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We analyze the electron densitiesn(r ) of atoms, molecules, solids, and surfaces. The distributions
of values of the Seitz radiusr s5(3/4pn)1/3 and the reduced density gradients5u¹nu/
(2(3p2)1/3n4/3) in an electron density indicate which ranges of these variables are significant for
physical processes. We also define energy-weighted averages of these variables,^r s& and^s&, from
which local spin density ~LSD! and generalized gradient approximation~GGA!
exchange-correlation energies may be estimated. The changes in these averages upon rearrangement
of the nuclei~atomization of molecules or solids, stretching of bond lengths or lattice parameters,
change of crystal structure, etc.! are used to explain why GGA corrects LSD in the way it does. A
thermodynamic-like inequality~essentiallyd^s&/^s&.d^r s&/2^r s&) determines whether the gradient
corrections drive a process forward. We use this analysis to explain why gradient corrections usually
stretch bonds~but not for example H–H bonds!, reduce atomization and surface energies, and raise
energy barriers to formation at transition states. ©1997 American Institute of Physics.
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I. INTRODUCTION

Density functional theory~DFT! has become a standar
computational tool to calculate the electronic ground state
a system.1–4 The theory is formally exact,5 and the only part
that needs to be approximated is the exchange-correla
energy6 as a functional of the spin densities,Exc@n↑ ,n↓#.
Neglecting small contributions due to the gradient¹z of the
relative spin polarization, the local spin density~LSD! and
generalized gradient~GGA! approximations forExc@n↑ ,n↓#
can be cast in the following form:

Exc@n↑ ,n↓#5E dr n~r !«x~r s~r !!Fxc~r s~r !,z~r !,s~r !!,

~1!

wheren↑ denotes the electron density of spin-up electro
n↓ the electron density of spin-down electrons, and the to
density isn5n↑1n↓ . Here«x(r s)52(3/4p)(9p/4)1/3/r s is
the exchange energy per electron in the homogeneous
tron gas with densityn5(4pr s

3/3)21. We use atomic units
(\5e25m51).

The enhancement factorFxc(r s ,z,s) is a function of
three variables: the Seitz radiusr s , the relative spin polar-
ization z5(n↑2n↓)/n, and the reduced density gradie
s5u¹nu/2kFn5(3/2p)1/3u¹r su, where kF5(3p2n)1/3. This
factor defines the form and the level of the approximation
the exchange-correlation energy. It can be conveniently s
into exchange and correlation parts:

Fxc~r s ,z,s!5Fx~z,s!1Fc~r s ,z,s!, ~2!
10184 J. Chem. Phys. 106 (24), 22 June 1997 0021-9606/97/1
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and the way the variablesr s , z, ands are included in the
enhancement factor determines the level of approximatio

Fx~0,0!51→ LDA exchange, ~3a!

Fx~z,0!→ LSD exchange, ~3b!

Fx~z,s!→ GGA exchange, ~3c!

Fc~r s,0,0!→ LDA correlation, ~3d!

Fc~r s ,z,0!→ LSD correlation, ~3e!

Fc~r s ,z,s!→ GGA correlation. ~3f!

A detailed discussion and analysis of different approxim
tions for Fxc(r s ,z,s) can be found in Ref. 7. Fig. 1 show
Fxc(r s ,z,s) for the Perdew-Burke-Ernzerhof~PBE! GGA of
Ref. 8, an accurate nonempirical functional in which all p
rameters other than those in LSD are fundamental consta

The amount of physical knowledge built into the ener
functional and the accuracy of it increase with the increas
number of carefully chosen physical variables. None of
approximations~LDA, LSD, GGA! is expected to be valid
for s..1. So it is valuable to know how the values of the
variables are distributed in real physical systems, wh
ranges they span, and how they change under chemical r
tions, structural transformations, etc. While the smallness
s is a necessary condition for LSD or GGA validity, it is no
sufficient. Besidess, there are other measures of density
homogeneity, such as the reduced Laplacian¹2n/(2kF)

2n
~which diverges at the nuclear cusp of the density, althou
s is small there!.
06(24)/10184/10/$10.00 © 1997 American Institute of Physics
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10185Zupan et al.: Electron density parameters
Neither LSD nor GGA is justified near a nucleus a
outside the classical turning surface for the most energ
electron. For two noninteracting electrons bound in
ground state by a Coulomb potential2Z/r , this turning sur-
face is a sphere of radius 2/Z on which s51.43 and
r s52.74/Z. For this system,s50.376 exp(2Zr/3) and
r s5(0.721/Z) exp(2Zr/3) grow monotonically withr .

Independently of this work, Mollet al.9 have already
used ther s-analysis to explain their LSD and GGA resul
for the pressure at which Si transforms from the diamond
the b-tin structure. Furthermore, Philipsen and Baerend10

have used thes-analysis to investigate the importance of t
small-s regime (s!1) for GGA energies of solids. Ten yea
ago, Taut11 defined a ‘‘density spectrum’’ related to ou
r s-analysis.

