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We analyze the electron densitie§) of atoms, molecules, solids, and surfaces. The distributions

of values of the Seitz radius,=(3/4wn)® and the reduced density gradiest=|Vn|/
(2(37%)3n*3) in an electron density indicate which ranges of these variables are significant for
physical processes. We also define energy-weighted averages of these vanighbsi(s), from

which local spin density (LSD) and generalized gradient approximatioiGGA)
exchange-correlation energies may be estimated. The changes in these averages upon rearrangement
of the nuclei(atomization of molecules or solids, stretching of bond lengths or lattice parameters,
change of crystal structure, etare used to explain why GGA corrects LSD in the way it does. A
thermodynamic-like inequalitiessentiallyd(s)/(s)>d(rs}/2(rs)) determines whether the gradient
corrections drive a process forward. We use this analysis to explain why gradient corrections usually
stretch bondgbut not for example H—H bonglsreduce atomization and surface energies, and raise
energy barriers to formation at transition states. 1@97 American Institute of Physics.
[S0021-96027)02524-5

I. INTRODUCTION and the way the variables;, ¢, ands are included in the

) ) enhancement factor determines the level of approximation:
Density functional theoryDFT) has become a standard

computational tool to calculate the electronic ground state of ~ Fx(0,0=1— LDA exchange, (3a)
a systent ™ The theory is formally exactand the only part F.(£,0)— LSD exchange (3b)
that needs to be approximated is the exchange-correlation ™~ ’

energy as a functional of the spin densitieg,{ n;,n;]. F.(¢,s)— GGA exchange, (30

Neglecting small contributions due to the gradi¥®iit of the .
relative spin polarization, the local spin dens{tySD) and Fe(rs,0,0— LDA correlation, (3d)

generalized gradier@GGA) approximations folE,{n;,n ] Fe(rs,Z,00— LSD correlation, (39

can be cast in the following form:
Fd(rg,¢{,5)— GGA correlation. (3f)

Exd Ny ,”J:f drn(r)ey(rs(r))Fuc(rs(r),&(r),s(r)), A detailed discussion and analysis of different approxima-
tions for F,(rs,¢,s) can be found in Ref. 7. Fig. 1 shows

@ F(rs,¢,s) for the Perdew-Burke-Ernzerh@PBE) GGA of
wheren, denotes the electron density of spin-up electronsRef. 8, an accurate nonempirical functional in which all pa-
n, the electron density of spin-down electrons, and the totafameters other than those in LSD are fundamental constants.
density isn=n;+n, . Heree,(ry)=— (3/4m) (97/4) x4 is The amount of physical kngvyledge bunt_ into the energy
the exchange energy per electron in the homogeneous elefeinctional and the accuracy of it increase with the increasing
tron gas with densityn=(47r2/3)"1. We use atomic units number of carefully chosen physical variables. None of the
(hi=e?=m=1). approximations(LDA, LSD, GGA) is expected to be valid

The enhancement factd®,(rs,{,s) is a function of fors>>1.Soitis valuable to know how the values of these
three variables: the Seitz radiug, the relative spin polar- Vvariables are distributed in real physical systems, which
ization {=(n,—n,)/n, and the reduced density gradient 'anges they span, and how they change under chemical reac-
s=|Vn|/2ken=(3/2m) Y3 Vr |, wherekg=(3m2n)3 This tions, structural transformations, etc. While the smallness of
factor defines the form and the level of the approximation forS iS & necessary condition for LSD or GGA validity, it is not
the exchange-correlation energy. It can be conveniently splgufficient. Besides, there are other measures of density in-

(which diverges at the nuclear cusp of the density, although
Fxlrs,¢,8)=Fy({,8)+F(rs,{,5), (2 sis small therg
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gl(rs)=f drn(r)o(rg—rgr)), (4a)

XC

gg(s)=j drn(r)8(s—s(r)). (4b)

The distribution functiorg,(¢) for the relative spin polariza-
tion ¢ is not displayed explicitly in our work, sincé&=0 in
many real systems.

The functionsg,(rs) andgs(s) have a simple physical
interpretation:g4(rs)drg is the number of electrons in the

12 L = system with Seitz radius betweeny and r +drg, while
r=1 ga(s)ds is the number of electrons in the system with re-
- duced density gradient betwesrands+ds. Thus they are
analogs of the density of states for energy levels. They are
I= normalized toN, the number of electrons in the system:
1 1 L L s | s ‘ L L | L ‘ L s 0 e}
0 ! 2 $ JO dregs(re)= fo dsgs(s)=N. (5)

FIG. 1. The enhancement factbi(rs,¢,s) of Eq. ( 1), evaluated for a A detailed description of the numerical method by which

spin-unpolarized {=0) system in the PBE GGA of Ref. 8, showing the they are evaluated was given elsewh@re
nonlocality or s-dependence. '

