éhThomas-Fermi (TF)
kinetic energy density

TF (X) = S

(3.23)

If the Thomas-Fermi contribution is subtracted o, then the kinetic energy density

will be
)= )+ *°(x) (3.24)

where

I
mepgz b dekpy ZPLL_cosR0) (L) (3.25)

c sin[ (L)]

We choose the same contour as for the quantum corrections to tdensity, along"
whereE = +i and goesfromO 1 . We also choose: to be always larger than
and thus we can expand quantities in. This can be done as we know from Ref.

[31] that the integrand falls o as 1=E? in the complexE plane. The nal expression
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can be written as:

() = kEOONTC(x) (1+ (x) (x)) =2

ke(x) (x) 1 cos 2[ 1¢ (X)]
a5l ool

(3.26)

where (x)= [T&=T + k. 2()]=2Ts), ()= (1=2 csé[ (X)])=2k2(X)T:),Te =
T(.)and T® = ROL dx=p? (x9.

T T
L — Exact| _|
400 T b
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[ '... .‘.. ‘\ II ".. "4‘
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Figure 3.4: Kinetic energy densities of Fig. 3.3.

We plot results for the same potential as for Fig. 3.3y(x) = 80sirf(2 x ). In fact,

tse™ is ill-behaved right at the end points, so we model its approadi the boundaries
with a simple parabola forx < 0:0875, with constant chosen to match the logarithmic
derivative at that point. The resulting integrated T is 1562, compared to the exact

result 1572.

We emphasize that the correct semiclassical treatment has reautcthe error in self-
consistent TF theory by a factor of 40. Thus the semiclassical apgeich is far more

powerful and systematic than the usual gradient expansion. How é&m do density
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functionals achieve the accuracy needed for chemical and terdals applications?
The answer already appears for the at box. Inserting theexact density in T©
yields GL—ZZ( SN¥+ 4IN2+ 33N), i.e. reasonably accurate quantum corrections, be-
cause most of the contribution comes from regions of not-toegidly varying density.
In the double-well potential, T on the exact density is only 4 times worse than
our semiclassical approximation. Thus semilocal functionalspglied to the highly
accurate densities from the KS scheme, contain typically go@pproximations to the
guantum corrections in the energy. In fact, for the at box, te leading gradient
correctionworsensthe energy. If we alter the coe cient of TV from 1=3 to +0:424,

the corresponding "generalized’ gradient expansion is AE1,cafar more accurate for

particles in boxes.

3.4 Including gradient terms

We can include terms of higher order in- in the WKB wavefunction to nd gradient
corrections to the semiclassical kinetic energy formula, Eq3.26). Careful analysis
of this formula shows that it includes terms of order?. As we shall see, the next
order gradient correction to Thomas-Fermi is of order, hence to be a complete semi-
classical description, one must include these terms. Below | shalingly demonstrate
that using the WKB wavefunction with higher order terms and the Green's function
methods developed above, one can recover the known gradieatrection to TF[30].
However, since quantum correction terms can also be found by imding these terms,
we can go further than these simple corrections. This is an obu® candidate for

future work and may shed light on the generalized gradient cactions of DFT.
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Recall that for higher order WKB, the wavefunction is given g

Z

0= psint  dxQx] (3.27)
Qx) ~
where to next order
Q(x) = k(x) + ~*Q®(x) (3.28)
and
_ . V) 5VAx))?
QW (x) =+ 7300 T 80 (3.29)
If we now construct the Green's function
GoxxCE) = —goMLiGE)SIn A E)] (3.30)
o ~ QX E)Q(X%E)sin[ ( E)]
where
1 Z x
1(GE) = (GE)= = Q(x®E)dx® (3.31)
7 0
oAzGE) = - LQ(XO‘?E)dX00 (3.32)
Vil
(E) = % LQ(XO?E)dXOO (3.33)

0

If we rst calculate the TF like term, 1(x), TF in the sense that this gives TF to rst
order and we calculate the contour integral in the same manneAs in the previous

case, we shift o the real axis and follow the contour of Fig. 3,Zhen

I .
(0= L o MEP

- 9 QxE) (3.34)
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integrates to

(& v 5ve
= + ~ + :
1002 524 iyt 2k (3.35)
using
1 1 , vO 5@
—= ~ _——+ > +: :
Q Kk DG (3.36)

This is exactly the gradient correction to Thomas-Fermi as deulated in Ref. [30].

3.5 Potential Scaling

Density scaling has been a particularly useful tool for the angis and development
of DFT. A singular example is uniform coordinate scaling[27]where the coordi-
nates of a given density are linearly scaled, but normalizatiois preserved. This
has led to fundamental exact conditions on the exchange-celation (XC) energy
functional[27, 32, 33, 34]. For example, the form of the locapproximation to
the exchange energy can be deduced from this scaling. The ddiic-connection
formulation[35, 36, 37, 38], much studied and used in DFT dewgiment, is essen-
tially an integral over the uniform coordinate scaling pararater[27, 39, 40]. Here, the
electron-electron interaction is scaled by a constant whilehé density is kept xed,
linking the non-interacting Kohn-Sham and the fully interacting systems, and leads
to many more conditions. For example, the adiabatic connecin formula is behind

rationalizing the hybrid approach[41, 42, 43, 44].

Recently, a di erent form of density scaling was used in the del@ment of the PBEsol
functional[45]. Here, both the coordinate and the particleumber are scaled, leading

to new insights into the XC functional. We refer to this as chage-neutral scaling[29],
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as it is equivalent to simultaneously changing the charges omoms and the number

of electrons, so as to keep overall neutrality.

In this section, we extend the use of density scaling as a tool in DFMost importantly
we introduce the concept that any form of density scaling de rea related form of
potential scaling. This leads to more exact conditions on thearious DFT quantities
as functionals of densities of di erent particle number. Yag and others[25] have
emphasized the duality of the potential with the density, but lave not related scaling

of one to the other.
Potential Scaling

Consider a densityn(r) that is the ground-state density of some interacting problem
with potential vex(r). Now, introduce some positive parameter, & < 1, which
produces a family of densitiesn (r), with dened sothat !'1 corresponds to

the high-density limit.

A simple example is the uniform coordinate scaling of Levy andeirdew[27]:

n(r= 3(r); 0< < 1; (3.37)

where the prefactor was chosen to keep the density normalizd.orFexample, un-
der uniform coordinate scaling with > 1, the density of He is squeezed into a
smaller volume, and looks like a distorted version of a two-eteon ion[46]. This
scaling has become a mainstay of DFT and leads to many importargésults. Most
importantly, when particles interact, the coordinate-scad wavefunction is not the
ground-state wavefunction of the scaled density. Considering@ua wavefunction as

a trial state in the Rayleigh-Ritz principle yields useful inqualities for the various
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density functionals[27]:

Tinl *Tnj 1; (3.38)

(3.39)

Veeln ] Ve, 1

and a similar condition applies for the correlation energ¥ [n] itself.
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Figure 3.5: The exact radial densities of Beryllium (solid lie)[47], and of the CN

scaled (with = 2) Helium (dashed line)[48].

A second example that we focus on here is what we call charge#nal (CN) scaling,

in which
(3.40)

n(r)= 2n( ¥r); 0< < 1

= N . We use as the scaling parameter to distinguish from coordinate

and soN =
scaling. This choice both scales the coordinatand changes the particle number. For

Coulomb-interacting matter, this ensures neutrality as a faction of . For example,
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for single atoms, it simply impliesZ = Z and the atom remains neutral. Lieb and
Simon[49] showed that Thomas-Fermi (TF) theory becomes exaftr neutral atoms
as !1 ,and Lieb[26] later generalized the proof to all Coulomb-iaracting matter.

In Fig 1, we illustrate this scaling on the He atom density.

In both coordinate and CN scaling, as the scaling parameter imken to 1 , the
solution simpli es. Under uniform coordinate scaling to the higkdensity limit, the
system becomes e ectively non-interacting. Under CN scaling tthe high-density
limit, Thomas-Fermi theory becomes relatively exact. In elter case, we can ask how
the potential changes when the density is scaled. We de ne thss the potential
scaling conjugate to the given density scaling, but consider ibf all values of the

scaling parameter, not just in the high-density limit.

Under coordinate scaling, in the large limit,

v (r)= 2v( r): (3.41)

We therefore de ne our potential scaling by this equation, gplied for all . We use
a superscript to indicate that the potential has been scaled, hahe density. This
is simply how the external potential would change when the deity is scaled, if
the particles were non-interacting particles. For examplefor a neutral atom, this
changes the nuclear charge by, keeping the particle number xed. As !1 | the
repulsion between electrons becomes negligible relativeth@ nuclear attraction, and

the density becomes that of the non-interacting limit, scaletby

Similarly, under CN scalingwith !'1 |, the TF equations become relatively exact[50],

and

vin= v ), N = N: (3.42)
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Again, the conjugate potential scaling is de ned by this, appéd to all values of .
Analogously, if self-consistent TF theory were exact, this is hothe potential would

scale for any as the density is scaled.

