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ABSTRACT

We present an analysis of local or semilocal density functionals for the
Žexchange]correlation energy by decomposing them into their gradients r local Seitzs

. Ž . Ž .radius , z relative spin polarization , and s reduced density gradient . We explain the
numerical method pertaining to this kind of analysis and present results for a few atoms
and ions. The atomic shell structure is prominent, and only the ranges 0 - r - 10 ands
0 - s - 3 are important. The low-density and large-gradient domains, where the
approximations for the exchange]correlation energy are least trustworthy, have very
little weight. Q 1997 John Wiley & Sons, Inc.
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Introduction

se of density functional theory to predict theU ground state of an electronic system depends
on the level of approximation for the
exchange]correlation energy, which includes all
the many-body effects and so cannot be calculated
exactly. The simplest approximation for the ex-
change]correlation energy is the local spin density
Ž . w xLSD approximation 1 , which is valid for densi-
ties that vary slowly over space:

LSD w x 3 Ž . Ž . Ž .E r , r s d r r r « r r , r r ,Ž .HX C ­ x X C ­ x

where « is the exchange]correlation energy perX C
particle of an electron gas with homogeneous spin
densities r and r , and r s r q r . Although­ x ­ x
the densities of real systems vary rapidly on the

wscale of the local Fermi wavelength 2prk , whereF
Ž 2 .1r3 xk s 3p r and Thomas]Fermi screeningF

length, LSD is still moderately accurate due to its
w xsatisfaction of important constraints 2 on the ex-

act exchange]correlation hole. Typically, LSD
makes useful predictions for the geometry and
elastic properties of molecules and solids, but
overestimates atomization energies.

Ž . w xThe Perdew]Wang 1991 PW91 3]5 general-
Ž .ized gradient approximation GGA incorporates

additional information from the electron gas of
slowly varying but nonconstant density, while en-
forcing the same exact hole constraints as LSD;
other GGAs are also available and are used in the

w xliterature 6]8 . They may all be cast in the useful
w xform 9

GG A w x 3 Ž . Ž Ž . Ž . Ž ..E r , r s d r r r « r r , z r , s r ,HX C ­ x X C s

Ž .1

Ž . w Ž .x1r3 Ž . w Ž .where r r s 3r4pr r and z r s r r ys ­
Ž .x Ž . †r r rr r . The important new ingredient be-x

yond LSD is the reduced or dimensionless density
gradient

< <=r
s s .

2k rF

† We ignore the small =z terms that arise from exact spin-
w xscaling of E 10 and that are negligible for the systemsX

discussed here.

In fact, for a GGA which recovers the uniform-gas
Ž .limit, such as PW91, LSD is just Eq. 1 with

Ž . Ž .« r , z , s replaced by « r , z , 0 . GGA seemX C s X C s
most reliable for s F 1 and least so for s ) 3.

The PW91 GGA is the ‘‘most local’’ of the GGAs
w x9 and the only one constructed entirely from first

‡ w xprinciples 5 . It yields significant improvements
over LSD in atomization energies and reaction

w xbarriers for almost all systems 11 and in the
geometries, elastic properties, and magnetic prop-

w xerties of many metals 12 . For bulk semiconduc-
tors, where LSD gives unusually accurate elastic
constants and bulk moduli, GGA leads to some

w x w xworsening 13]15 and some improvement 16
relative to LSD. Thus, a better understanding is
needed of the systems and properties for which
LSD and GGA are the most or least suitable. Such
an understanding could guide future applications
and perhaps lead to further improvements in den-
sity functionals. In this work, we present an analy-
sis of the exchange]correlation functionals by
decomposing them into contributions from their
ingredients r , z , and s as a possible step in thiss
direction. We also show results of this analysis

w xapplied to atoms and ions. In future work 17 , we
will present results for molecules and solids.

This article is divided into three parts: In the
first section, we explain the partitioning scheme
for the electron density. In the second, we set forth
the computational aspects of this work. In the last
section, we present the results and discussion. We

Ž 2 .use atomic units throughout e s " s m s 1 .