B. Averages defined
Neither LSD nor GGA is justified near a nucleus and

outside the classical turning surface for the most energetic The method of the previous subsection yields informa-

electron. For two noninteracting electrons bound in thetion aboutall values of the variable being analyzed. In this

ground state by a Coulomb potentialZ/r, this turning sur- sect|on,_we define average valugsrgf £, ands.for any
face is a sphere of radius 2/on which s=1.43 and electronic system, which summarigeughly) the informa-

: tion contained in the distribution functions.
re=2.74/Z. For this system,s=0.376 exp(Zr/3) and )
r<=(0.721/Z) exp(Zr/3) grow monotonically withr. The energy-weighted averages,), {|Z]), and(s) are

Independently of this work, Molet al® have already defined by:
used ther s-analysis to explain their LSD and GGA results fdrney(ry) EESD[n/z,n/z]
for the pressure at which Si transforms from the diamond tx({r's)) = farn - N : (63)
the B-tin structure. Furthermore, Philipsen and Baeréhds
have used the-analysis to investigate the importance of the Jdrne,(rogF,(¢,00 ESPng,n]

smalls regime 6<<1) for GGA energies of solids. Ten years F(2D).0= Jdrne,(r)  ESOn/2,n/2]’ (6b)

ago, Taut! defined a “density spectrum” related to our e A '

r -analysis. Jdrney(roF(0s) ES®Yn/2,n/2]
The energy of a system depends upon the underlyingx(o'<s>): fdrne rs)  ESOn2n/2]

distributions of the variables;, ¢, ands. In earlier work}? * ’ )

we proposed a method for calculating the distribution ofNote that only the exchange part of the exchange-correlation

these variables for atoms and ions. Here we apply thagn€rgy is used to define the average valuesof¢, ands.
method to calculate distributions for molecules and solidsBecause we average only monotonic functions of vae-
Then, analogous to the transition from statistical mechanic&ble at a time, oux(x) (wherex=r,¢, ors) is a true aver-

to thermodynamics, we replace these distributions by29€; falling between the minimum and maximum values of x
carefully-chosen averages. These averages constitui¢esent in our system. If unpolarized exchange dominates
thermodynamic-like variables which f&,.. We present an other effects, or if the distribution of each variable is not too
inequality which determines whether gradient correctiondroad, these averages can be used to estiFigte

drive a process forward. The examples we consider include T NiS idea can be tested as follows. Write
bond-stretching and atomization processes, surface energies E)IZED[nT ,nl]:R;CSDNSX(<rS>)|:XC(<rS>,<|§|>,o), (78

and the energy barrier to a chemical reaction. .G oA
Exc A[nT ’nl]: Rxc NSX(<TS>)FXC(<TS>,<|§|>,<S>).

(60

1. DEFINITIONS

If the ratiosRL>> and RS are close to onéas indeed they

typically are, then the averages defined in E¢8) can be
To analyze any electronic system, we define distributiorused to estimate either the LSD or GGA exchange-

functions for two of the constituting variables of the presentcorrelation energy of the system, using E¢&. with R:5°

density functionals: andRESA set equal to 1.

A. Distribution functions defined
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Although the corresponding relative errors of exchange- - ; 5
correlation energy differencese often larger than those of s Ec,:cv'valm it % wail
E,. itself, they are still small enough for purposes of the 4 F : ; 4
gualitative analysis we shall make in Section Il B. 3 b l 3 F
The numerical method to calculate the average values is ; 1 :
straightforward to implement. Once the LSD and GGA en- 2 N T 2F N
ergies on the right-most side of the definitit®) have been 157 L 1B T me
calculated for a system, the average values of the density .:.".1'."{['.‘.“.‘E[’.‘.'T.’T.'T."f I ‘"I"'"ch"cvt"
variables are found as the roots of the equations. 00T Y0 2 4 6 8
T r
C. Uniform scaling behavior 3 3 &t
To illustrate the definitions and for later use in Section ; [ valence ’ tail
Il B 2, we consider uniform scaling. Uniform density scal- 5 [ 5 [
ing n(r)— y3n(yr) by a parametery leaves the electron I : L
number N unchanged, but transforms(r) to rg(yr)/v, B S N oo
£(r) to £(yr), ands(r) to s(yr). Under this transformation, Lr O S
01(rg) and(ry) transform toyg,(yry) and(rg)/y, respec-  [\/ . L
tively, while gs(s), (|¢]), and(s) remain invariant. P T T R B Ll
0 1 2 3 4 0 2 4 6 8
r 2(s)

I1l. RESULTS AND DISCUSSION
. FIG. 2. Four-panel plot of density variables and their distributions for the N