Although chosen to match the corresponding density scaling in thieigh-density or
high-potential limit, these potential scalings can be apple for any values of their
scaling parameter. Since scaling the potential is much moremsmon in quantum
problems than scaling the density, often solutions are known @an be accurately
calculated for di erent scalings of the potential, but not ofthe density. In this paper,
we nd relations and inequalities between such solutions thatomplement the ground-

breaking results of the previous generation[27].
Uniform coordinate scaling

In the old work[27], Levy and Perdew compared two di erent weefunctions with the
same density, whereas we compare two di erent wavefunctions the same potential.
To do this, begin from a given potentialve, (r) with ground-state densityn(r). De ne
n (r) as the ground-state density ofv.,(r), given by Eq. (3.41). Thenn,_ (r) is a
useful trial density for the original problem. It is found by rst scaling the potential,
solving the problem, and then scaling backwards to the origih@roblem. (In Fig. 1,
the dashed line corresponds (r) for the He density, with = 2.) This is exactly

what was done (but with an approximate scale factor) in Ref. B.

If n,_ (r) is used as trial density forve,(r), the variational principle states that

FInio 1+ Vew[n 1 FINl+  *Veuln I; (3.43)

which may be rearranged as

F[n,_] FIn] *(Vext [N 1 Veu[n 1): (3.44)
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Conversely,n (r) may be used as a trial density fowv,,(r), yielding

Ev, [Nn] = F[n ]+ Vegln ]

ext

FIn 1+ Ve [ (3.49)

which can also be rearranged as

FIn] FIN] Vexln T Veuln [ (3.46)

Combining the two inequalities yields a constraint on the uwmersal functional F [n]:

Fin. 1 0 e F0, (3.47)
which may be written in a concise form, with =1=,
FIn"] Fnj (3.48)
where
F [n]=F[n] 2F[n [ (3.49)

Now, F[n] is typically dominated by the kinetic energy contribution but this can be

removed, becaus@;[n ]= 2T[n]. Thus
Eue N1 Euc [N (3.50)

whereE, . = U+ E,.. This tells us that if we begin from, e.g., the lowest value of

Z that binds a givenN electrons, then E,, . [n'" ]is an increasing function of .
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Simple results can be extracted from this very general formaiby taking to be very
large. This makesn (r) an essentially non-interacting density, because the external

potential dominates. Thus

n= (1) ny(r); I O (3.51)

wheren,, (r) is the density of the system with only an in nitesimal electronelectron
repulsion. But E, . [n] also simplies as ! 0, because all terms scale less than

quadratically. Thus

E.c [N]! Euxe [N]; 0 (3.52)

yielding the universal result that

Exc [an] Exc [n]; (353)

applying to all potentials. For < 1, Eq. (3.48) is less useful, as most systems of
interest lose an electron when the external potential becoméso small. To further

simplify Eq. (3.50), we note that both the Hartree and exchangenergies scale linearly

with , i.e.,

Ew[n]= EwI[n]; (3.54)
so that

Exnl=(1 )ExInl (3.55)
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Table 3.1: The Hartree energied), for the helium iso-electronic series as calculated
with the oep exact-exchange method as implemented in the OR\® code[51]. We
also demonstrate how, for two values of atomic numbez®, the inequalities of Eq.
(3.59) with = Z%Z, are satis ed. Note that if < 1, the inequality is reversed.
The values for bordering values of Z bracket the value &f at atomic numberZ and

these bounds become tighter a&°increases.

U

Z'=4

Z'=20

N
OoCD-bOOI\JHN

0.790970
2.051538
3.303373
4.554137
7.054819
12.055315
24.555661

3.163880
4.103076
4.404497
4.554137
4.703213
4.822126
4911132

15.819400
20.515380
22.022487
22.770685
23.516063
24.110630
24.555661

Inserted into Eq. (3.50), we nd

Ew[n ]+ €[] Ewx[nl+ % [n]; (3.56)

where

€ [n]= E [n=1 ): (3.57)

The simplest way to test this result is by doing a Kohn-Sham calcation without any
correlation (such as oep exact exchange). Then the correlati contributions vanish

on both sides of Eqg. (3.56), and so

Ewx[n] Ewxn]=  Euwlnu] (3.58)

This simpli es even further for the special case of two electrenin a spin singlet,

whereE,[n] = U[n]=2, so the inequality becomes a bound on the Hartree energy
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Table 3.2: Hartree-exchange energies for the beryllium isteetronic series. Values
were also calculated with the OPMKS code with oep exact-exahge. Also shown are
two examples of the inequalities of Eg. (3.58), again using= Z%=Z. Although the

guantities are more complicate that those in Table 3.1, the avall trend is the same.

lon Z E.x Z'=10 '=16
Be 4 | 4489776 11.224440 17.959104
B* 5 | 6.119120 12.238240 19.581184
o** 8 | 10.893545 13.616931 21.787090
Neb* 10| 14.051482 14.051482 22.482371
St2+ 16| 23.498356 14.686473 23.498356
Cal®* 20| 29.788628 14.894314 23.830902

alone:
Un] Uln ]= Ulny] (3.59)

In Table 3.1, we analyze the above inequality, Eq. (3.59), vlb in Fig 3.6, we plot

U[n ]= as a function of for exact-exchange calculations of the two-electron ion

series, beginning with H. Indeed, the function increases toward the Bohr atom
limit of 5/4, found by inserting a doubly-occupied 1s Hydrogemtom orbital into the

Hartree energy.

To test the exchange contribution in a non-trivial way, i.e.,Eq. (3.56), we repeated
the calculations for the four-electron ion series, this timedginning from Be. Again
the inequality is satis ed, and the limiting value is found by ealuating the Hartree

and exchange energies of doubly-occupied 1s and 2s Hydrogenbitals, as calculated

in Appendix A. These values are reported in Table 3.2 and plottesh Fig 3.7.

Lastly, we can even include extremely accurate estimates ofetfcorrelation contri-
butions for the two-electron series. We work from the data in Tale | of Ref. [52].
Since the two-electron ions are generally weakly correlateone can approximate the

scaling of their correlation energies with a Taylor-series aund the high-density limit:
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Figure 3.6: Using the Hartree energies from Table 3.1, Eq. (3)58 illustrated for
= Z%Z and Z = 1. The trend is identical to that seen in Table 3.1, however iis
clear that the value is approaching it's asymptote, 5. This is the Hartree energy

for density consisting of the doubly occupied hydrogerslorbital.

Ecinl= EX 1+ E P[n] (3.60)

where Eép)[n] are scale-invariant functionals. Sincd. = E. + @E[nh [F@( =
1)[27], andT, is reported in their table, one can solve for these two coe cign. This
yields a value of -47.6 mH forEéo) for He, in excellent agreement with the value of
47.9 estimated in Ref. [46], and predicts a value of -56.1 mHrfbl . Using this
approximate scaling, we can insert all terms into Eqg. (3.50) ekcitly and nd their

behavior. The numerical corrections to our previous resul@@re negligible.
Charge-neutral Scaling

In this section, we repeat all the logic of the previous sectipbut apply it now to CN

scaling. After repeating similar steps (given in Appendix C), werave at the general
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Figure 3.7: The Hartree-exchange energies reported in Tal#e€2 are used to illustrate
the inequalities of Eq. (3.58) with = Z%Z and Z = 4. Compared to Fig. 3.6, the
value of E,x [n ]= is not as fully converged to its asymptote, however the maxinm
value of is 4 times smaller. The asymptotic value for this case is 586383312 =
6:284, which is found by doubly occupying both 1s and 2s hydrage orbitals with

Z =4 and calculating Hartree and exchange energies.

result:

F ] F[n]; (3.61)

where

F [n]=F[n "Flns-]; (3.62)

and =1=. Just as we did for coordinate scaling, we can re ne our inequigl sub-

stantially. By construction, F [n] =0 for FF[n], so we de ne the useful functional:

FNTIn]= F[n] FT™[n] (3.63)
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as the Non-Thomas-Fermi contribution to F[n]. Our inequality then reads:

FNT [n® ] FNT [n]; (3.64)
where

FNT [n1= FNT[n]  FNT[ny. ]: (3.65)
We nd an interesting result in the limit ! 0, if we make the reasonable assumption

that all non-Thomas-Fermi contributions scale less strongly @#n "= :

FNTIN™F] FNT[n]: (3.66)

as TF becomes relatively exact in the high. This inequality is endishly hard to test,
even in the large limit. Consider, e.g., the He atom. The corresponding TF density
is well-known[53] but we would have to evaluate the exact iatacting functional on
it to nd the non-TF contribution. All the above results also apply directly to non-
interacting electrons in a potential, such as the Bohr atomfd, with F replaced byTs,
and the TF contributions calculated with no Hartree term. Butthe same di culties

remain.

There is one case where we know enough already to test. For thedlggen atom (or
any one-electron system)F = T only, and is given by the von Weizacker functional.
The TF density (with or without interaction) is well-known and singular at the origin,
making the von Weizacker energy diverge. Thus, the formula satis ed, but not very

informative.