The energy of a system depends upon the underly
distributions of the variablesr s , z, ands. In earlier work,12

we proposed a method for calculating the distribution
these variables for atoms and ions. Here we apply
method to calculate distributions for molecules and soli
Then, analogous to the transition from statistical mechan
to thermodynamics, we replace these distributions
carefully-chosen averages. These averages const
thermodynamic-like variables which fixExc . We present an
inequality which determines whether gradient correctio
drive a process forward. The examples we consider incl
bond-stretching and atomization processes, surface ene
and the energy barrier to a chemical reaction.

II. DEFINITIONS

A. Distribution functions defined

To analyze any electronic system, we define distribut
functions for two of the constituting variables of the prese
density functionals:

FIG. 1. The enhancement factorFxc(r s ,z,s) of Eq. ~ 1!, evaluated for a
spin-unpolarized (z50) system in the PBE GGA of Ref. 8, showing th
nonlocality or s-dependence.
J. Chem. Phys., Vol. 106,
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g1~r s!5E dr n~r !d~r s2r s~r !!, ~4a!

g3~s!5E dr n~r !d~s2s~r !!. ~4b!

The distribution functiong2(z) for the relative spin polariza-
tion z is not displayed explicitly in our work, sincez50 in
many real systems.

The functionsg1(r s) andg3(s) have a simple physica
interpretation:g1(r s)drs is the number of electrons in th
system with Seitz radius betweenr s and r s1drs , while
g3(s)ds is the number of electrons in the system with r
duced density gradient betweens ands1ds. Thus they are
analogs of the density of states for energy levels. They
normalized toN, the number of electrons in the system:

E
0

`

drsg1~r s!5E
0

`

dsg3~s!5N. ~5!

A detailed description of the numerical method by whi
they are evaluated was given elsewhere.12

B. Averages defined

The method of the previous subsection yields inform
tion aboutall values of the variable being analyzed. In th
section, we define average values ofr s , z, and s for any
electronic system, which summarize~roughly! the informa-
tion contained in the distribution functions.

The energy-weighted averages^r s&, ^uzu&, and ^s& are
defined by:

«x~^r s&!5
*dr n«x~r s!

*dr n
5
Ex
LSD@n/2,n/2#

N
, ~6a!

Fx~^uzu&,0!5
*dr n«x~r s!Fx~z,0!

*dr n«x~r s!
5

Ex
LSD@n↑ ,n↓#

Ex
LSD@n/2,n/2#

, ~6b!

Fx~0,̂ s&!5
*dr n«x~r s!Fx~0,s!

*dr n«x~r s!
5
Ex
GGA@n/2,n/2#

Ex
LSD@n/2,n/2#

. ~6c!

Note that only the exchange part of the exchange-correla
energy is used to define the average values ofr s , z, ands.
Because we average only monotonic functions of onevari-
ableat a time, our̂ x& ~wherex5r s ,z, or s) is a true aver-
age, falling between the minimum and maximum values o
present in our system. If unpolarized exchange domina
other effects, or if the distribution of each variable is not t
broad, these averages can be used to estimateExc .

This idea can be tested as follows. Write

Exc
LSD@n↑ ,n↓#5Rxc

LSDN«x~^r s&!Fxc~^r s&,^uzu&,0!, ~7a!

Exc
GGA@n↑ ,n↓#5Rxc

GGAN«x~^r s&!Fxc~^r s&,^uzu&,^s&!.
~7b!

If the ratiosRxc
LSD andRxc

GGA are close to one~as indeed they
typically are!, then the averages defined in Eqs.~6! can be
used to estimate either the LSD or GGA exchang
correlation energy of the system, using Eqs.~7! with Rxc

LSD

andRxc
GGA set equal to 1.
No. 24, 22 June 1997
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10186 Zupan et al.: Electron density parameters
Although the corresponding relative errors of exchan
correlation energy differencesare often larger than those o
Exc itself, they are still small enough for purposes of t
qualitative analysis we shall make in Section III B.

The numerical method to calculate the average value
straightforward to implement. Once the LSD and GGA e
ergies on the right-most side of the definition~6! have been
calculated for a system, the average values of the den
variables are found as the roots of the equations.

C. Uniform scaling behavior

To illustrate the definitions and for later use in Secti
III B 2, we consider uniform scaling. Uniform density sca
ing n(r )→g3n(gr ) by a parameterg leaves the electron
number N unchanged, but transformsr s(r ) to r s(gr )/g,
z(r ) to z(gr ), ands(r ) to s(gr ). Under this transformation
g1(r s) and ^r s& transform togg1(gr s) and ^r s&/g, respec-
tively, while g3(s), ^uzu&, and^s& remain invariant.