We performed both analyses on a set of systems, inclutkom. The left two panels preseni(r) and s(r), wherer is the radial
ing atoms and simple diatomic molecules, transition-statalistance in bohr from the center of the atom. The right two panels present
molecular structures, and different crystal phases of covalerife corresponding(rs) andgs(s) distribution functions. The number of

. . .. electrons in each region is: cofe) 1.77, core-valence overlg€V) 0.88,
and ionic crystals. The Hartree—Fock elec_tromc densities fo{;alence 3.45, and tail 0.90. The dash-dot line plots the distribution functions
all the treated systems were calculated with GRYSTAL 92 without the contribution of the 2 electrons from the core.
program‘>'# an ab initio Gaussian-type-basis LCAO pro-
gram, that can treat electronic systems extended(atdms,
molecule$, 1 (polymers, 2 (surface§ and 3(crystals di-  integration grid with approximately 100 000 reducible points
mensions. Detailed description of the method can be founger atom.
in Ref. 15. A DFT extension of theRYSTAL progrant® was
used to compute the integrals in E¢) and to evaluate the
DFT exchange-correlation energies needed in Ejsin the The calculation of distribution functions yields much in-
present work we use the PBEPerdew—Burke—Ernzerhof formation about a given variable. Some examples for atoms
form of the enhancement factor, a simplified version ofand ions have appeared elsewhErélere we extend the
the PW91 GGA for the exchange-correlation energyanalysis to include the N atom, the Wholecule, and bulk Si.
functionalt’~1° In Fig. 2 we show a four-panel plot for the N atom. The

As an alternative to the Hartree—Fock densities, wekey plot is the bottom-left one where the reduced density
could have used self-consistent LSD or GGA densitiesgradients is plotted as a function of the radial distancén
However, the typical differences between GGA and LSD arebohn), starting from the atomic center. Note how sensitive
found whether or not the GGA is implemented self-the reduced density gradiesis to the shell structure of the
consistently. We tested this claim numerically for thg N atom. We may easily distinguish the shell regions in real
molecule. First we calculated the Hartree—Fock, LSD, andpace, wheres is monotonically rising, and inter-shell re-
GGA densities self-consistently at the experimental bondyions, wheres is monotonically falling. We identify four
length. Then we also optimized the bond length in each apregions of interest? The core region extends from=0 to
proximation. Differences were no more than 0.003 (fioy) the outermost maximum of. The pure valence region ex-
and 0.002 foKs). tends from the outermost minimum efto the point where

To avoid basis-set error we used a rich 6-3H  s(r) attains the same value as the maximum valugiofthe
G(3df,3pd) basis seé for H, Li, N, and Ar atoms. For core region. Thus the valence electrons have reduced density
computational expediency in Si and LiF crystals we usedyradients no larger than those in the core. Between the core
smaller basis sets optimized for calculations in solie and the valence region, wheseis falling monotonically, is
Ref. 21 for Si and Ref. 22 for LiF crystal. the mixed core-valencéCV) overlap region. The remaining

To calculate the exchange-correlation enerdigs in  region, wheres is bigger then ang in the core and is expo-
equationg6) we used the maximum standard level of accu-nentially and monotonically rising up to infinity, is called the
racy defined in thesrRysTAL DFT extensiort® At this level  tail region, which is defined to clarify our later discussion of
of accuracy(30 000 reducible points per atgrthe average gs(s) figures.
relative error in exchange-correlation energy is1® ©. To These regions in real space can also be marked on the
calculate the functions in equatio®) we used a very fine upper-left panel, where, is depicted as a function of the

A. Distribution functions evaluated

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997
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radial distance. The curver¢(r) is monotonic and therefore
regions in real space uniguely map to regiong jrspace.
The partitioning inrg space is transferred to the upper-right I
plot, where the density functiog,(r¢) is plotted sideways. 2F
The shell structure is prominent. There is one peak for each I
full or partially filled shell. The core electron peak is at 4T
r<~0.20, the valence peak a{~0.83.

Thes(r) curve at the lower left plot is not monotonic, so -6 N
we cannot partition the density functiay(s) in the lower 0 1 2 3 4
right plot into four simple regions. In fact only two regions s
can be separated: a combined one, that comprises of core an Ag,(s) | '
valence electrons, and a tail region. In this case, we can still
eliminate core contributions simply by excluding any contri-
bution fromr <r_ in the integration of Eq(4), wherer. is
defined to include the integer number of electrons in the
core. For the N atom, there are 2 electrons in the core, and
r. is about 0.43 bohr. The resulting valence-only distribution
functions are marked as dash-dot lines in the figures, and (; ST e
separate the core and valence contributiongsis). s

The four-panel plot in Fig. 2 shows which valuesrgf
and s contribute significantly to integrals over the density. FIG. 3. Change of the distribution functions upon atomization of the N
Only 1/10th of an electron ha§> 5.52, and onIy 1/10th has molgculg. In the up‘)‘per_plot:’ 0.9 of an electron is fshifted; in the lower plot,
s>3.24. Such values for vary from atom to atom, but tlhi :zjglfézdét'g;e- regions” shown here and in Figs. 4 and 5 are those for
05(s) always falls abruptly at the border between the com-
bined and tail regions, and the significant contribution very
rarely extends above the value ©f 3.