Lastly, we consider Thomas-Fermi-Dirac-Weizsaker theory[28TFDW). Here we add
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to TF the local exchange

EOm] = A, ‘ B n43(r); (3.67)
where A, = (3=4)(3= )*, and the next order gradient correction to the kinetic
energy,

TP[n] = %Z dr ”:(—(rr)”z (3.68)
Both these terms scale the same way under CN density scaling, i.e.,

FOM1=TOM 1+ EPN 1= *S(T@MN]+ EXN): (3.69)
Then can write the inequality as

FOm1 *P°rF@mn); (3.70)

wheren(r) has been evaluated self-consistently within TFDW and 1. Thus

F@MN™] FOn]=> FO[n) (3.71)

wheren' (r) is the Thomas-Fermi solution for the same potential as fon(r).
Conclusion

Potential scaling, conjugate to a given density scaling, proses to be a useful tool
in density functional theory. It leads to many exact conditims that can be used in
functional construction. We have applied it to two distinct types of scaling: uniform
coordinate scaling and charge neutral scaling. In both cases, Wwave found sev-

eral interesting bounds. Uniform coordinate scaling was usefurfanalyzing Kohn-
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Sham DFT, leading to inequalities involving the only unknow in DFT, the exchange-
correlation functional. The limit of this inequality involves evaluating the Hartree-
exchange-correlation energy of the density of non-interant) fermions in the external
potential. This connection between the interacting and nointeracting systems res-
onates with standard approaches in many-body perturbationhieory. We illustrate
the bounds on the Hartree-exchange energy this inequality @rides by performing
OEP exact exchange calculations on helium and beryllium, shog the approach
to their asymptote. On the other hand, charge-neutral scalingrovides inequalities
involving Thomas-Fermi quantities. The Thomas-Fermi approxnation becomes rel-
atively exact for all electronic systems[49, 26] and these reiats link the corrections
to Thomas-Fermi with the true system, including those of TFDW thery. However
evaluating the TF density within these theories often leads talivergences[55, 56].
In the derivation of these inequalities, the variational pririple was used to link the
unscaled and scaled systems. If we now use an approximate functioaad use its
self-consistent densities, the inequalities are automaticallyatis ed if the previous
scaling relationships are true. This makes it more di cult to use these inequalities
as exact conditions for functional construction, however wk is ongoing to interprete

the e ect of these inequalities on potential functionals, lik those of Ref. [25].

We thank Eberhard Engel for use of the OPMKS code and also thanky€is Umrigar

for providing exact densities.

3.6 B 88 Derivation

As discussed in chapter 2.4.1, the natural successor to LDA is a seoudl (or
gradient-corrected) approximation which adds informatio about the derivative of

the density at that point. In fact, in the same paper in which LDAIs introduced, so
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too is the gradient expansion approximation (GEA) for XC. The oe cients of the
GEA are determined by the energy of a slowly-varying gas[13, ,187]. However it
was found that the GEA often worsened LDA results and two decadepassed before

substantial improvements were made.

Generalized gradient approximations (GGAS) e ectively resunthe gradient expan-
sion, but using onlyjr nj. The B88 functional[9] is the most used GGA for exchange
overall (as part of B3LYP[10, 58]), but the most popular GGA in shd state appli-
cations is PBE[8]. Neither reduces to the GEA in the limit of smih gradients. In
this paper we explain the reason why this must be the case. Asympioexpressions
for the energy components as functionals &f, the number of electrons, display "un-
reasonable accuracy'[59] even for loW. In order to give good energies for nite
systems, any approximate XC functional must have accurate coeients in its large-
N expansion. LDA gives the dominant contribution, but the GEA des not yield an
accurate leading correction for atoms. Popular GGAs such as B&3d PBE do get

this correction right.

In Ref. [29], the underlying ideas behind this work were delped, however the rea-
soning was based upon scaling the density and not on the potentgdaling discussed
below. We re ne these ideas and explicitly show how they can beed for functional
development, and in particular we show how the parameter in B8may be derived in

a non-empirical manner.

Asymptotic expansion in N Begin with any system (atom, molecule, cluster, or
solid) containing N electrons. We then imagine changing the number of electrong t
NC Since we usually begin from a neutral system, usually we consiaery N°> N .

Thus we de ne a scaling parameter = N:N > 1. As we change the particle
number, we simultaneously change the one-body potentigd,:(r) as in Eq. (3.1) so

as to retain overall charge neutrality. We refer to this as dirge-neutral (CN) scaling.

48



For an isolated atom,Z ! Z under this scaling, so it remains neutral as the electron
number grows. For molecules with nuclear positionrR and chargesZz ,Z ! Z
andR ! =R . In the special case of neutral atoms, the resulting series for the

energy is well-known:

E= aN™ aN? aN>3 (3.72)

whereay = 0:768745,a, = 1=2, anda, = 0:269900 [59, 60]. We say an approxima-
tion is largeN asymptotically exactto the p-th degree (AEp) if it recovers exactly
the rst p+1 coe cients for a given quantity under the potential scaling of Eq. (3.1).
Lieb and Simon[49, 26] showed that Thomas-Fermi (TF) theory lm®mesexactin the
limt !'1 for all systems. TF is exact in a statistical sense, in that TF gives the
correct rst term of Eqg. (3.72), but not the other terms. We say TFis AEO for the

total energy.

A similar expression exists for the exchange component of the empealone:

E,= N> N (3.73)

where ¢ = 0:2208 = 9%,=11 and c¢; will be the main topic of this paper. In a
similar fashion, Schwinger demonstrated that the local appraxation for exchange
is AEO, and this coe cient is given exactly by local exchange valuated on the TF
density[59, 60, 50]. However in order to give atomic exchangeeegies needed for

chemical accuracy, any exchange approximation should be atkt AE1.

Now suppose we want to make a local approximation fé&, but know nothing about

the uniform gas. Dimensional analysis (coordinate scaling[27¢lls us that it must
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be of the form:

YA
ELPAINI= Al 1 = dBrn®3(r): (3.74)

Requiring that this gives the leading contribution to Eq. (373) then xes the value
of the constantA,. Using any (all-electron) Hartree-Fock atomic code, such as veer
already available in the 1960's[61], one calculatds for densities running down a
particular column of the periodic table and then deduces itslependence orZ 5.
A modern alternative is to use the fully numerical OPMKS codé&fl] using the OEP
exact exchange functional to nd densities for neutral atomérom Z =1 to Z = 88.
By tting, one nds | = 0:296%°2 and henceA, = 0:7446. This is remarkably
close to the derived result of

3 1=3

A, = = 0:7386 (3.75)

MW

Thus, without any recourse to the uniform electron gas, we haveedved the correct
local approximation to E[n].

This demonstrates that, via asymptotic exactness, the local appximation to ex-

change is a universal feature of all systems & ! 1 , when scaled appropriately.
(In fact, Schwinger only proved this for atoms[59], we know afo proof for arbitrary

systems).

Theory

LDA vyields the dominant term in either the asymptotic charge-neutral expansion
( '1 ) orthe gradient expansion for the slowly-varying electron gas,! 0. We
next show that, contrary to popular myth, the important expansion is the charge-

neutral expansion,not the gradient expansion.
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Figure 3.8: The OEP exact exchange energies Eor neutral atoms fromZ =1 to 88,
divided by Z5= in order to pick out the leading term in its asymptotic series. Tk
leading corrections are proportional to powers & 3. The values for the noble gas
atoms are given as the circle symbols.

The charge-neutral expansion can be applied to any type of niat, be it molecule
or extended solid. For any nite system, the density decays expentially far from

the nuclei. This is a key distinction between nite systems and Wk matter, treated

with periodic boundary conditions. Bulk matter has no such regns.

But, for slowly-varying gases, or more generally when there ar® classical turning
points at the Fermi surface, the charge-neutral scaling and ¢éhgradient expansion
become identical, i.e., the gradient expansion for the slowlsarying gas is simply a
special caseof charge-neutral scaling. To see that this is so, consider justdhkinetic

energy as a density-functional. Here the gradient expansion ksnown out to 6th

order[55], and eventually the integrated quantity itself drerges for atomic densities,
due to the evanescent tail. But no such divergence occurs fortemded systems with

nite density everywhere[55, 56].

Thus CN scaling applies to all systems, but only becomes identid® the gradient
expansion for slowly-varying bulk systems. For the dominant coribution, e ectively

the local Fermi wavelength becomes short on the length scale which the density is
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Figure 3.9: We add to Fig. 3.8 the results for the LDA functionbevaluated on the
OEP densities (dashed-line) keeping the XX values (solid line)As in Fig. 3.8, the
Noble gas atom are highlighted with circle and square symbolsrfXX and LDA
respectively.

changing, so that the local approximation applies, and yieldfie exact answer for this
term. Hence LDA reproduces the AEO terms, but GEA doesot produce the leading

corrections. All this has been amply demonstrated for simple 1dodel systems[50],

and for the Kohn-Sham kinetic energy for atoms[62].

Here we apply the same reasoning for exchange. The local appnoaiion becomes
relatively exactas !1 , but the gradient expansion does not reproduce the leading
correction in the CN expansion. Below, we use the simple reasagiaf Ref. [29] to
recover this leading correction. We perform a much more extsive calculation of the
asymptotic behavior, using methods developed in Ref. [62]. Wed, in agreement
with Ref. [29], that the leading correction for atoms is abadudouble that given by
the gradient expansion, matching quite closely that of B88 andf PBE. Reversing
this logic for B88, we show that B88 may be more or less derivedmempirically via
the constraint that the approximation be AE1. If we enforce AE1 xactly, we nd a
slightly di erent value for , and discuss the properties of the resulting functional,

excogitated B88.
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Figure 3.10: We now nd the next coe cient in the exchange asymtotic series.
To minimize the error due to shell structure oscillations, the LB exchange energy
is subtracted from the exact exchange for each atom. As both givthe leading
correction, their di erence will then have ¢Z, c= ¢ ¢4, as the leading term
in its asymptotic expansion, . The dashed line is the result of thg to the noble gas
atoms (circle symbols).

Extracting asymptotic coe cients

Under the potential scaling of Eqg. (3.1), any approximation fothe exchange energy
that reduces to LDA in the uniform limit has an expansion inN like Eq. (3.73),
with the same value forc,. However the coe cient ¢; depends on the particular

approximation. Below we explain the procedure used to extrathese coe cients.