III. RESULTS AND DISCUSSION

We performed both analyses on a set of systems, inc
ing atoms and simple diatomic molecules, transition-st
molecular structures, and different crystal phases of cova
and ionic crystals. The Hartree–Fock electronic densities
all the treated systems were calculated with theCRYSTAL 92

program,13,14 an ab initio Gaussian-type-basis LCAO pro
gram, that can treat electronic systems extended in 0~atoms,
molecules!, 1 ~polymers!, 2 ~surfaces!, and 3 ~crystals! di-
mensions. Detailed description of the method can be fo
in Ref. 15. A DFT extension of theCRYSTAL program16 was
used to compute the integrals in Eq.~4! and to evaluate the
DFT exchange-correlation energies needed in Eqs.~6!. In the
present work we use the PBE8 ~Perdew–Burke–Ernzerhof!
form of the enhancement factor, a simplified version
the PW91 GGA for the exchange-correlation ener
functional.17–19

As an alternative to the Hartree–Fock densities,
could have used self-consistent LSD or GGA densiti
However, the typical differences between GGA and LSD
found whether or not the GGA is implemented se
consistently. We tested this claim numerically for the2
molecule. First we calculated the Hartree–Fock, LSD, a
GGA densities self-consistently at the experimental bo
length. Then we also optimized the bond length in each
proximation. Differences were no more than 0.003 for^r s&
and 0.002 for̂ s&.

To avoid basis-set error we used a rich 6-31111
G(3d f ,3pd) basis set20 for H, Li, N, and Ar atoms. For
computational expediency in Si and LiF crystals we us
smaller basis sets optimized for calculations in solids.~See
Ref. 21 for Si and Ref. 22 for LiF crystal.!

To calculate the exchange-correlation energiesExc in
equations~6! we used the maximum standard level of acc
racy defined in theCRYSTAL DFT extension.16 At this level
of accuracy~30 000 reducible points per atom! the average
relative error in exchange-correlation energy is 3•1026. To
calculate the functions in equations~4! we used a very fine
J. Chem. Phys., Vol. 106,
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integration grid with approximately 100 000 reducible poin
per atom.

A. Distribution functions evaluated

The calculation of distribution functions yields much in
formation about a given variable. Some examples for ato
and ions have appeared elsewhere.12 Here we extend the
analysis to include the N atom, the N2 molecule, and bulk Si.

In Fig. 2 we show a four-panel plot for the N atom. Th
key plot is the bottom-left one where the reduced dens
gradients is plotted as a function of the radial distancer ~in
bohr!, starting from the atomic center. Note how sensiti
the reduced density gradients is to the shell structure of the
atom. We may easily distinguish the shell regions in r
space, wheres is monotonically rising, and inter-shell re
gions, wheres is monotonically falling. We identify four
regions of interest.12 The core region extends fromr50 to
the outermost maximum ofs. The pure valence region ex
tends from the outermost minimum ofs to the point where
s(r ) attains the same value as the maximum value ofs in the
core region. Thus the valence electrons have reduced de
gradients no larger than those in the core. Between the
and the valence region, wheres is falling monotonically, is
the mixed core-valence~CV! overlap region. The remaining
region, wheres is bigger then anys in the core and is expo
nentially and monotonically rising up to infinity, is called th
tail region, which is defined to clarify our later discussion
g3(s) figures.

These regions in real space can also be marked on
upper-left panel, wherer s is depicted as a function of th

FIG. 2. Four-panel plot of density variables and their distributions for the
atom. The left two panels presentr s(r ) and s(r ), where r is the radial
distance in bohr from the center of the atom. The right two panels pre
the correspondingg1(r s) andg3(s) distribution functions. The number o
electrons in each region is: core~c.! 1.77, core-valence overlap~CV! 0.88,
valence 3.45, and tail 0.90. The dash-dot line plots the distribution funct
without the contribution of the 2 electrons from the core.
No. 24, 22 June 1997
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10187Zupan et al.: Electron density parameters
radial distancer . The curver s(r ) is monotonic and therefore
regions in real space uniquely map to regions inr s space.
The partitioning inr s space is transferred to the upper-rig
plot, where the density functiong1(r s) is plotted sideways.
The shell structure is prominent. There is one peak for e
full or partially filled shell. The core electron peak is
r s'0.20, the valence peak atr s'0.83.

Thes(r ) curve at the lower left plot is not monotonic, s
we cannot partition the density functiong3(s) in the lower
right plot into four simple regions. In fact only two region
can be separated: a combined one, that comprises of core
valence electrons, and a tail region. In this case, we can
eliminate core contributions simply by excluding any cont
bution from r<r c in the integration of Eq.~4!, wherer c is
defined to include the integer number of electrons in
core. For the N atom, there are 2 electrons in the core,
r c is about 0.43 bohr. The resulting valence-only distribut
functions are marked as dash-dot lines in the figures,
separate the core and valence contributions ing3(s).

The four-panel plot in Fig. 2 shows which values ofr s
and s contribute significantly to integrals over the densi
Only 1/10th of an electron hasr s.5.52, and only 1/10th ha
s.3.24. Such values forr s vary from atom to atom, bu
g3(s) always falls abruptly at the border between the co
bined and tail regions, and the significant contribution ve
rarely extends above the value ofs53.