Next we consider the change in distribution due to thecrystalized in a tetragonal diamond structure, using the ex-
atomization of the B molecule. In Fig. 3, we plot the dif- Perimental value for the lattice parameter 5.4%8°Khe plots
ference of the distributions between the two isolated atomégepict the same qualitative behavior as those for atoms and
and the molecule. In thAg,(r,) plot we observe a shift of molecules. The chief difference can be seen in the tails of the
electrons from smaller to larger, values. This reflects the distributions, where they fall exactly to zefatrs=4.8 and
fact that the density expands during atomization. The ne@ts=1.9). In an infinite periodic system, the density never
charge shiftedarea of the first negative peals 0.9 elec- Vanishes, and the reduced gradient never goes to infinity.
trons. The core electrons remain largely unaffected, since the
dash-dot core-less line is almost indistinguishable from the
solid all-electron line. Now 1/10th of an electron has

Ag](rs) 0 i

[core (CV valence ; tail

r<>5.02 in the contribution taAg,(s), while 1/10th has adgl/dglo tail
s>2.55 in the contribution ta\ gs(s). 0
A look at the lower panel foAgs(s) shows that, upon :
atomization, there is a shift of electrons from lower to higher -10 ¢
values of the reduced gradient(The area of the first nega- P
tive peak is 1.1 electronsThis can be understood as fol- :
lows: In the tail of an isolated atom, the reduced density 30 F
gradients goes to infinity. The electrons in the bond between 0 é 2
two atoms have smaller reduced gradients which actually r,
vanish right at the bond center. The wrigglesat1.3 is an 75 € :
artifact of the distribution function due to the sharp change in adgy/da combined i tail
s on passing from the core to the core-valence region. Its net 3 : :
integrated effect is approximately zero. The core-less distri- 25 F
bution functionAgs(s) indicated by the dashed-dotted line 0 E
smoothly ignores this feature. :
Figure 4 shows the derivative of the distribution func- 23 ¢
tions with respect to the bond length or lattice constant 5k v B
evaluated at the experimental valued@da|a:a0). The 0 1 2 3

similarity between Figs. 3 and 4 is obvious and natural. Note, s

however, that the large-contribution of Fig. 3 is suppressed FIG. 4. The derivative with respect to bond lengthof the distribution

in Fig. 4_- o . ) B functionsg4(rs) andgs(s) for the N, molecule at its experimental bond
In Fig. 5 we plot the distribution functions for silicon length.

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997
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FIG. 5. g4,(rs) andgs(s) distribution functions for bulk Si in the diamond

structure at the experimental lattice parameter.

The range ofs that contributes tags(s) and Ags(s)
coincides with that for which the GGA is expected to be(6) is a useful one, since all values are close to chgG.A is
valid. This is especially so in the solid state.

B. Average values evaluated

1. Interpretation and behavior

The average value of the reduced density gradignof

TABLE II. Derivatives of the average quantities with respect to the bond
length, evaluated at the experimental bond length.

ad(rg) ad(|¢]) ad(s)
System da da da
H, 0.624 0.000 0.026
Hs 0.680 0.109 0.095
Li, 0.033 0.000 0.014
N, 0.067 0.000 0.064
LiF (mol) 0.012 0.000 0.021
LiF (fcc) 0.031 0.000 0.070
LiF (bco small 0.000 small
Si (diamond 0.019 0.000 0.041

when we atomize a molecule or solid, stretch a molecular
bond or lattice constant, or distort a solid to a more open
crystal structure.

We tested this expectation on a set of test cases. The
results are presented in Tables | and Il. We used experimen-
tal bond lengths for the molecufésand bulk S#* For LiF in
the fcc phase, in which it exists under normal conditions, we
use the experimental valWe choose the lattice param-
eter of the high-pressure bcc phase so that the volume per
formula unit is the same for fcc and bcc phases.

The right-most columns with the values &&>° and
REGA in Table | confirm that the definition of the averages

somewhat closer to 1 thanR>", reflecting the suppression

of correlation relative to exchange that occurs as we pass
from LSD to GGA. Our expectation is confirmeds) in-
creases when going from a molecule or solid to its separated
atoms, and from a shorter bond length to a longer ¢hlee
quantityad(s)/da|a:a10 in Table Il is always positive.