As mentioned in the previous section, the OPMKS[51] electranstructure code is a
fully numerical electronic structure code that has the abity to perform optimized

e ective potential (OEP) calculations. We evaluate the varous approximations using
atomic densities found with the OEP exact exchange (XX) methodThe densities
found using this method will be extremely close to the exact dsities despite the
fact that correlation is missing. Moreover the e ect of corredtion will contribute at

higher orders in the asymptotic expansions of the energy thahdse we are interested

in. Thus EXX calculations are in principle su cient for extracting the coe cient we
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Figure 3.11: In order to see that LDA does not signi cantly conibute to the higher
orders of the exchange asymptotic series, we plot the di erendetween LDA and
the leading term c,Z°>= (dashed line), as a function of Z. The exact exchange value
is also shown (solid line).

seek.

In Fig. 3.8, we plot E,=Z52 vs Z % where E, is the exchange energy from the
exact exchange calculation. Since the leading term in the amptotic expansion of
Eqg. (3.73) isZ°>3, this procedure picks out thec, coe cient as a constant while
all other terms are functions ofZ 3. One can see that the curve in Fig. 3.8 is
heading towards the exact value of; = 0:2208, but it is di cult to extract higher

coe cients due to oscillation of the curve due to the shell strutre.

To overcome this di culty, in Fig.3.9 we add the LDA curve to Fig.3.8. It can be seen
that it too recovers the exactcy coe cient, but also clearly di ers in higher orders
in the asymptotic expansion. More usefully, we see that the LDA cve mimics the
oscillations shown by exact exchange, so subtracting LDA from EX¥ill minimize

this e ect and make the extraction of asymptotic coe cients more accurate.

In Fig. 3.10, we plot €, ELP*)=Z vs Z ¥ and nd that it behaves close to

linearly. There appears to be n&Z4= term in E,. Such a contribution was argued
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Figure 3.12: We use the same procedure as in Fig. 3.10 to nd thec coe cient for
the gradient correction to LDA, EQ [n], as de ned in Eq. (2.49). The dashed line
was tted to the noble gas atoms (circle symbols).

not to exist in Ref. [29], but this was based on CN scaling of the dsity and studying
the behavior of the terms in the gradient expansion. That reasmng is insu cient, as
the expansion should be performed in terms of the potential, @escribed in Sec. 3.6.
But since the Scott correction (theZ? contribution to the total energy) comes from
the core region, there is no reason to expect an analogous cimttion for exchange.
In order to show this and also to precisely determine the coe cient, one should use
the techniques developed by Schwinger for deriving the Stabrrection to the total

energy[59], but apply them to exchange.

To further reduce the remaining uncertainty due to shell struire oscillations, we
choose simply to use the noble gas atoms (excluding helium) farrot. The strongest

deviations from linearity come from the transition metals ad lanthanides and ac-
tinides. We t the dierence (E, ELPA)=Z with a straight line in Z =3, and

extrapolatetoZ !'1 , nding c¢= 0:2240, where c=¢ cP*, and

Ex EP*  0:2240Z +0:24672%3; (3.76)
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The coe cient of the last term is given by the slope of the dashedne in Fig. 3.10,

although the meaning of this term is unclear in the presence siéich strong oscillating

0.8 B

%Error of (E™" - 0.2240 Z + 0.24677)

-0.4+ .
0.8~ s
| | . | |
0 20 40 60 80
Z

Figure 3.13: The percentage error of the approximate asympio series given in Eg.
(3.76) is plotted as a function ofZ. The error is remarkably low and demonstrates
the power of these asymptotic series.

If instead we used the alkaline earth atoms (excluding berylim), we nd an almost

identical value, c¢ = 0:2236. If we use all elements wittZz > 10, we nd a
similar value, c= 0:2164. If all elements fromZ = 1 to 88 are used, we nd
c = 01982. In Ref. [29], c was found using noble gas atoms, except with

the helium value included, and that method gave a value ofc = 0:1978. In our
analysis, atoms withZ < 10 are not used as they are not necessarily dominated by

the asymptotic series.

Since LDA displays the shell oscillations that prevented us fro tting EXX directly,
the value of the LDA c; coe cient cannot be found exactly. But we estimate 0
cPA 0.04, i.e., at least ve times smaller in magnitude than c. In Fig 3.11,
we showE, ;753 as a function ofZ for both the exact values and within LDA,
demonstrating that the linear contribution comes almost entely from the beyond-

LDA terms.
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Finally we determine c for GEA. In Fig. 3.12, we plot (ESA EPA)=Z vs Z 13

in orderto nd c= cSFA

c¢i®, nding c= 0:1062. This plot is much closer
to linear than the previous one. The leading corrections toRA in the asymptotic
expansion produce corrections to the shell structureeyondthose captured by LDA
evaluated on the exact density [50, 62]. Although the smooth ctribution can be
partially captured by GEA, there is almost no correction to theshell structure. Just

as for the kinetic energy[62], GEA yields a correction to themooth part that is about

[ DR I S P [N

10 ‘ ‘ ‘ ‘
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1007 (Eyy - F1<approx) By

-10 ! . ! . ! . !

Figure 3.14: The percentage error for LDA, GEA and the modi edGEA (MGEA)

exchange functionals foiZ > 10. The coe cient of E? is multiplied by 2:109 in
order to make the MGEA AE1 asymptotically exact.

To understand the power of these asymptotic expansions, we add therrections of
Eqg. (3.76) to the LDA energies, and in Fig. 3.13 plot the percé¢age error relative to
exact exchange, as a function & . For all but the second row of the periodic table,

the resulting error is below 0.5% in magnitude, and typicallyf order 0.2%.
Generalized gradient approximations

Generalized gradient expansions were designed to improve rgegics over LDA for

electron systems of interest and relevance. Early versions, such”RAW91[63, 64], were
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Table 3.3: c=c¢ cP* values for several di erent functionals.
E, LDA GEA B88 PBE
c 0:2240 - 0:1062 0:2216 0:1946

tortured into reducing to the gradient expansion when the desity is slowly varying.
But this was later given up, in both B88 and PBE exchange, whicboth reduce to the
gradient expansion form for slow variations, but with coe ciets much larger than

that of the gradient expansion.

Our analysis explains why this must be so. Regardless of its dexilon, any modern
GGA for exchange is tested against the neutral atoms. Any approxration that
cannot recover the rightc; will be generally inaccurate for these energies, and so

AicArardnd Thiic arnirs that hAarAamaAa nAaniilar hn\lre already passedghest.
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Figure 3.15: We add to Fig. 3.14 the results for B88, PBE, and éhexcogitated B88
functional, all evaluated on the OEP exact exchange densifie

In Table 3.3, we give the results for c for several di erent functionals. The same
methodology was used in all extractions. Both popular GGA's rever (at least
approximately) the accurate value. B88, designed speci cglfor molecular systems, is
very close to the accurate value. PBE exchange is less so, butlsoalesigned to bridge

molecular and solid-state systems. The PBE value is between that GEA and B88,
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but much closer to the latter than the former. Taking advantag of this insight, a new
variation on PBE, called PBEsoI[45], restores the original gdient expansion, thereby
worsening atomization energies (total energy di erences)ubimproving many lattice

constants of solids over PBE and LDA.
Deriving the in B 88

The exchange energies found using GGAs such as B88 or PBE are galyedominated
by their gradient expansion components for most chemically lesvant densities. Thus,
to make B88 AEL, it is su cient to impose this exact condition on ust the Eiz) [n]
functional form. Since both B88 and the GEA are built on top of.DA, we can simple
look at the c values calculated above. If we set = 2:109 , in Eq. (2.49), we
multiply the c¢; coe cient of GEA by a factor of 2:109, making it AE1. In Fig. 3.14,
we name this functional MGEA for modi ed GEA and plot its peraentage errors. The
values for LDA and GEA are also shown. It can be seen that modifygnGEA to be

AE1 has greatly reduced the error.

We now require that the B88 functional form, Eq. (2.52), redae to this MGEA for
small values ofx. Using Eq. (2.51), this corresponds to using a value of= 0:0050.
Thus we have derived an excogitated B88 that is free of any empal parameters.
The actual value used in B88 is #* = 0:0053 (for spin-polarized systems this becomes
0:0042, which is the value given in Ref. ([9])), so the values avery close. This is
not surprising as tting to Hartree-Fock exchange energies isnaapproximate way
of demanding asymptotic exactness. Interestingly, the value qted as the highZ
asymptote in Ref. [9] and found using Ref. [15] is essentially tlsame as our value,
but was evidently rejected in favor of a better t. In Fig. 3.15, we plot the percentage
errors for B88, PBE, and the excogitated B88. As is typical foempirically- tted
functionals, B88 performs very well for systems close to the dasat used in the tted

procedure. Although the error for PBE is higher than both B88 ad the excogitated
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B88, it is systematic in its overestimation. As noted, PBE was degned to perform
reasonably well for a wide range of systems, so again its behavsnot surprising. On
this data set, the excogitated B88 was never going to do bettéhan B88, although

it remains to be seen how it performs for more complicated system
conclusion

We have carefully and systematically extracted the leading lge-Z correction to the
exchange energy of atoms. Our results di er slightly from thosef &ef. [29] but yield
the same qualitative conclusion, i.e., that the gradient expeion yields an error of
a factor of 2 or more for this coe cient. We have clari ed some bthe reasoning,
and applied it more generally to any atom, molecule, or clusteBy looking in detail
at the exchange energy asymptotic series for neutral atoms, wavie demonstrated
the power of using such series for functional development. Regug that the small
gradient expansion of B88 capture the two leading coe cientof the asymptotic
expansion is a method by which the unknown coe cient can be found. This gives
a coe cient very close to the one actually used in B88 and thus ian ex post facto
“derivation' of B88. Inserting our most accurate estimate for into the B88 form

yields an excogitated B88.