Next we consider the change in distribution due to
atomization of the N2 molecule. In Fig. 3, we plot the dif-
ference of the distributions between the two isolated ato
and the molecule. In theDg1(r s) plot we observe a shift o
electrons from smaller to largerr s values. This reflects the
fact that the density expands during atomization. The
charge shifted~area of the first negative peak! is 0.9 elec-
trons. The core electrons remain largely unaffected, since
dash-dot core-less line is almost indistinguishable from
solid all-electron line. Now 1/10th of an electron h
r s.5.02 in the contribution toDg1(s), while 1/10th has
s.2.55 in the contribution toDg3(s).

A look at the lower panel forDg3(s) shows that, upon
atomization, there is a shift of electrons from lower to high
values of the reduced gradients. ~The area of the first nega
tive peak is 1.1 electrons.! This can be understood as fo
lows: In the tail of an isolated atom, the reduced dens
gradients goes to infinity. The electrons in the bond betwe
two atoms have smaller reduced gradients which actu
vanish right at the bond center. The wriggle ats'1.3 is an
artifact of the distribution function due to the sharp change
s on passing from the core to the core-valence region. Its
integrated effect is approximately zero. The core-less dis
bution functionDg3(s) indicated by the dashed-dotted lin
smoothly ignores this feature.

Figure 4 shows the derivative of the distribution fun
tions with respect to the bond length or lattice constana
evaluated at the experimental value (adg/daua5a0

). The
similarity between Figs. 3 and 4 is obvious and natural. No
however, that the large-s contribution of Fig. 3 is suppresse
in Fig. 4.

In Fig. 5 we plot the distribution functions for silico
J. Chem. Phys., Vol. 106,
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crystalized in a tetragonal diamond structure, using the
perimental value for the lattice parameter 5.43 Å.23 The plots
depict the same qualitative behavior as those for atoms
molecules. The chief difference can be seen in the tails of
distributions, where they fall exactly to zero~at r s54.8 and
at s51.9). In an infinite periodic system, the density nev
vanishes, and the reduced gradient never goes to infinity

FIG. 3. Change of the distribution functions upon atomization of the2
molecule. In the upper plot, 0.9 of an electron is shifted; in the lower p
1.1 is shifted. The ‘‘regions’’ shown here and in Figs. 4 and 5 are those
the isolated atom.

FIG. 4. The derivative with respect to bond lengtha of the distribution
functionsg1(r s) and g3(s) for the N2 molecule at its experimental bond
length.
No. 24, 22 June 1997
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10188 Zupan et al.: Electron density parameters
The range ofs that contributes tog3(s) and Dg3(s)
coincides with that for which the GGA is expected to
valid. This is especially so in the solid state.

B. Average values evaluated

1. Interpretation and behavior

The average value of the reduced density gradient^s& of
Eq. ~6c! is a measure of the inhomogeneity of the syste
For a homogeneous electron gas its value is exactly zero,
it increases with increasing departure of the electron den
from the homogeneous limit. So we expect that^s& increases

FIG. 5. g1(r s) andg3(s) distribution functions for bulk Si in the diamond
structure at the experimental lattice parameter.
J. Chem. Phys., Vol. 106,
.
nd
ty

when we atomize a molecule or solid, stretch a molecu
bond or lattice constant, or distort a solid to a more op
crystal structure.

We tested this expectation on a set of test cases.
results are presented in Tables I and II. We used experim
tal bond lengths for the molecules24 and bulk Si.23 For LiF in
the fcc phase, in which it exists under normal conditions,
use the experimental value.23 We choose the lattice param
eter of the high-pressure bcc phase so that the volume
formula unit is the same for fcc and bcc phases.

The right-most columns with the values ofRxc
LSD and

Rxc
GGA in Table I confirm that the definition of the averag

~6! is a useful one, since all values are close to one.Rxc
GGA is

somewhat closer to 1 than isRxc
LSD, reflecting the suppressio

of correlation relative to exchange that occurs as we p
from LSD to GGA. Our expectation is confirmed:^s& in-
creases when going from a molecule or solid to its separa
atoms, and from a shorter bond length to a longer one.~The
quantityad^s&/daua5a0

in Table II is always positive.!

2. Understanding gradient corrections
In this section, we use the averages defined in Sec

II B to explain the effect of gradient corrections on ma

TABLE II. Derivatives of the average quantities with respect to the bo
length, evaluated at the experimental bond length.