Eq. (6¢) is a measure of the inhomogeneity of the system. . . _
For a homogeneous electron gas its value is exactly zero, arl Understanding gradient corrections
it increases with increasing departure of the electron density In this section, we use the averages defined in Section

from the homogeneous limit. So we expect ttgtincreases

I1 B to explain the effect of gradient corrections on many

TABLE I. This table summarizes the average value$rgf (in bohrs, (|{|), and(s) for all the Hartree—Fock
densities we have studied. The second column represents the difference between GGA and LSD exchange-
correlation energiegin mH). The R, values in the two right-most columns are close to 1, satisfying the
requirements discussed after EJ). For molecules and solids the average values were calculated at the
experimental bond lengths or lattice constafRefs. 24 and 28(H,:0.741 A, L,:2.67 A, N,:1.098 A, LiF
(moleculg:1.564 A, LiF (fcc):3.99 A, LiF (bcg:2.51 A, bulk Si:5.43 A.

system B w0 (D & R® R

H —-21.7 2.154 1.000 1.079 0.997 1.007
H, —29.3 1.617 0.000 0.885 0.994 1.000
Li* —115.3 0.645 0.000 0.895 0.996 0.999
Li —121.6 0.903 0.241 0.901 0.982 0.992
Li, —233.8 0.892 0.000 0.888 0.986 0.996
N —404.6 0.558 0.343 0.780 0.989 0.999
N, —772.0 0.542 0.000 0.747 0.992 1.002
F~ —551.5 0.489 0.000 0.711 0.992 1.000
LiF (mol) —662.3 0.507 0.000 0.732 0.993 1.000
LiT+F" —666.8 0.510 0.000 0.736 0.993 1.000
LiF (fcc) —650.2 0.504 0.000 0.723 0.993 1.000
LiF (bco —653.9 0.504 0.000 0.723 0.993 1.000
Si —1022.4 0.345 0.100 0.656 0.992 0.999
Si (diamond —1997.7 0.341 0.000 0.641 0.993 1.000
Ar —1413.1 0.296 0.000 0.620 0.993 0.999

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997
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properties of systems. Relative to LSD, GGA reduces atomi-
zation energie$®?~?"uysually (but not alway} stretches and
softens bonds or lattice constaf?$®?®2°and favors open
crystal structures relative to close-packed oh&s: For a
set of 20 molecule$the mean errors of the atomization en-
ergies are 1.4 eV for LSD and 0.3 eV for the PBE GGA.
To understand the origin of these effects, we consider
the difference between the LSD and GGA total energies.
SinceESP is minimal with respect to variations of(r), we
can usually ignore the small differences between self-
consistent LSD and GGA densitigs, so that
ECCA—E'SP~ESCA_ESD We assume that our average
values for the density parameters work wek., R,.,~1 in
Eq. (7)), permitting a kind of thermodynamic analysis. Then
the gradient correction to the energy per electron for a given

-0.05

-0.1

-0.2

10189

density is:
A=(EZA-ERD)IN
~ex(FNIFuel(r9) {141} () = Fuel(ro) (I<).0)]. - (8)

Now consider some infinitesimal process at fixdd(e.g.,

stretching a bondwhich leads to infinitesimal changes in

(re), {|¢]), and(s). The gradient correction to LSD will
favor this process ilA<0. SincedA/d(s)<0, partial dif-
ferentiation of Eq(8) yields:

@>Pd<rs>+ d dA<0 9
<S> 2<rs> Q <|§|>1 ( )1 ( )
where
2(rg) dA3(rg)
T (s) aAl(s)’ (103
0= 1 9A1¥|L)) (200

~(s) dAli(s)

(We choose this normalization & so that, for(|¢|)=0,

S S AR R
0 0.25 0.5 0.75 1

FIG. 6. GGA gradient correction of Eq.( 8) (in hartreegto the exchange-
correlation energy per electron for different values ofor the unpolarized
(£=0) and fully polarized {=1) cases, using the PBE functional.

d{s)=d(|¢|)=0 while d(rs)<0, so the inequality9) is sat-
isfied and thus this process is driven forward by gradient
corrections. Gradient corrections favor density contraction
(smaller (rs)) as well as density inhomogeneitgreater
(s)), as can be seen directly from Fig. 6. Thus the self-
consistent LSD density of Nhas (rg)=0.544 bohr and
(s)=0.746, while the self-consistent GGA density has
(rsy=0.541 bohr ands)=0.747.