Density Functions

For an analysis of any electron density, we de-
fine the density function

3
3Ž . Ž Ž ..g r , z , s s d r d r y r rHs s s34p rs

Ž Ž .. Ž Ž .. Ž .d z y z r d s y s r , 2

Ž . Ž . Ž .where r r , z r , and s r denote the Seitz radius,s
relative spin polarization, and reduced density
gradient at point r, respectively.

Ž .The function g r , z , s of three variables con-s
tains sufficient information to evaluate any GGA

‡ w xIn 3, 5 , a numerically defined GGA is defined via real-
space cutoff of the spurious long-range part of the gradient
expansion for the exchange]correlation hole, with no empirical
bias. The analytic fit to the exchange component of this func-
tional contains a slight empirical bias.
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for the energy as

GG A 3 Ž . GG A Ž Ž . Ž . Ž ..E s d r r r « r r , z r , s rHX C X C s

` `1 Ž .s dr dz ds g r , z , sH H Hs s
0 y1 0

= GG A Ž .« r , z , s .X C s

Note that our normalization is chosen so that

` `1 3Ž . Ž . Ž .dr dz ds g r , z , s s d r r r s N 3H H H Hs s
0 y1 0

Ž .and that g r , z , s dr dz ds is the average numbers s
Ž .of electrons in regions of space, where r r iss

Ž .between r and r q dr , z r between z and z qs s s
Ž .dz , and s r between s and s q ds. N is the num-

ber of electrons in the system.
Since it is difficult to visualize and understand a

function of three variables, we define three auxil-
iary functions of one variable, where two of the
variables are analytically integrated out:

`1Ž . Ž . Ž .g r s dz ds g r , z , s , 4aH H1 s s
y1 0

` `
Ž . Ž . Ž .g z s dr ds g r , z , s , 4bH H2 s s

0 0

` 1Ž . Ž . Ž .g s s dr dz g r , z , s , 4cH H3 s s
0 y1

so that

` `1Ž . Ž . Ž .dr g r s dz g z s ds g s s N.H H Hs 1 s 2 3
0 y1 0

Note that knowledge of g , g , and g alone is1 2 3
Ž .insufficient to reconstruct the full g r , z , s and,s

thus, the GGA energy.
For a specific GGA energy functional, we can

also define the energy-weighted density function

GG A Ž . GG A Ž . Ž . Ž .f r , z , s s « r , z , s g r , z , s , 5X C s X C s s

so that

` `1 GG A GG AŽ .dr dz ds f r , z , s s E .H H Hs X C s X C
0 y1 0

Equivalently, as for the electron density analysis in
Ž .Eqs. 4 , we define auxiliary functions for the

Ž .energy-weighted density function of Eq. 5 :

`1 GG AŽ . Ž . Ž .f r s dz ds f r , z , s , 6aH H1 s X C s
y1 0

` `
GG AŽ . Ž . Ž .f z s dr ds f r , z , s , 6bH H2 s X C s

0 0

` 1 GG AŽ . Ž . Ž .f s s dr dz f r , z , s , 6cH H3 s X C s
0 y1

so that

` `1 GG AŽ . Ž . Ž .dr f r s dz f z s ds f s s E .H H Hs 1 s 2 3 X C
0 y1 0

All these decompositions of E , performed forX C
different systems and different functionals, should
yield useful physical insight into the structure of
the electron density. In fact, independently of this

w xwork, Moll et al. 16 already used the r -analysiss
to explain their LSD and GGA results for the
pressure at which Si transforms from the diamond
structure. Furthermore, Philipsen and Baerends
w x18 used the s-analysis to investigate the impor-

Ž .tance of the small-s regime s < 1 for GGA ener-
gies of solids.

Computational Method

To obtain a computationally tractable formula
w Ž . Ž .xfor the g and f functions Eqs. 4 and 6 , one

inserts the definition of the density function
Ž . Ž . Ž . Ž .g r , z , s of Eq. 2 into either of Eqs. 4 or 6 ands

changes the order of the integration. For example,
in the case of the reduced-gradient analysis, we
find that

Ž . 3 Ž . Ž Ž .. Ž .g s s d r r r d s y s r , 7H3

with analogous results for either the r -analysis ors
the z-analysis. A direct numerical integration over
the complete three-dimensional space of the Dirac

Ž .delta function in Eq. 7 is impossible due to the
limited accuracy of the integration grid.