System
ad^r s&
da

ad^uzu&
da

ad^s&
da

H2 0.624 0.000 0.026
H3 0.680 0.109 0.095
Li2 0.033 0.000 0.014
N2 0.067 0.000 0.064
LiF ~mol! 0.012 0.000 0.021
LiF ~fcc! 0.031 0.000 0.070
LiF ~bcc! small 0.000 small
Si ~diamond! 0.019 0.000 0.041
change-
the
t the
TABLE I. This table summarizes the average values of^r s& ~in bohrs!, ^uzu&, and^s& for all the Hartree–Fock
densities we have studied. The second column represents the difference between GGA and LSD ex
correlation energies~in mH!. The Rxc values in the two right-most columns are close to 1, satisfying
requirements discussed after Eq.~7!. For molecules and solids the average values were calculated a
experimental bond lengths or lattice constants~Refs. 24 and 23! ~H2:0.741 Å, Li2:2.67 Å, N2:1.098 Å, LiF
~molecule!:1.564 Å, LiF ~fcc!:3.99 Å, LiF ~bcc!:2.51 Å, bulk Si:5.43 Å!.

System Exc
GGA2Exc

LSD ^r s& ^uzu& ^s& Rxc
LSD Rxc

GGA

H 221.7 2.154 1.000 1.079 0.997 1.007
H2 229.3 1.617 0.000 0.885 0.994 1.000
Li1 2115.3 0.645 0.000 0.895 0.996 0.999
Li 2121.6 0.903 0.241 0.901 0.982 0.992
Li2 2233.8 0.892 0.000 0.888 0.986 0.996
N 2404.6 0.558 0.343 0.780 0.989 0.999
N2 2772.0 0.542 0.000 0.747 0.992 1.002
F2 2551.5 0.489 0.000 0.711 0.992 1.000
LiF ~mol! 2662.3 0.507 0.000 0.732 0.993 1.000
Li11F2 2666.8 0.510 0.000 0.736 0.993 1.000
LiF ~fcc! 2650.2 0.504 0.000 0.723 0.993 1.000
LiF ~bcc! 2653.9 0.504 0.000 0.723 0.993 1.000
Si 21022.4 0.345 0.100 0.656 0.992 0.999
Si ~diamond! 21997.7 0.341 0.000 0.641 0.993 1.000
Ar 21413.1 0.296 0.000 0.620 0.993 0.999
No. 24, 22 June 1997
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properties of systems. Relative to LSD, GGA reduces ato
zation energies,18,25–27usually~but not always! stretches and
softens bonds or lattice constants,18,26,28,29and favors open
crystal structures relative to close-packed ones.9,30,31 For a
set of 20 molecules,8 the mean errors of the atomization e
ergies are 1.4 eV for LSD and 0.3 eV for the PBE GGA.

To understand the origin of these effects, we consi
the difference between the LSD and GGA total energ
SinceELSD is minimal with respect to variations ofn(r ), we
can usually ignore the small differences between s
consistent LSD and GGA densities,32 so that
EGGA2ELSD'Exc

GGA2Exc
LSD. We assume that our averag

values for the density parameters work well~i.e.,Rxc'1 in
Eq. ~7!!, permitting a kind of thermodynamic analysis. Th
the gradient correction to the energy per electron for a gi
density is:

D5~Exc
GGA2Exc

LSD!/N

'«x~^r s&!@Fxc~^r s&,^uzu&,^s&!2Fxc~^r s&,^uzu&,0!#. ~8!

Now consider some infinitesimal process at fixedN ~e.g.,
stretching a bond! which leads to infinitesimal changes
^r s&, ^uzu&, and ^s&. The gradient correction to LSD wil
favor this process ifdD,0. Since]D/]^s&,0, partial dif-
ferentiation of Eq.~8! yields:

d^s&

^s&
.P

d^r s&
2^r s&

1Qd^uzu&, ~dD,0!, ~9!

where

P52
2^r s&

^s&

]D/]^r s&
]D/]^s&

, ~10a!

Q52
1

^s&

]D/]^uzu&
]D/]^s&

. ~10b!

~We choose this normalization ofP so that, for^uju&50,
P→1 as ^r s&→0 and ^s&→0; in this limit, Fxc→11ms2

wherem is a positive constant.! Equation ~9! shows that,
contrary to popular belief, the increase in inhomogene
(d^s&) must be greater than someminimumvalue, which can
be greater than zero, for gradient corrections to favor a p
cess. If the increase in inhomogeneity is insufficient, the g
dient corrections will disfavor the process.~The inequality
~9! is an exact condition only when theRxc factors of Eq.~7!
are exactly equal to one. Since it is simple to calculatedD
directly, the role of this inequality~9! is in any case purely
explanatory.!

We plot the gradient contribution to the exchang
correlation energy per electron in Fig. 6. We choose val
of r s ands which cover the range of average values of the
variables~appearing in Tables I and V!. The correction is
larger for larger densities, and depends only weakly on s
polarization. This is due to the form of the enhancem
factorFxc plotted in Fig. 1. The factorP(r s ,z,s) is plotted in
Fig. 7 and is of order 1, whereas the factorQ is small and
can usually be neglected.

As an illustration of Eq.~9!, we consider an infinitesima
density contraction (dg.0 in Section II C!. We find
J. Chem. Phys., Vol. 106,
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d^s&5d^uzu&50 while d^r s&,0, so the inequality~9! is sat-
isfied and thus this process is driven forward by gradi
corrections. Gradient corrections favor density contract
~smaller ^r s&) as well as density inhomogeneity~greater
^s&), as can be seen directly from Fig. 6. Thus the se
consistent LSD density of N2 has ^r s&50.544 bohr and
^s&50.746, while the self-consistent GGA density h
^r s&50.541 bohr and̂s&50.747.