We thank Eberhard Engel for the use of his atomic OPMKS code, dnlNSF CHE-
0809859 .

3.7 Implications for DFT

So what does this mean for modern electronic structure thedtyMost importantly,
this work unites rigorous proofs about TF theory[26], Schwger's semiclassical results

for neutral atoms[22], and modern functional development fd&S calculations.
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Exchange: We have shown that the local approximation to exchange becomexact
as !1 for all systems, consistent with the fact that all popular functimals recover
this limit. Furthermore, to be AE1 for E, of atoms, their small gradient limit must
be about double that of the gradient expansion[29], and thisialso true for both
empirical[9] and non-empirical functionals[8]. These funidnals agree for moderate
gradients, and di er for large gradients. For periodic systems #hout turning points,
the gradient expansion is AE to the order of the gradients. Restimg the original gra-
dient expansion greatly improves lattice parameters[24]. Rally, recent beyond-GGA
functionals that recover the 4th-order gradient expansionigld good approximations

for the enhanced gradient coe cient in atoms[29].

To apply the methods developed here directly to atoms, we ne¢al generalize them
to include turning points, evanescent regions, and Coulomb as. Such a scheme

might produce a derivation of an GGA beyond the small gradienimit.

Correlation: As the behavior ofE. is not governed by a simple asymptotic expansion[29],
we have not found a universal limit in which local correlatiorbecomes exact. Con-
sistent with this, most non-empirical E. functionals are designed to be exact when

the density is uniform[8], but this condition is violated by enpirical functionals[10].

Now E,. for a large jellium cluster is dominated by a bulk contributim (exact in
LDA), and a surface contribution, which can be accurately apmximated by a GGA.
Restoring the density-gradient expansion foE, in PBE yields a highly accurate

surface exchange energy, so the analog is to recover the surfaareelation energy[24].

KS kinetic energy: A holy grail for many years[65] has been to nd an accurate
kinetic energy functional, Ts[n], bypassing the construction of KS orbitals. Almost all
approaches begin from a semilocal expression, sometimes enbdnay non-locality

based on linear response. This study shows that, if one is interedte total energies,
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a vital feature is to be asymptotically correct for neutral abms. Thus,as !'1 in
either potential- or density-scaling, the functionaimust reduce to TF. For atoms, the
gradient expansion ofTs[n] works rather well. The coe cient of Z? is -0.65 in TF
theory, -0.53 if T@ is included, and -0.52 ifT® is added [53]. Thus each succesive
term in the gradient expansion brings it closer to being AE1, simcthe exact value is
-1/2. Generalizing the gradient expansion to make it AE2 prodtes a more accurate
functional for total energies of both atoms and molecules[p3Lastly, our example
here shows how much simpler the kinetic energy is as a functiorad the potential

than of the density.
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Chapter 4

Partition Density Functional

Theory

In the world of electronic structure, molecules and solids atgpically considered in
one of two distinct ways. In the rst, the system is treated as a whea and molecular
orbitals (or bloch wavefunctions for bulk solids) are calcutad. These are solutions
of some e ective potential theory, such as Kohn-Sham[1, 2] dgity functional theory
or Hartree-Fock[66, 67], and often describe well the system nesquilibrium geome-
tries. The major diculty is then nding usefully accurate app roximations to the
total energy. In the second view, one considers isolated atoms the starting point,
and then weak interactions between such units. This view appesanecessary for
strongly-correlated solids such as NiO, strongly-correlated nezules such as Gr or
any molecule as its bonds are stretched. In such cases, standargragimations for
the single-reference approach usually fail, often quite comegely. Thus the worlds of

weak- and strong-correlation have practically divided[68]

In this work, we show that the partition theory of Ref. [69] plgs a role analogous to
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that of the Kohn-Sham formalism in density functional theory DFT). In Kohn-Sham
theory[2], a reference system is created which is much easierstive and in which
the interactions between electrons have been turned o . Ingstition theory[69, 70],
the reference system has been constructed from e ective isoldtéagments (e.g.,
atoms) between which there are no interactions. In both theaes, the total electronic
density of the system is used as the connection between refereacel reality: it
remains unchanged from one to the other, and so uniquely de sdhe reference.
Many other analogies are made within the paper. Su ce to say tat, just as KS DFT
is particularly well-suited to weakly-correlated systems, péation theory works best

for weakly interacting fragments.

| start with the relevant background information on partition theory. Following this,
density functional partition theory (PDFT) is formally intr oduced, before being ana-
lyzed in detail. Next I illustration PDFT on three di erent syste ms, each highlighting
a feature of PDFT. The point of these illustrations is to show thaPDFT is an ex-
act theory and will provide the exact molecular energy and nhecular density at
self-consistency. The rst system studied is a homonuclear diatommmolecule. This
system is also used to demonstrate partition theory, so we can see BieFT converge
to the PT results. Next we move to the more complecated case of a éeinuclear
diatomic molecule, which creates non-symmetric charges omettwo atoms. In both
of these examples, neutral diatomic molecules are used as theekic energy density
functional is known analytically for two or less fermions, inthie nal example | study
a 12 atom, 12 fermion chain. This example is much more comglted, but is still

solved exactly.
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Figure 4.1: Two examples of binary fragmentation into fragents A and B. The gure
on the left shows a hydrogen molecule at equilibrium bond letig while on the right,
an ethene molecule is shown with one substituent cornered o asfragment.

4.1 Partition Theory

Partition theory[69] provides a method for breaking a systennto a sum of fragments.
Begin from the one-body potential,v(r), which is typically a sum of contributions,
most from individual nuclei; e.g.

X z

R ; (4.1)

v(r) =

whereZ is the atomic charge of a nucleus at poirfiR . In partition theory, we group
these contributions intoN¢ fragments of our choosing:
Kt
vir)= v (r) ; (4.2)

=1

and eachv (r) is the sum over one or more nuclei. The simplest possible choiceas
divide the system into two parts (N =2), which we call binary fragmentation. These
parts would obviously be the two nuclei in a diatomic moleculéut could also be the
nuclei of a chemical group extracted from a large moleculer those of a molecule
interacting with a surface. One can imagine many examples theould prove useful,
examples of which can be seen in Fig. 4.1. An alternative choite atomization,

in which every term in Eq. (4.1) above is separated, and the numer of fragments

matches the number of nuclei.
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Once the fragments have been picked, the partition problens to nd fragment den-
sitiesn (r) such that they add to the total molecular density:
Xt
n(r)=n(r) : (4.3)

=1

Within partition theory, this is done by minimizing the total energy of the frag-
ments, E¢, with the constraint that the sum of the fragment densities must ratch

the molecular density, i.e. Eq. (4.3). The total energy of théragments is

Ef = ; (4.4)

where is the energy of each fragment. Since there is no constraintatiha fragment's

particle number, N , be an integer, the PPLB formulation[71, 72] is used. Thus

=(1 JE [np 1+ E [np 4] (4.5)
and
n(r)y=(@1 N + Np (4.6)
where
Z
E [n]= F[n]+ V [n]= F[n]+ dn(r)v (r) (4.7)

is the energy density functional for each fragment. The fragment particle number
isSN =p + ,p andp +1 are the lower and upper bordering integers dl and
0 < 1. The PPLB scheme is simply that of the fragment in contact withan

in nite but distant reservoir.
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Figure 4.2: Top panel: The exact density (solid line) for two n@-interacting fermions
in the potential de ned in Eg. (4.19) with R = 3 and shown below. The two exact
partition densities (dotted lines) for this system. Bottom pané The corresponding
molecular potential (solid line) as de ned in Eq. (4.19).

We note the following:

if all fragments are separated from each other, these fragmetensities become

exactly those of the isolated fragmentsa® (r).

One solves the Hamiltonian for each isolated fragment indepesmtly of the

other fragments. It is the sum of these fragment energies that minimized.

In principle nding the minimum requires rst solving for the m olecular density,
and so is even more work than solving the initial problem. But amexactly

analogous statement can be made about KS DFT.

The process of nding the minimum produces an extremely usefagbnceptual tool.

67



Minimizing the Lagrangian:
0 g Z 1 Z 0 g 1
G= E; @ ®Frn (r) NA+ Ervy(n@ n(r) nnA (4.8)
=1 =1

yields the solution to the partition problem[69]. The Lagrage multiplier is iden-
tied as the chemical potential, while the Lagrange multipler that constrains the
sum of the fragment densities to be the molecular density is a paitial, dubbed the
partition potential, vy(r). This is a global property of the molecule, uniquely de ned
once we have chosen a particular fragmentation. It has the imtesting aspect that,
when added to any fragment potential, the sum is exactly that ptential for which the
fragment density is a ground state density. In the upper panel dfig. 4.2, the exact
total density for a model system is shown. It is the solution for twaon-interacting
fermions in the potential shown in the lower panel of Fig. 4.2ral is discussed in
detail in Sec. 4.3. Solving the partition problem yields thewo fragment densities,
which are also shown in the upper panel of Fig. 4.2. It can be sedrat adding these
two fragments densities will give the total density. In the lowr panel of Fig. 4.3,
we show the exact partition potential for this problem. When dded to a fragment
potential, it gives an e ective potential for each fragmentthis is shown as the dotted
line in the lower panel of Fig. 4.3. The ground-state density dhis e ective potential
can be seen in the upper panel of Fig. 4.3, it is exactly the same the fragment

density shown in the upper panel of Fig. 4.2.