However, one define a function

Ž . 3 Ž . Ž Ž .. Ž .N s s d r r r u s y s r , 8H
Ž .where u s is the Heaviside step function. The

Ž .physical interpretation of 8 is straightforward:
Ž .N s is the number of electrons that have a re-

Ž .duced gradient between 0 and s, and dN s rds s
Ž .g s .3
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We may avoid the numerical noise in integra-
Ž .tion 8 due to the discontinuity of the u function

Ž .at s s s r . We replace the u function by a function
with smooth edges. The Fermi]Dirac distribution
function at finite temperature has the desired
properties:

1
Ž Ž ..u s y s r ª .Ž Ž Ž .. .exp y s y s r rT q 1

The ‘‘temperature’’ T is chosen as small as possi-
ble, while avoiding visible noise in our figures due
to the integration grid, with a value usually be-
tween 0.005 and 0.03.§

For spherically symmetric systems, we can also
Ž .easily calculate the exact or zero-temperature

Ž .functions. In such a case, the integral in Eq. 7
< <runs over a single variable, r s r , becoming

`
2Ž . Ž . Ž Ž .. Ž .g s s 4p dr r r r d s y s r . 9H3

0

Now, a change of variables in the d-function from
s to r yields

2 Ž .r r ri iŽ . Ž .g s s 4p , 10Ý3 Ž .s9 rii

Ž .where s9 r s dsrdr and the sum runs over all
Ž .solutions of the equation s r s s.i

In Figure 1 we study the effect of the broaden-
ing due to finite temperature, by plotting both the

Ž .zero-temperature and finite-temperature g s3
curves for a Li atom. The dashed curve on this plot
is calculated with T s 0.03, and the solid line is a

Žzero-temperature function. The finite-temperature
curve reappears sideways as the solid line in the
bottom-right panel of Fig. 3, and a detailed discus-

.sion of its shape is reserved for the fourth section.
Notice that only near the peaks do the two curves
differ and then only slightly. Furthermore, the area
under the sharp peaks is small, an observation
most easily made from the temperature-broadened
curve.

With this approximation, we can calculate g
and f functions for different systems. In the pres-
ent work, we treat only spherically symmetric
atoms, which leads to the further simplification of

Ž .Eq. 9 . In view of the later extension of our work
Ž .to more complicated systems molecules, solids ,

we chose instead to keep our method as general as
possible, so we used a full three-dimensional mul-
ticenter integration method with Becke’s weights

w x w x19 , including Lebedev angular 20, 21 and
Gauss]Legendre radial integration. For the results
of this article, we used 1600 points per atom in the
radial direction and, according to the symmetry,
the lowest accuracy of the Lebedev scheme in the
angular integration.

We employed a computational package to per-
form the integrals here, anticipating the extension
of this work to other systems. We used the CRYS-

w x w xTAL program 22, 23 with the DFT extension 24 ,
which can treat both finite systems and systems
which are infinite in one, two, and three dimen-
sions. As the input densities, we used
Hartree]Fock electronic densities for atoms ex-
panded in Slater-type-orbitals, as calculated by

w xClementi and Roetti 25 .

Results and Discussion

We performed our density-gradient analysis for
a number of atoms and ions. In this work, we
present typical examples. As an example of a
closed-shell system, we chose an Ar atom. For the
study of ionization, we chose the Li atom and the
Liq ion.

We center the atom at r s 0. Where the density
Ždecays exponentially approximately true within a

. Ž . Ž .shell , r r and s r grow exponentially. To makes
the interpretation of the density functions easier,
we separate the density functions into contribu-
tions from different regions of space. The key plot

Ž . Žis s r see Figs. 2 and 3 for the Ar and Li atoms,
.respectively , which splits the r-space into four

domains:

B Pure core region: From r s 0 to the r for
Ž . Žthe outermost maximum of s r left black

.dot . This region contains all core electrons
not in the core]valence transition region. It
includes the space close to the nucleus where
Ž . Ž 3 . Ž . Ž .r r f 2Z rp exp y2Zr , making s 0 f

Ž .0.38 and r 0 f 0.72rZ, where Z is the nu-s
clear charge.