3. Bond stretching

Next we apply Eq.~9! to the question of whether GGA
stretches bonds relative to LSD. By the argument preced
Eq. ~8!, NdD/da'dEGGA/da at the LSD equilibrium bond

FIG. 6. GGA gradient correctionD of Eq. ~ 8! ~in hartrees! to the exchange-
correlation energy per electron for different values ofr s for the unpolarized
(z50) and fully polarized (z51) cases, using the PBE functional.

FIG. 7. FunctionP(r s ,z,s) of Eq. ~10a! for different values ofr s for the
unpolarized and fully polarized cases, using the PBE functional.
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10190 Zupan et al.: Electron density parameters
length. If dD,0 when a is increased infinitesimally, the
bond expands due to gradient corrections, but it contrac
dD.0. The average reduced density gradient^s& increases
with bond length~Table II!. But ^r s& also increases, since th
average density drops as the atoms separate. The inequ
~9! is tested for the bond lengths in Table III. Usually th
inequality of Eq. ~9! is fulfilled, which implies that bond
lengths are longer in GGA than in LSD.

However, in a few cases the increase of inhomogen
is insufficient to overcome the decrease in the density. T
holds true for the hydrogen molecule H2 ~a0

LSD50.765 Å,
a0
GGA50.748 Å, a0

exper.50.741 Å! and the H3 molecule at the
transition state~dTS

LSD50.950 Å, dTS
GGA50.941 Å!. For both

these cases, the inequality of Eq.~9! is violated, and indeed
GGA shrinks these bonds relative to LSD. The absence o
ionic core in the H atom leads to an unusual degree of d
sity contraction under bond-length shrinkage. As found
Ref. 26, gradient corrections often shrink bonds to H ato
But they correctly stretch the weak hydrogen bond in ice33

where little relative change in̂r s& is expected. The GGA
improvement over LSD for hydrogen-bonded systems w
first shown in Ref. 34.

An alternative explanation of these effects is given
Ref. 35 in terms of the self-consistent effect of the gradi
corrections upon the electron density of the atom: The r
of the hydrogen atom and of all 1s core states in other atom
contract. The resulting stronger screening of the nuclear
traction then permits an expansion of the radii of the vale
orbitals in the other atoms.

Although the effects of gradient corrections on the latt
constants of solids are typically small, they can still hav
profound influence upon the equilibrium crystal structure a
magnetism.36,37

4. Surface energies

As a final example of an infinitesimal process, we ap
our analysis to the surface contribution to the exchan
correlation energy of an infinite solid. We consider a jelliu
slab with an infinite barrier at the surface, for which t
density profile can be written analytically.~The overall
trends are similar to those for the self-consistent barrier
sociated with a step edge to the positive background.18! We
define the surface contribution to the exchange-correla
energy as the difference between the exchange-correla

TABLE III. Quantities from Eq.~9! for infinitesimal changes around th
experimental bond length. The small changesd^r s&, d^uzu&, d^s& were cal-
culated by stretching the bond length by61%. The inequality~9! is satisfied
whenever gradient corrections favor bond stretching.

System P Inequality

H2 1.23 5.80•1024 , 4.76 •1023

Li 2 1.21 3.18•1024 . 2.45 •1024

N2 1.16 1.71•1023 . 1.43 •1023

LiF 1.15 5.19•1024 . 2.39 •1024

Si 1.12 1.35•1023 . 6.33 •1024

LiF ~fcc! 1.15 2.20•1023 . 7.20 •1024

H3 1.22 2.17•1023 , 4.62 •1023
J. Chem. Phys., Vol. 106,
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energy of a piece of the system with a surface and that
bulk piece containing the same number of electrons, in
limit where the width of the sample becomes infinite. B
cause the bulk is uniform, in the thermodynamic lim
^s&→0 and LSD becomes exact. However, the surface c
tribution is determined by hoŵs&→0. We find

^r s&→r s~110.256/L !, ~L→`! ~11!

and

^s&→O1
b~r s!

AL
, ~L→`!, ~12!

whereL52kFW1/2, andW1/2 is the half-width of the jellium
slab. In the range 0<r s<6, we find 1<Dxc

LSD<1.02,
1>Dxc

GGA>0.89, and 0<b<1.071, where theDxc are the
analogs for energy differences of the ratiosRxc defined in Eq.
~7!. The values ofDxc indicate that the surface contributio
is ~moderately! well-predicted by our averages. Since bo
d^s& and d^r s&.0 for creation of a jellium surface, while
^s&50, our inequality of Eq.~9! is trivially satisfied, so that
GGA will always lower the surface exchange-correlation e
ergy relative to LSD. For more realistic surfaces, quantitat
evaluation of our inequality is necessary, as^s& Þ 0 in the
bulk. For example, there is a slight reduction in the surfa
energy of Ag~100! in going from GGA to LSD.38

Note also that theL21/2 correction to^s& is a peculiar-
ity of a jellium surface, and thatb is determined by the smal
s behavior ofFx . For any nonuniform bulk,̂ s&→^s&bulk
1O(1/L), where^s&bulk is the bulk value.