We emphasize here that once a choice of fragmentation has berade, the entire
procedure is then unambiguously de ned, and leads to uniqueafjments. The user
chooses fragments depending on which aspects they wish to stuagsyially guided by

chemical intuition.
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Figure 4.3: Top panel: The fragment density (dotted line) fothe B atom of Fig.

4.1. Bottom panel: The exact partition potential v,(x) (solid line) for this system,
the nuclear potential vg (x) (dotted line), and the fragment potential vg (X) + Vp(X)

(dashed line). This potential has the fragment density shown ithe upper panel as
its ground state density.

4.2 Partition density functional theory

In this section, we develop a methodology which allows one talculate a molecular
density and energy from individual calculations on fragmés) via a self-consistent
loop. Inthis sense, it is the analog of the KS method, in which thenergy is found from
self-consistent calculations on non-interacting electrons.l€arly such a capability in
general could have tremendous signi cance for many areas afrient research, from

O(N) scaling to QM/MM methods.

To do so, think of the total fragment energy, Eq. (4.4), as anabous to the KS energy

of Eq. (2.39). Then de ne the partition energy as

E,= E Es; (4.9)
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P
analogous to Eq. (2.40), the Hartree-XC energy in KS theoryf E{ = 0 is the

total energy of the isolated fragments, then we can write

Ep = Egs + Erer; (4.10)
whereE,g is the fragment relaxation energy:

Eet = E} Ej (4.11)

and Egqs = E  E?, is the dissociation energy. For any bound molecul&gs < O.
Furthermore, sinceE? is the ground state energy for the isolated fragments system,
Ef >E?. Thus E, < 0 and is expected to be much smaller than the total energy (on

the scale of chemical bonding), and vanishes as the fragments aulled apart.

We can consider the partition energy as a functionak[f n g], of the fragment den-
sities alone, for the given external potential and choice ofadgmentation. Now, we
examine the e ect of making small variations in one fragmentehsity, n (r), to the
partition energy. The rst term of Eq. (4.9) is the ground-state energy of the sys-
tem, so variations in the density are zero, because we are at itSmimum. For E;,

the second term, only the -th fragment energy changes. Since the fragment density

minimizes the -th fragment in the presence ofv,(r), then vy(r) = =n (r), so
that
_ Eplfn g].
Vo(r) = — Ol (4.12)

i.e., given any expression foEp[fn g], we can extract the corresponding partition
potential, vy(r), and then calculate new fragment densities, which are then wbeo
generate a new partition potential, and so on. Thus approximing E,[f n g] produces

a closed loop, and a direct scheme for doing a PDFT calculatiohe steps of a PDFT
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calculation are:

1. Guess the fragment densitiebn g. A reasonable guess would ben°(r)g, the

densities of the isolated fragments.

2. The fragment chargesf N g, are determined by the fragment chemical poten-

tials.
3. Construct the partition potential, vy(r), using Eq. (4.12).
4. Solve for eachn (r) in its respective fragment potentialv (r) + v,(r).
5. Cycle steps 2, 3 and 4 until self-consistency.

6. Along with the fragment densities, this yields the total moleular density and

the molecular energy (viakE = E; + Ep).

In principle, any electronic structure method can be used to taulate the fragments.
However, in practice, most of such methods will not provide a watp functionally

di erentiate the correspondingE,. Even within KS DFT, one does not usually know
the non-interacting kinetic energy, T, as a functional of the density. Only with an
explicit density functional can the corresponding derivatig needed for the partition

potential be taken.

To derive an expression fow,(r), we write Ey[n] in terms of DFT quantities:

%t %f %f Z
Epln] = F[n] F[n ]+ n (r)v (r): (4.13)
=1 =1 6

For simplicity, we assumeN is an integer, otherwise Eq. (4.5) must be used. so we

can write the partition potential in terms of functional denvatives of the universal
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functional:

Finl Fh, X
n) n 0,

Vp(r) = v (r) : (4.14)
This gives an expression fovy(r) for each of theN; fragments. Using the fact that
the universal function can be decomposed int [n] = Tg[n] + U[n] + E,. [n], this

leads to

Tl Teln ] X
S0 o el veln 1o+ 6 (v (1) + vu[n ](r)) (4.15)

vplfn gl(r) =

for any , and using the fact that the Hartree potential is linear inn(r). Explicit
density functional expressions are needed for boih[n] and E,. [n]. However since
the expression only depends on di erences between the functa derivatives of these,

some of the error due to approximating these may cancel.

To nd the fragment occupations, note that at self-consistencythe chemical poten-
tials of all the fragments will be equal. We chooshl "9 = N® ©
where is another positive constant and is the average of the fragment chemical

potentials, used in conjunction with Eq. (4.5) for the functimals.

If we use DFT to perform the fragment calculation, the KS potetal for the -th

fragment is found from Eqg. (4.12) in KS quantities:

Vs, [nin J(r) = vs[n J(r) + (v(r) + Vie [N](r)  vs[nl(r)) ; (4.16)

wherevg[n](r) = Tg[n]J=n(r),and n(r) = n (r)+ n (r). This is the central result
of this paper, as it gives the fragment KS potential for a paiof trial densities,n (r)

andn (r), in terms of quantities from KS-DFT.
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4.3 Homonuclear Diatomic Molecule

For one or two electron systems, the kinetic energy density funohal is given exactly

by the von Weizsacker functional:

jr n(nj* .
n(r) °

1 Z
Twln]= g d (4.17)
and if we study non-interacting fermions, therEy[n] as a density functional is known
exactly. Taking the functional derivative with respect to a fagment density yields

the partition potential, which for a binary fragmentation of a symmetric system is:

_ n®(r) n%Rr) na(r)  n{r)
V(1) = Ve (r) + 8n2(r)  4n(r) 8nA§\(r) 4nAA(r) (4.18)

in the absence of electron interaction. For a non-symmetric sysh, the general
formalism[71] for non-integer particle number must be used. e work in one di-

mension, then the 1-fermion fragments can be solved easily.

For this example, we use a dcosHf(x) potential for the each 'nucleus’, giving the

total potential for a diatomic system with separationR as:

Va(X) + Vg (X)
1 1 _
costf(x R=2) cosH(x + R=2)’

v(X)

(4.19)

In Fig. 4.4, we show the convergence for one of the two fragmeshensities for this
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Figure 4.4: The density for the left (A) fragment as de ned by Eq (4.19) with R =3
for the rst 3 self-consistency cycles, labelled;Q; 2 respectively. Also shown is the
exact fragment density from a partition theory calculation. Even after just 2 cycles,
the fragment density is almost on top of the exact density, on tkiscale. For more
self-consistency steps, it continues converging towards the ekanswer. Calculations
were performed using 3-site nite di erence formulas for devatives and 2001 grid
points with a grid spacing of 0013a.u.

problem, thought several self-consistency cycles. The total mottial is the same as
that shown in the lower panel of Fig. 4.7, while the two fragmerpotentials, va(x) and
Vg (X), are given in Eq. (4.19) withR = 3. For the initial fragment densities(cycle 0),
we use the densities for the two isolated fragments. We then use $leeto construct a
partition potential from Eq. (4.18), which is then used to costruct e ective fragment
potentials, v (x) + vp(x). If we then solve for each fragment density in this new
potential, we nd the cycle 1 density, shown as the dot-dashedne in Fig. 4.4. It
can be seen that some of the density for this fragment has been &dftowards the
other 'nuclei’, as compared the isolated case. This is due todlpartition potential

lowering the fragment potential,v,, SO as to move density into the bonding region,

as would be expected.

In Fig. 4.5, the total density, i.e., the sum of the two fragmentensities, is shown. The
exact molecular density for this problem is also given, it is tomd by directly solving
for two non-interacting fermions in total potential v(x). In both this case and for the

fragments, the density is found by solving the Schredinger eqtion numerically on a
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n(x)

Figure 4.5: Total densities for various cycles;Q; 2; 3 of the self-consistency calculation
for this system. Also shown is the exact density for the full system. TEhdensity
after just 2 cycles is very close to the exact density and after Jdes it cannot be
distinguished from the exact density on this scale. Convergencentinues at more
cycles are added. Since the two fragment densities are addedyether, deviations
from the exact result can be seen more clearly for the total densi

real space grid. Derivatives of the density are found using a t@-di erence scheme.
Similar to the fragment density, we see convergence towardstkexact result, however
we also include the result after the % cycle as summing the fragment densities
ampli es their individual errors. In Fig. 4.6, we show the densy di erences from

the overlapped 'atomic' densities. Clearly the calculation anverges to the exact

molecular density.

The energy of the molecule may also be calculated using Eq. (4fér each set of
fragment densities. Again we see the calculation converge to tlexact energy of
1:22008. The energy of the initial guess was1:17854, while after 3 cycles, it was

1:22006, essentially converged for this level of calculation .