B ( )Core]valence CV transition region: From
Ž .the r for the outermost maximum of s r to

Ž .the r for the outermost minimum of s r
Ž .right black dot . This region is a thin shell in
real space between the pure core and pure
valence regions. In this region, the core] and

§ We use a value of 0.01 for Ar and 0.03 for Li and Liq.
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FIGURE 1. The influence of the Fermi ]Dirac smoothing function on the integration for the Li atom. The solid line
represents the zero-temperature result and the dashed line represents the result for T = 0.03. The difference can be

( ) ( )seen only in the sharp peaks; the smooth part of g s remains unaffected. The area under g s is three electrons.3 3

valence]electron densities are of comparable
size.

B Pure valence region: From the r for the
Ž .outermost minimum of s r to the r where

Ž .s r passes through the value it takes at its
greatest maximum. We call this the pure
valence region, because it includes those
contributions from the outermost shell whose
reduced density gradients are comparable to
those in the core.

B Tail region: The rest of space, in which s
increases monotonically up to ` as r ª `.

Ž .Only for the sake of the g s analysis do we3
need to distinguish the tail from the valence
region.

ŽOn the density-gradient analysis plots Figs. 2
.and 3 , vertical dashed lines define the regions of

space discussed above. Horizontal dashed lines
indicate which parts of the g density functions

Ž .belong to which spatial region Figs. 2 and 3 . In
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( )FIGURE 2. Density-gradient analysis for the Ar atom. The bottom-left plot of s r determines the partitioning of
( ) ( )r-space into regions as discussed in the text. The top-left plot shows r r , while the plots on the right represent g rs 1 s

( ) ( ) ( )and g s . The atom is centered at r = 0. The areas under g r and g s are both 18 electrons. The pure core,3 1 s 3
core ]valence, pure valence, and tail regions contain 9.34, 1.75, 5.37, and 1.54 electrons, respectively.

Figure 3, the results for the Liq ion are also de-
picted, using a dot]dashed line.

Since r is a monotonic function of r, theses

regions in r-space have a one-to-one correspon-
Ž .dence with intervals in r -space. Because s r iss

not monotonic, there is typically a ‘‘combined’’
region in the s-analysis, in which contributions
from core and valence electrons are superposed.
This region ends abruptly as the s of the greatest

Ž .maximum, so there is a sharp step in g s that3

separates the contribution from the core]valence
Žregion where s typically achieves its greatest

.maximum from that of the tail.
Ž .Plots of the reduced-density gradient s r vs. r

Ž .Figs. 2 and 3 clearly distinguish each pure atomic
w Ž .shell a region in which s r is an increasing func-

xtion of r and each transition region between shells
w Ž . xin which s r is a decreasing function of r . The

VOL. 61, NO. 5840
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( ) ( ) +FIGURE 3. Density-gradient analysis for solid line the Li atom and dash ]dot line the Li ion. The difference
between atom and ion in the r -analysis can be seen only on the core ]valence, pure valence, and tail regions. The pures
core, core ]valence, pure valence, and tail regions contain 1.94, 0.19, 0.75, and 0.12 electrons for the Li atom, and
1.925, 0.073, 0.002, and 0.00 electrons for the Li+ ion, respectively.

number of electrons in the pure core, core]va-
lence, pure valence, and tail regions are reported
in the figure captions. If we attribute half the
electrons in the core]valence transition region to
the core and the other half to the valence, then we
obtain almost the conventional number of elec-

Žtrons in the core 10.22 for Ar, 2.04 for Li, and 1.96
for Liq, using the same boundaries for Liq as for
.Li . The radii of the spheres containing the number

of core electrons states above are 0.78 and 1.76
bohrs for Ar and Li, respectively, which is consis-

w xtent with the numbers of Schmider et al. 26 , who
have calculated ‘‘ideal shell radii’’ which encom-
pass the conventional number of electrons in each