3. Bond stretching

Next we apply Eq(9) to the question of whether GGA
stretches bonds relative to LSD. By the argument preceding
Eq. (8), NdA/da~dEC®®*/da at the LSD equilibrium bond

P—1 as(rg)—0 and(s)—0; in this limit, F,.—1+ us?
where u is a positive constant.Equation(9) shows that,
contrary to popular belief, the increase in inhomogeneity
(d{s)) must be greater than somgnimumvalue, which can

be greater than zero, for gradient corrections to favor a pro-
cess. If the increase in inhomogeneity is insufficient, the gra-
dient corrections will disfavor the proces§he inequality

(9) is an exact condition only when th®, factors of Eq(7)

are exactly equal to one. Since it is simple to calcuthde
directly, the role of this inequality9) is in any case purely
explanatory).

We plot the gradient contribution to the exchange-
correlation energy per electron in Fig. 6. We choose values
of rg ands which cover the range of average values of these
variables(appearing in Tables | and)VThe correction is
larger for larger densities, and depends only weakly on spin
polarization. This is due to the form of the enhancement
factorF,. plotted in Fig. 1. The factoP(rs,{,s) is plotted in
Fig. 7 and is of order 1, whereas the fac@ris small and
can usually be neglected.

1.3

As an illustration of Eq(9), we consider an infinitesimal ¢\, 7. FunctionP(r,¢,s) of Eq. (10a for different values ofr  for the

density contraction dy>0 in Section I1G. We find

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997
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TABLE Ill. Quantities from Eq.(9) for infinitesimal changes around the energy of a piece of the system with a surface and that of a
experimental bond length. The small changes,), d(|¢]), d(s) were cal- 1y, niece containing the same number of electrons, in the
culated by stretching the bond length i %. The inequality9) is satisfied limit wh th idth of th le b infi .t’ B
whenever gradient corrections favor bond stretching. Imit where the W_I O € s_amp € becomes In In_' €. . e'
cause the bulk is uniform, in the thermodynamic limit

System P Inequality (s)—0 and LSD becomes exact. However, the surface con-
H, 123 5 8010-* - 4.76.10-2 tribution is determined by hoys)—0. We find

Li, 1.21 3.1810°* > 2.45.10°4 r)—r(1+0.256L L —o0 11

N, 1.16 1.7110°3 > 1.43.10°3 (ro)—rs ' ) ( ) (1)

LiF 1.15 5.1910°* > 2.39-107* and

Si 1.12 1.3510°3 > 6.33-10°*

LiF (fcc) 1.15 2.2010°° > 7.20-10°4 B(rs)

Ha 1.22 2.1710°2 < 4621072 (s)— O+ N (L—), (12

whereL =2kW,», andW,, is the half-width of the jellium

. LSD
length. If dA<<O whena is increased infinitesimally, the slab. Gg} the range €r.<6, we find I=D,;"<1.02,
bond expands due to gradient corrections, but it contracts = Pxc =0.89, and 6<<1.071, where theD,. are the

dA>0. The average reduced density gradiésjtincreases analogs for energy differences of the ratigg defined in Eq.
with bond length(Table I1). But(r) also increases, since the (7). The values oD, indicate that the surface contribution
is,(moderately well-predicted by our averages. Since both

average density drops as the atoms separate. The inequall

(9) is tested for the bond lengths in Table III. Usually the d(S) andd{ry)>0 for creation of a jellium surface, while
inequality of Eq.(9) is fulfiled, which implies that bond (S =0, our inequality of Eq(9) is trivially satisfied, so that
lengths are longer in GGA than in LSD. GGA will always lower the surface exchange-correlation en-

However, in a few cases the increase of inhomogeneit'9Y relative to LSD. For more realistic surfaces, quantitative
is insufficient to overcome the decrease in the density. Thi§valuation of our inequality is necessary,(as # 0 in the
holds true for the hydrogen molecule, I-Qa{%SDzo 765 A bulk. For example, there is a slight reduction in the surface

. y . . 8
&CA=0.748 A, §7°'=0.741 A and the H molecule at the energy of Ag100) in going from GGA to LSD?

-1/2 i i i
transition state(d-3°=0.950 A, $$4=0.941 A. For both Note also that thé correction to(s) is a peculiar-

these cases, the inequality of E§) is violated, and indeed ity of a jellium surface, and tha is determined by the small

GGA shrinks these bonds relative to LSD. The absence of afi Pehavior ofF,. For any nonuniform bulk(s)—(s)pui
O(1/L), where(s)pyx is the bulk value.

ionic core in the H atom leads to an unusual degree of dent
sity contraction under bond-length shrinkage. As found in
Ref. 26, gradient corrections often shrink bonds to H atoms5. Atomization energies
But the)_/ Correctly stretch the_ Wea_k hydrogen bond infte, Next we apply Eq.(9) to finite changes. Although we
where little relative change iirs) is expected. The GGA  erjved this result for infinitesimal changes in average den-
improvement over LSD for hydrogen-bonded systems wagjy, vajues, we can apply it to finite changes, assuming those
first shown in Ref. 34. _ _ . changes are not so large as to render it invalid. In doing so,
An alternative explanation of these effects is given inyye repiace the infinitesimal changes by finite changes and