5. Atomization energies

Next we apply Eq.~9! to finite changes. Although we
derived this result for infinitesimal changes in average d
sity values, we can apply it to finite changes, assuming th
changes are not so large as to render it invalid. In doing
we replace the infinitesimal changes by finite changes
insert parameter values that are the arithmetic averages o
initial and final state values.

An immediate application is to atomization energies
molecules and solids. The atomization energy, a posi
quantity for a stable molecule~or solid!, is defined as the
difference between the total energy of the separated at
and that of the molecule~or of the unit cell in the crystal!.
The total energy includes the exchange-correlation p
which is approximated either by LSD or GGA. It is we
known that LSD always overestimates the atomization
ergy, whereas GGA comes much nearer to the experime
value.~See for example Ref. 27.!

For all systems but the homogeneous electron gas,
GGA approximation lowers the energy relative to LSD~sec-
ond column in Table I and Fig. 6!. The amount of the low-
ering depends on the average value^s&, which is smaller for
the molecule than for the isolated atoms. Thus atomiza
energies are lower in GGA.

In Table IV we list values ofP andQ for atomization
processes. As seen in the right-most column, the inequa
~9! is never violated, which means the GGA binding ener
No. 24, 22 June 1997
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TABLE IV. Quantities from Eq.~9! for atomization processes. Inequality~9! is satisfied whenever gradien
corrections lower the atomization energy.

System P Q Inequality

H2→2H 1.23 25.04•1022 1.98•1021 . 1.25•1021

N2→2N 1.16 1.90•1023 4.32•1022 . 1.76•1022

Li 2→2Li 1.21 21.65•1023 1.45•1022 . 7.39•1023

LiF→Li11F2 1.15 0.00 6.80•1023 . 3.40•1023

Sibulk→Si 1.12 1.16•1023 2.47•1022 . 8.27•1023

LiFfcc→ Li11F2 1.15 0.00 1.92•1022 . 6.81•1023

H3→H1H2 1.22 24.09•1022 6.76•1022 . 21.42•1022

HN2→H1N2 1.16 1.06•1023 1.20•1022 . 4.11•1023
h
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is lower than the LSD energy for every reaction listed in t
table. The inequality is close for H2, because of the large
increase in^r s& that occurs upon atomization of this mo
ecule, and indeed the GGA lowering of the binding energy
H2 is unusually small in both an absolute and a relat
sense.8

6. Transition state barriers

Our final example is the energy barrier to formation a
transition state, which is usually underestimated by LSD
many cases LSD predicts no barrier. GGA gives higher
ergy barriers which are nearer to experimental values.39,40An
early explanation39 focussed on the self-consistent effect
gradient corrections on the density, even though the aut
of Ref. 39 found that gradient corrections still raised t
barrier when applied non-self-consistently to LSD densiti
We present a simpler explanation here, which translates
physical language the chemical explanation of Ref. 40: L
favors bonds too much, and so lowers the energy of
transition-state complex relative to that of the separated
actants.

We have chosen two simple reactions as test cases
drogen transfer in the reaction H1H2→H21H, and a hydro-
gen addition to N2. The reason to choose these two reactio
is their simplicity. Also a sufficient literature is available o
this topic~see Refs. 41 and 42 for the H1H2→H21H reac-
tion, and Refs. 43 and 44 for the H1N2→HN2 reaction!.

For the first reaction~hydrogen transfer! we used LSD
densities, just as in Ref. 41. The geometry of the transit
from one structure to another is linear and the transition s
has a very high symmetry~D`h). We chose one of the bond
to be a reaction coordinatedreac , running from infinity to
0.95 Å, which is the LSD bond length at the transition sta
At each value ofdreact we optimized the second or depe
dent bond lengthddep and then calculated the DF
exchange-correlation energies needed to find the average
ues of^r s&, ^uzu&, and^s&.

The most important quantitŷs& in our analysis is plot-
ted in Fig. 8. Its value is highest when the hydrogen atom
far away from the H2 molecule (dreact is big! and minimizes
at the transition state. A similar story can be told for t
hydrogen addition to N2. The reaction coordinate is here th
distance between the hydrogen and one nitrogen atom.
dependent coordinates, which are optimized for each va
J. Chem. Phys., Vol. 106,
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of reaction coordinate, are the N-N distance and the an
H-N-N. Again the average valuês& is the highest for a
configuration where the H atom is far away from the N2

molecule, and̂ s& decreases all the way to the equilibriu
energy. The value of̂s& at the transition state is higher tha
at the equilibrium geometry, but lower than when the pa
are separated~Table V!.