Žshell 0.72 and 1.53 bohrs for Ar and Li core radii,
. w xrespectively . Note that Kohout et al. 27 used the

< <nonreduced density gradient =r rr to distinguish
the atomic shells.
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In Figures 4 and 5, we plot the density of the
exchange]correlation energy f. The solid line de-
notes the f function with LSD exchange]correla-

Ž w xtion energy « Dirac’s exchange energy 28 andX C
a parametrization of the LSD correlation energy
w x.29 , and the dashed line denotes the GGA ex-
change]correlation energy of Perdew]Wang 1991
w x q3]5 . For the Li ion, we plot in Figure 6 the
difference between f functions for the Li atom and
the Liq atom.

From these figures, some common features of
the density functions can be obtained: We see that
the r dependence of the g and f curves starts ats
r min, which corresponds to the maximum elec-s

Ž .tronic density at the atomic center. The g r func-1 s
tion also clearly shows the shell structure of the
atom, the number of peaks corresponding to the
number of fully or partially occupied shells in the
atom. In the tail region, the g and f curves fall
rapidly to zero. The r curves for the atom and ions

FIGURE 6. Energy-weighted density-gradient analysis for the Li+ ion. The difference D f between the Li atom and Li+

ion is plotted. The top plot shows the r -analysis of the exchange ]correlation energy, and the bottom, the s-analysis.s
The solid line was obtained with the LSD approximation for the exchange ]correlation energy, and the dashed line, with

( ) [ ( )] ( ) ( )the GGA approximation. The area under D f r or D f s is y0.134 Hartree LSD or y0.139 Hartree GGA .1 s 3

VOL. 61, NO. 5842
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FIGURE 4. Energy-weighted density-gradient analysis for the Ar atom. The top plot shows the r -analysis of thes
exchange ]correlation energy, and the bottom, the s-analysis. The solid line was obtained with the LSD approximation

( ) [ ( )]for the exchange ]correlation energy, and the dashed line, with the GGA approximation. The area under f r or f s1 2 3
( ) ( )is y29.29 Hartrees LSD or y30.89 Hartrees GGA .

are very similar in the pure core region, whereas
they differ significantly in the core]valence, pure
valence, and tail regions; the same similarity be-
tween the atom and ion holds for the pure core

Ž .region of the g r curve.1 s
Ž .In the s r plots, we observe that each shell has

Ž min. Ž m a x .its minimum s and maximum s values.
For each smin and sm a x, we obtain a peak in the
curves of g and f vs. s. The g and f curves fall
rapidly to zero beyond the largest sm a x of all the

shells. The separation of space into different re-
gions is not so clear in the s- as in the r -analysis.s

We may conclude from this analysis that only
the ranges 0 - r - 10 and 0 - s - 3 are impor-s

tant for the energy E in atoms. Thus, the low-X C
Ž . Ž .density r ) 10 and large-gradient s ) 3 do-s

mains, where GGAs are least trustworthy, are not
tested in atoms. In closed-shells like noble gases,
only the range s - 1.5 is important. Large-s contri-
butions include a substantial contribution from the
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FIGURE 5. Energy-weighted density-gradient analysis for the Li atom. The top plot shows the r -analysis of thes
exchange ]correlation energy, and the bottom, the s-analysis. The solid line was obtained with the LSD approximation

( ) [ ( )]for the exchange ]correlation energy, and the dashed line, with the GGA approximation. The area under f r or f s1 s 3
( ) ( )is y1.69 Hartrees LSD or y1.82 Hartrees GGA .

inner boundary of the core]valence region. This
region is present not only in atoms but also in
molecules and solids and may be responsible for
some of the LSD or GGA errors in those systems.

Figure 6 suggests that a significant fraction of
the change in E under ionization arises in theX C
core. However, in a self-consistent calculation, this

w xcontribution should be canceled 30 by the changes
in other energy components within the core.
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