4.4 Heteronuclear Diatomic Molecule

In the previous section, we illustrated PDFT on a model system of homonuclear

diatomic molecule. We found, as expected, that PDFT gave eg#y the right en-
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Figure 4.6: Dierence between the exact molecular densityex(x), and the sum of
the fragment densities for each self-consistency cycle of the PDcalculation. It is
the di erence between each of the PDFT densities in Fig. 4.5 a@nthe exact density.
After each cycle this di erence decreases and the convergenoghe exact answer is
clear.

ergy and density. While this demonstrated the principle of PDF, a more powerful
example of its usefulness and relevance to real systems is a hataclear diatomic
molecule. Unlike the symmetric case, the covalently-bondedafyments will contain
fractional numbers of electrons, necessitating the use of PPLBrmalism[71]. In
partition theory, the AB heteronuclear system has been studied] for insight into

molecular dissociation.

For this example, we use aZcoslf(x) potential for each 'nucleus', giving the total

potential for a diatomic system with separationR as:

1 1
costf(x + R=2) cosH(x R=2)

V(X) = Va(X) + Vg (X) = (4.20)

Here, the A fragment plays the role of a Lewis base while B is a Lewacid. The
small di erence in nuclear charges is choosen so as to mimic theat of screening in
an interacting system. The total particle number is two, allowng us to use the von

Weizsacker functional even when fractional charges are ment.

The minimization of the Lagrangian, Eqg. (4.8), in the partiion problem is over both
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Figure 4.7: Top panel: The exact density (solid line) for two n@-interacting fermions
in the potential de ned in Eg. (4.20) with R = 3 and shown below. The two exact
partition densities (dashed lines) for this system. Bottom panelThe corresponding
molecular potential (solid line) as de ned in Eq. (4.20).
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Figure 4.8. Top panel: The fragment density (dashed line) forhe B atom of 4.1.
Bottom panel: The exact partition potential vy(Xx) (solid line) for this system, the
nuclear potentialvg (x) (dotted line), and the fragment potential vg (X)+ v,(X) (dashed
line). This potential has the fragment density shown in the uppr panel as its ground
state density and the same is true for the A atom.

Molecular Energy

05 055 0.75 08

06 065 07
Occupation of A ()
Figure 4.9: The molecular energy after 3 iteration cycles asfunction of the fractional
occupation of the A fragment (N ) used in each PDFT calculation. The occupation on
B isthus 2 Nja. The initial fragment densities are the same for each calculah and
are simply those of the respective free fragments. The minimumaus atN, = 0:655,
which is then the occupation used in all subsequent calculatisn
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Figure 4.10: The density for the left (A) fragment as de ned by K. (4.20) with
R = 3 for the rst 3 self-consistency cycles, labelled;d; 2 respectively. Also shown is
the exact fragment density. Even after just 2 cycles, the fragme density is almost
on top of the exact density, on this scale. For more self-consistgnsteps, it continues
converging towards the exact answer. Calculations were pemined using 3-site nite
di erence formulas for derivatives and 2001 grid points wit a grid spacing of 013a.u.
the densityn (x) and the occupationN . As described above, we nd self-consistent
solutions for xed values ofN . In 4.9, we plot the molecular energy found after 3
iteration cycles for 5 occupation numbers. We can clearly seeat there is a minimum
at Np = 0:655 and in fact, it is already extremely close to the exact malalar energy.
The convergence for the other occupation numbers is very slotwt the minimum
at Nao = 0:655 remains even after 10 iteration steps. For practical caletion the

occupancy may be set on the vy, but for the purposes of this demstration, this

procedure is su cient.

To see how the density converges for each iteration, we will udget nal occupation

Na = 0:655 from now on. In 4.10, we show the convergence for one of thet
fragment densities for this problem, through several self-csistency cycles. The total
potential is the same as that shown in the lower panel of 4.7, waithe two fragment
potentials, va(x) and vg(x), are given in Eq. (4.20) withR = 3. For the initial

fragment densities(cycle 0), we use the densities for the two iatdd fragments. We
then use these to construct a partition potential from Eq. (4.18 which is then used

to construct e ective fragment potentials, v (x) + vp(x). If we then solve for each
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Figure 4.11: Molecular densities for various cycles 1) 2 of the self-consistency cal-
culation for this system. Also shown is the exact density for the fubystem. The

density after just 2 cycles is very close to the exact density anditer 3 cycles it cannot

be distinguished from the exact density on this scale. Convergancontinues as more
cycles are added, as can seen in 4.12.

fragment density in this new potential, we nd the cycle 1 dengy, shown as the

dot-dashed line in 4.10. It can be seen that the density for thisdgment has been
shifted towards the other 'nucleus’, as compared to the isoladecase. This is due to

the partition potential lowering the fragment potential, va, SO as to move density into

the bonding region, as would be expected.

In 4.11, the solid line is the total molecular density, found bylirectly solving for two
non-interacting fermions in total potential v(x). Itis the same as that shown in 4.7. In
both this case and for the fragments, the density is found by sohg the Schredinger
equation numerically on a real-space grid. Derivatives of ¢ghdensity are found using
a nite-di erence scheme. If we sum the A fragment density showmi4.10 with its
counterpart on B at each iteration step, we nd the corresponaig molecular density.
These are plotted in 4.11 and it can be seen that the density at daself-consistency
cycle is converging to the exact answer. The convergence todsthe exact molecular
density can be seen more clearly in 4.12 where we show the densitgrénces from

the overlapped 'atomic' densities. We add in the results for meriteration steps and
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Figure 4.12: Di erence between the exact molecular densitpe(x), and the sum of
the fragment densities for each self-consistency cycle of the PD calculation. It
is the di erence between each of the PDFT densities in 4.11 arttie exact density.
After each cycle this di erence decreases and the convergerioghe exact answer is
clear.

it is clear that the error decreases with every iteration.

The energy of the molecule may also be calculated using Eq. (4fér each set of
fragment densities. Again we see the calculation converge to tlegact energy of
1:30106. The energy of the initial guess was1:26067, while after 3 cycles, it was

1:30104, essentially converged for this level of calculation .

4.5 Metal Chain

In Eq. (4.16), vs[n ](r) is simply the KS fragment potential from the previous itera-
tion, but v¢[n](r) is the KS potential for a trial density for the whole molecule Many

methods exist for nding this[74, 75, 76, 77, 78, 79]. We iteraf80]:
Vi ey = v+ n™) n®(r) (4.21)

where n(M(r) is the density found from potentialv{™(r), > 0 is a constant, and

n®(r) is the target density (sum of fragment densities from th&'th PDFT iteration)
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Figure 4.13: Solid line: The exact spin-unpolarized groundae of 12 electrons in the
potential of Eq. (4.22). Dashed lines: The fractionally occued fragment densities.
By symmetry, the age of that shown.

Figure 4.14: The exact partition potential (solid line) for the atomized chain and
the fragment potential for the last atom (dashed line). The grond state with an
occupation of 077 in this potential can be seen as the end fragment density ing-1.

whose KS potential we are trying to nd. As noted previously, thefragment occupa-
tions are found using the chemical potentials, usiny **™ = N® 0w

where is a positive constant and is the average of the fragment chemical potentials.

Note that this use of the inversion algorithm can also be useful (psibly more useful)
for pure PT, to nd vp(r) for a known n(r). Replacevs(r) by v,(r) in Eq. (4.21),
n®)(r) is the xed molecular density, andn{"(r) is the sum of fragment densities

found from individual calculations on the fragments usinglén)(r) to construct the

fragment potentials.
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To show that our algorithm converges, we performed a PDFT cal@tion on a 12-
atom 1d chain with 12 spin-unpolarized non-interacting ferimns, with potential:

X2 1

v0x) = _, cosH[x +( 6:5)R]:

(4.22)

We chose complete atomization into 12 fragments, so we only ewlve one- or two-
electron problems in a single well. Fig. 4.13 shows the atomiscamolecular densities
after convergence. The molecular density is identical to th&ound by direct solution

of the eigenvalue problem for the entire molecule, and doybbccupying the rst 6

eigenstates, which are delocalized over the entire molecule see a small alternation
between higher and lower densities throughout the molecul&@he fragment density
occupations re ect this, being 0.77,1.13,0.98,1.06,1.004 moving inwards towards
the center of the chain. In Fig. 4.14, we show both the partitio potential and

e ective fragment potential for the last atom. The (not very large) vy(r) polarizes
the density toward the molecular center, and shifts the densitinwards compared to
a free atom. The partition potential continues throughout he whole chain, lowering
each fragment potential in the bonding region between atomsThe depth of these
troughs oscillates, re ecting the oscillation in occupations.In Fig. 4.15, we show
the convergence of the occupation numbers to their nal vaks, after some initial
oscillations. The total energy of the molecular system can be fod via Eq. (4.9).

We nd E; = 5:888 andE, = 1:803 leading toE = 7:691, which is exactly that

of the direct solution. SinceEf(O) is 6,jEw] ] Epj J Ej, as expected.

Our calculation was in fact far more expensive than a regular & calculation, be-
cause we invert the KS problem for each trial molecular densitgxactly But the
purpose here was not speed, but the calculation of exact partih potentials for small
molecules and simple solids. It produces thexact partition potential corresponding

to a given KS calculation for the molecule.
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Figure 4.15: The convergence of the fragment occupation wak,N , during an exact
PDFT calculation.

4.6 Signi cance

We have demonstrated that with an explicit expression for the amgy functional E,
a self-consistent PDFT calculation can be performed, on fragmts, and the result
converges to the molecular answer. The fragments are solvediindually, which, for

interacting systems, would greatly reduce computational cost.