Ref. 35 in terms of the self-consistent effect of the gradienisert parameter values that are the arithmetic averages of the
corrections upon the electron density of the atom: The radij itial and final state values.

of the hydrogen atom and of alkTore states in other atoms An immediate application is to atomization energies of

contract. The resulting stronger screening of the nuclear ats,jjecules and solids. The atomization energy, a positive
traction then permits an expansion of the radii of the Valenc%uantity for a stable moleculéor solid), is defined as the

orbitals in the other atoms. _ _ difference between the total energy of the separated atoms
Although the effects of gradient corrections on the latticeg 4 that of the moleculéor of the unit cell in the crystal

constants of solids are typically small, they can still have arpa total energy includes the exchange-correlation part,
profound influence upon the equilibrium crystal structure and,ich is approximated either by LSD or GGA. It is well

magnefismi®*’ known that LSD always overestimates the atomization en-
] ergy, whereas GGA comes much nearer to the experimental
4. Surface energies value. (See for example Ref. 27.

As a final example of an infinitesimal process, we apply ~ For all systems but the homogeneous electron gas, the
our analysis to the surface contribution to the exchange6GGA approximation lowers the energy relative to L&f2c-
correlation energy of an infinite solid. We consider a jelliumond column in Table | and Fig.)6The amount of the low-
slab with an infinite barrier at the surface, for which the ering depends on the average va{sg, which is smaller for
density profile can be written analyticallf(The overall the molecule than for the isolated atoms. Thus atomization
trends are similar to those for the self-consistent barrier asenergies are lower in GGA.
sociated with a step edge to the positive backgrdintive In Table IV we list values ofP andQ for atomization
define the surface contribution to the exchange-correlatioprocesses. As seen in the right-most column, the inequality
energy as the difference between the exchange-correlatig®) is never violated, which means the GGA binding energy
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TABLE IV. Quantities from Eq.(9) for atomization processes. Inequalif9) is satisfied whenever gradient
corrections lower the atomization energy.

System P Q Inequality

H,— 2H 1.23 —5.04102 1.9810°* > 1.2510°1!
N,—2N 1.16 1.9010 3 432102 > 1.76 102
Li,—2Li 1.21 -1.6510°% 1.4510°2 > 7.3910°°
LiIF—Lit+F 1.15 0.00 6.8010 3 > 3401078
spuk_, g 1.12 1.1610°° 2.47.1072 > 8.27.10°°
LiFfee, Lit+F- 1.15 0.00 1.921072 > 6.81:10°%
Hz;—H+H, 1.22 —4.09102 6.76 10 2 > —1.42:10°2
HN,—H+N, 1.16 1.0610°2 1.2010°2 > 4111073

is lower than the LSD energy for every reaction listed in theof reaction coordinate, are the N-N distance and the angle
table. The inequality is close for f1because of the large H-N-N. Again the average valués) is the highest for a
increase in{rg) that occurs upon atomization of this mol- configuration where the H atom is far away from thg N
ecule, and indeed the GGA lowering of the binding energy ofmolecule, and's) decreases all the way to the equilibrium
H, is unusually small in both an absolute and a relativeenergy. The value dfs) at the transition state is higher than
sensé. at the equilibrium geometry, but lower than when the parts
are separate@lable V).

We can now explain why GGA gives higher energy bar-
riers than LSD does. LSD usually gives a small energy bar-
Our final example is the energy barrier to formation at arier, or none. In fact, Kis bound at the LSD levéf*2i.e.,
transition state, which is usually underestimated by LSD. Irnthe LSD total energy is more negative for the TS then for the
many cases LSD predicts no barrier. GGA gives higher enseparate reactants. Gradient corrections lower the energy of

ergy barriers which are nearer to experimental vafdé%an  the separate reactariarger(s)) more than they lower the
early explanatiof? focussed on the self-consistent effect of energy of the TYsmaller(s)). As Table IV shows, the in-
gradient corrections on the density, even though the authoksquality of Eq.(9) is satisfied by the break-up of the transi-
of Ref. 39 found that gradient corrections still raised thetjon state, which is thus favored by gradient corrections.
barrier when applied non-self-consistently to LSD densities.  Qur calculations on the LSD densities confirm this ex-
We present a simpler explanation here, which translates intpectation_ For the HH, reaction, the energy barriers in eV
physical language the chemical explanation of Ref. 40: LSDare —0.11 in LSD, 0.15 in the PBE GGA, and experimen-
favors bonds too much, and so lowers the energy of theally 0.42% For the H+N, reaction, the corresponding bar-