We can now explain why GGA gives higher energy ba
riers than LSD does. LSD usually gives a small energy b
rier, or none. In fact, H3 is bound at the LSD level,41,42 i.e.,
the LSD total energy is more negative for the TS then for
separate reactants. Gradient corrections lower the energ
the separate reactants~larger ^s&) more than they lower the
energy of the TS~smaller^s&). As Table IV shows, the in-
equality of Eq.~9! is satisfied by the break-up of the trans
tion state, which is thus favored by gradient corrections.

Our calculations on the LSD densities confirm this e
pectation. For the H1H2 reaction, the energy barriers in e
are20.11 in LSD, 0.15 in the PBE GGA, and experime
tally 0.42.45 For the H1N2 reaction, the corresponding ba
riers to the formation of HN2 are 0.03 in LSD, and 0.32 in

FIG. 8. The average reduced density gradient^s& plotted as a function of the
reaction coordinatedreact ~in Å! for the hydrogen transfer reaction. Th
transition state~TS! occurs atdreact50.95 Å, where alsô s& attains its
minimum. LSD densities have been employed.
No. 24, 22 June 1997
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10192 Zupan et al.: Electron density parameters
GGA; no experimental value is available. As might ha
been expected from̂s&, the barrier to dissociation of HN2 is
actually lower in GGA~0.39 eV! than in LSD ~0.54 eV!.
Mo” ller-Plesset,46,47 configuration-interaction calculations,44

and experiments46 indicate that HN2 is metastable with re-
spect to N2 and H. Our results show that PBE gives a co
rection in the right direction compared to LSD but predic
HN2 to be stable by 0.07 eV.

Gradient corrections to energy barriers are most imp
tant for processes in which atoms or chemical groups
semble or dis-assemble, including catalysis.48 In some cases
the transition state may havefewer bonds than the initial
state. In recent work on barriers to diffusion of Ag adato
on Ag~100! and Ag~511!, Yu and Scheffler38 compare a va-
riety of LSD and GGA barriers to exchange and hopp
diffusion, both on planes and at step edges. In every case
coordination number is reduced at the transition state. S
inhomogeneity effects should outweigh density chan
here, Eq.~9! implies that GGAreducesbarrier heights rela-
tive to LSD, consistent with their results. Less severe
arrangements~e.g., internal rotations! may produce little
change in̂ s& or ^r s& ~or in the number of bonds40!, and thus
little difference40,49,50between GGA and LSD barriers. Fo
Ag on the much smoother Ag~111! surface, there is only a
small difference in LSD and GGA barrier heights.51

IV. FINAL REMARKS

We have focussed here on explanations for the effect
gradient corrections, given a particular generalized grad
approximation forExc@n↑ ,n↓#. For qualitative explanations
of the physical origins of gradient-corrected nonlocality, s
Ref. 52. We stress that accurate density functional appr
mations need not be empirical; they can be constructed
tirely from our current quantitative8,19,53–55and qualitative52

understanding of exchange and correlation. For chemical
plications, the most accurate density functionals seem to
those that mix exact exchange56 with GGA, but even for
these the amount of mixing can be construc
nonempirically.53–55

Our analysis can be applied to some extent at
exchange-only or Hartree–Fock level, even though LSD
GGA are usually more accurate for exchange and correla
together than for either alone. The GGA enhancement fa
for exchange is ther s50 curve of Fig. 1. It displays a stron
nonlocality ors-dependence which tends to underbind m

TABLE V. Average values for the reactants, transition states, and prod
for the two chemical reactions studied. LSD densities were used to calc
all results for the H1H2 and H1N2 reactions, including the difference be
tween the GGA and LSD exchange-correlation energies~in mH!.

System Exc
GGA2Exc

LSD ^r s& ^uzu& ^s& Rxc
LSD Rxc

GGA

H1H2 249.7 1.804 0.549 0.945 0.990 1.001
H3 237.7 1.773 0.393 0.870 0.994 0.999
H1N2 2795.0 0.572 0.142 0.754 0.990 1.001
H1N2 ~TS! 2781.6 0.570 0.119 0.749 0.991 1.001
HN2 2776.0 0.567 0.079 0.744 0.992 1.002
J. Chem. Phys., Vol. 106,
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ecules~as can be seen from Tables 1 and 2 of Ref. 57! and
overestimate energy barriers42—the well-known deficiencies
of the Hartree–Fock method.

In Section I, we mentioned another measure of den
inhomogeneity, the reduced Laplacian¹2n/(2kF)

2n, which
is an ingredient of some density functionals.26,58–60Figure 9
displays this quantity for the N atom. It is large near t
nucleus, in the region of core-valence overlap, and in the
but small in the valence region. Also shown in Fig. 9 is t
dimensionless ratiokF /ks , where ks5(4kF /p)

1/2 is the
Thomas–Fermi screening wave vector or inverse scree
length. This ratio is of some interest because the small
rameters of the gradient expansion for the correlation ene
ares, (kF /ks)s, etc.
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