The many potential uses of PDFT are made clear by this examplén principle, Eq.
(4.16) is exact, but requires the KS potential of the entire stem and to deduce the
energy at the end of the calculation, one needs
A
Ep= Tsn [+ Eucln ]+ d°rn (r)v (r); (4.23)
, 6
where G|n ]= G[P n ] P G[n ]. However, any local-type approximation makes
the method O(N). Thus, all the attempts of orbital-free DFT, to nd useful approxi-
mations to Tg[n], have now a simple framework in which to be tested[81]. Moresay
there are no formal di culties arising from taking density variations within a xed
density, as the trial molecular density is simply the sum of the _igment densities,

which are varied freely. Although the exact fragmenils and vs(r) would be known
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during a calculation, approximations for Ts would take full advantage of any can-
cellation of errors. For embedding calculations, a simple apptimation would be to
treat the system plus some fraction of its environment (a bordeegion) exactly, and
all the rest approximately. Since the KS potential is typicdly near-sighted, such a

scheme should converge rapidly.

For the dissociation of molecules, one can also see how to ensureemdrdissociation
energies within PDFT: simply constrain occupations to be thosef the isolated frag-
ments. For H,, we constrain the spin occupations on the fragments to be (0,&nhd
vice versa. Of course, this is what happens when symmetry is bevkas the bond
is stretched, and the di culty is in producing a scheme that seartessly goes over
to (1/2,1/2) occupations as R reduces to the equilibrium value. The value of our
formalism is that it produces a framework for both addressing #se questions and

constructing approximate solutions.

There is a simple adiabatic connection formula for PDFT. Conder scaling all bond
lengths between fragments by ! (again keeping intrafragment densities xed), where
0< 1. For each , we nd those molecular densities whose fragment densities
match those of our molecule, and de ne the corresponding partn energy, E,( ).

At =1, we have the original molecule; as ! 0, the bonds become large and
the fragments do not interact, so thatEy(0) = 0. For intermediate , the molecular
density is simply that of the fragments, overlapped a distancR= apart. Then

E=E+ d dEa( ),

2
A (4.24)

This allows all the methods of traditional intermolecular synmetry-adapted pertur-
bation theory (SAPT)[82] to be applied to this problem, but wth the advantage

that the fragment densities remain xed. Interestingly, becase the fragments will
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generally have dipole moments, the partition energy decays 4=R3, so that the in-
tegrand above behaves as?. (For physical systems that are well-separated and have
attractive van der Waals forces, such e ects must be cancelleg lanalogous terms in

Erel)-

There has been considerable previous work on schemes desigrea@liow a frag-
ment calculation of a larger molecule, either within the frenework of orbital-free
DFT or atomic deformation potentials, sometimes producing te same (or similar)
equations. Among the earliest, Cortona's crystal potential (ler called embedding
potential)[83, 90] is an intuitive prescription forvy(r). But our formalism reproduces
the exactsolution of the original problem, using only quantities that ae already de-
ned in KS-DFT. For example, this is not possible in general wiout the ensemble
de nition of Eq. (4.5), which produces the correct self-consient occupations (unlike,
e.g., the self-consistent atomic deformation method[84, 8%Jhere this choice leads to
a basis set dependence[86]) . We also never freeze the total dgf8i, 88, 89], but
only ever consider it as a sum of fragment densities. This avoidgee needing density
variations that are limited by some frozen total density, whib produces bizarre func-
tional derivatives, di erent from those of KS DFT. None of these ssues arise once
smooth (e.g. local or gradient-corrected) approximationsra made to the kinetic en-
ergy functional[83, 90, 85], but they are vital in a formallyexact theory. Thus the
present PDFT can be regarded as a formal exacti cation (and #refore justi cation)

of these pioneering works.
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Chapter 5

Conclusion

In this work | have discussed two new approaches to the electrorstructure problem.
Both these approaches share the same goal of making electroniasture calculations

faster and more accurate.

The rstis potential functional theory which used semiclassicainethods to nd direct
expressions for the density and kinetic energy density as funatials of the potential.
These expressions were derived for an arbitrary potential in ak with hard walls and
with no turning points at the Fermi energy, which although qute primitive already
provides us with much insight. Extending this approach to thenore general case that
involves turning points is part of ongoing work, as is the podsility of extending it to
three dimensional systems. If this were to be done, it could be usiednassively speed
up DFT using the scheme investigated in Ref. [91]. In any case, thein motivation
behind the area of potential functional theory is to understad and improve DFT.
This work allows us to explain why local approximations likefThomas-Fermi or LDA
exchange work so well, namely they are the dominate terms ingtsemiclassical limit.

We can also see why gradient corrections like GEA fail to the impve upon local
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approximations as they miss the important quantum oscillatio corrections. It also
explains why generalized gradient approximations had to béeveloped before DFT
became accurate enough for chemistry, and allowed us to prd&ian ex post facto
derivations of the previously empirical B88 GGA exchange futional. It may also be

possible to x the GEA by including these quantum corrections.

The second approach is partition density functional theory wéreby the electronic
structure of a system can be found by performing calculations amaller fragments
making up the system. Due to the scaling of computational time Wi system size for
current electronic structure methods, working on smaller pies would greatly speed
up such calculations. Unfortunately this speed up comes at the ipe of having to
approximate more unknown pieces as a density functionals, hever there is good
reason to believe that the quantities involved may be quite aemable to approxima-
tion. PDFT may also help solve the problem DFT su ers from when disociating
atoms as the unknown partition energyE,[n] must vanish in this limit, making it

easier to approximate.

It is interesting to speculate how the two approaches may in ugce eachother. In
PDFT, the most di cult term to approximate is  Ts[n], the di erence between the
molecular kinetic energy and the fragment kinetic energiess a density functional.
From test calculations and experience, | expect that local @emi-local approxima-
tions will not be enough to capture this di erence, and it is mainly this di erence that

causes the dip in the partition potential in a bonding region.However the kinetic
energy in an evanescent region between two atoms is exactlyetkind of quantity

PFT allows us to nd. Another interesting feature of PDFT is that di erent methods

could be used on the di erent fragments, so PDFT gives the exactr@scription on
how to perform a QM/MM-like calculation. If in the eventually the density as a

potential functional is not accurate enough for chemical pposes, then it still may be
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a cheap way to include quantum e ects in a border region or sa@tion, PDFT would

be the correct tool to make use of this.
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Appendices

A Exchange energy for non-interacting Beryllium

The limit of the inequality, Eq. (3.56), is the Hartree-exchage functional evaluated on
the density of the corresponding non-interacting system. Sintlee g.s. orbitals which
sum to this density are known analytically (they are simply hydogenic orbitals), we

may calculate the exact Hartree-exchange value.

Written in spherical coordinates,r = jrj, the 1s and 2s hydrogenic orbitals are:

Z3 1=2

s(r) = — e’ ; (A1)
3 1=2

(r) = 327 (2 Zr)e “=2: (A.2)

For beryllium, both these orbitals are doubly occupied, givig the total density as

n(r) =2j (ni* +2j »(n)j*: (A.3)

The Hartree energy is de ned by Eqg. (2.42), however in the speticase of spherical
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densities it may be written as:

141
Uln] = 2, dr (f[n](r))® ; (A.4)
where
Z 1
f[n](r)=4 drorh(r9 ; (A.5)

r

and we use square brackets to indicate that it is a functional dhe density. The

exchange energy for a spin-unpolarized system is:

cc Z Z
E, = 21')( dBr  PBro i (1) j.(rcb i(r) i(r9 :
2 Ir rq

(A.6)

where the factor 2 is due to spin, and the sum is over occupied @#is only, in this

case 5 and . If we de ne a new quantity, A(r):

R(r) = (r) »(r); (A7)
then we may write
Ex = 2(U[ng]+2U[R] + U[n,]) : (A.8)

We can use Eg. (A.5) and Eg. (A.4) for each term separately and thesombine to
nd the total exchange energy. The answer will be equivalentat solving Eq. (A.6)
using the orbitals, however this method avoids performing iegrals involving Hr  rj
and, in this case, are easy to solve using integration by parts. Thalues for Hartree,

exchange and their sum are:

5 23 431 _ 49565

Uln] %3 5184

=9:561;
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50 71 73 _  305797_

Ex = 213 93312

3:277;

383 1531 586373

STz T A

B Finding Er

Solving the quantization condition for the Fermi energy:
Z L

“(L)=  dxk.(x)=(N +0:5) (B.9)
0

can be done via a Newton-like method. An initial guess for. is made, usually the

at box value:

(N +1=2) ?

9=
i L

This will di er from the correct - by , which we will assume to be small. Then

we can expand Eg. (B.9) as
Ly A+ =l ) =(N+1=2) (B.10)

thus may be calculated. This can be added to the rst initial guess? to nd a

new initial guess and the process repeated until is found to the accuracy required.
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C Charge-neutral scaling inequality

We follow the steps in deriving Eq. (3.48) but applied to the carge neutral scaling
de ned in Eq. (3.42). Takingn,_ (r) as a trial density for the v(r) system, then the

variational principle states:
FIn_-1+V[n_]1 F[n]+V[n]; (C.11)

wheren (r) is the exact density for the scaled potentialr (r). Conversely, usen (r)

as a trial density for thev (r) system:
FIn]1+ ™V[n] Fhl+ ~Vin.] (C.12)

where we have use¥ [n ]= "3V[n]. Combining these inequalities gives:

FIn] F[n]

3 FIn] Fln1; (C.13)

which may be written as

Fh.] FIn]; (C.14)
with
Fml=Fpp ] (C.15)
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