transition-state complex relative to that of the separated reriers to the formation of H) are 0.03 in LSD, and 0.32 in
actants.
We have chosen two simple reactions as test cases: hy-
drogen transfer in the reactionttH,—H,+H, and a hydro-
gen addition to N. The reason to choose these two reactions »
is their simplicity. Also a sufficient literature is available on 0.94 -
this topic(see Refs. 41 and 42 for the+tHH,— H,+H reac-
tion, and Refs. 43 and 44 for thetN,— HN, reaction. |
For the first reactiorthydrogen transf¢rwe used LSD 0.92 L
densities, just as in Ref. 41. The geometry of the transition
from one structure to another is linear and the transition state
has a very high symmetiD..;,). We chose one of the bonds [ TS point
to be a reaction coordinatg.,., running from infinity to 0.9 i
0.95 A, which is the LSD bond length at the transition state.
At each value ofd,. . We optimized the second or depen- .
dent bond lengthdye, and then calculated the DFT 0.88 -
exchange-correlation energies needed to find the average val- I
ues of(rg), {|¢[), and(s). |
The most important quantitys) in our analysis is plot- 086 -V oo L
ted in Fig. 8. Its value is highest when the hydrogen atom is 1 2 d 3
far away from the H molecule @,¢¢; iS big) and minimizes react
at the transition state. A similar story can be told for the ) )
hycrogen addiion to N The reaction coordinate i here the 71,8 e verade redec ensiy grelenbited oo cton i e

distance between_ the hydrqgen and one _nitrogen atom. TWsnsition state(TS) occurs atd,e,.=0.95 A, where alsq's) attains its
dependent coordinates, which are optimized for each valuginimum. LSD densities have been employed.

6. Transition state barriers

<8> b
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TABLE V. Average values for the reactants, transition states, and products
for the two chemical reactions studied. LSD densities were used to calculate
all results for the H-H, and H+N, reactions, including the difference be-
tween the GGA and LSD exchange-correlation energresnH).

System  EGM-EC” (9 () (9 RS” REA

H+H, —49.7 1.804 0.549 0.945 0.990 1.001
Hs —37.7 1.773 0.393 0.870 0.994 0.999
H+N, —795.0 0.572 0.142 0.754 0.990 1.001
H+N, (TS —781.6 0.570 0.119 0.749 0.991 1.001
HN, —776.0 0.567 0.079 0.744 0.992 1.002

GGA; no experimental value is available. As might have
been expected frofs), the barrier to dissociation of HNs
actually lower in GGA(0.39 eV) than in LSD (0.54 e\}.
Mdller-Plessef®” configuration-interaction calculatioA$,
and experiment§ indicate that HN is metastable with re-
spect to N and H. Our results show that PBE gives a cor-
rection in the right direction compared to LSD but predicts
HN, to be stable by 0.07 eV. FIG. 9. The reduced Laplacia®?n/(2kg)2n (solid curve for the N atom.

santrodient correctons to energy barriers afe most impo ;T“t T (dathed cune ihereke andi, re tn looal Fermi and screen-
ng wave vectors.

semble or dis-assemble, including cataly&ig1 some cases, ’

the transition state may havewer bonds than the initial

state. In recent work on barriers to diffusion of Ag adatoms

on Ag(100 and Ag511), Yu and Schefflé compare a va- ecules({;\s can be seen frgm Tables 1 and 2 of Rej.éﬂ?d

riety of LSD and GGA barriers to exchange and hoppingoverestlmate energy barriéfs-the well-known deficiencies

diffusion, both on planes and at step edges. In every case tied the Hartree—Fock methpd. '

coordination number is reduced at the transition state. Since N Section |, we mentioned another measure of density

inhomogeneity effects should outweigh density changednhomogeneity, the reduced L_aplacﬁﬁn/(ZkBF);On,_wh|ch

here, Eq.(9) implies that GGAreducesbarrier heights rela- 1S @n ingredient of some density fU”Ct'O”‘Z’ﬁSS- " Figure 9

tive to LSD, consistent with their results. Less severe redisplays this quantity for the N atom. It is large near the

arrangementse.g., internal rotationsmay produce little nucleus, |r_1the region of corg-valence overlap, an_d mthe tail,

change in(s) or (r) (or in the number of bond9, and thus bgt smqll in the va_lence region. Also shown in F|g. 9 is the

little differencd®*¥5%between GGA and LSD barriers. For dimensionless raticke /ks, where ks=(4ke/m)™ is the

Ag on the much smoother A1) surface, there is only a Thomas—Fermi screening wave vector or inverse screening

small difference in LSD and GGA barrier heigfts. length. This ratio is of some interest because the small pa-
rameters of the gradient expansion for the correlation energy

ares, (kg /kg)s, etc.
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