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Must Kohn-Sham oscillator strengths be accurate at threshold?
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The exact ground-state Kohn—Sham (KS) potential for the helium atom is known from accurate
wave function calculations of the ground-state density. The threshold for photoabsorption from this
potential matches the physical system exactly. By carefully studying its absorption spectrum, we
show the answer to the title question is no. To address this problem in detail, we generate a highly
accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the
experimental spectrum and that of the exact ground-state Kohn—Sham potential. © 2009 American

Institute of Physics. [doi:10.1063/1.3222638]

I. INTRODUCTION

Ground-state density-functional theory (DFT)'™ is en-
joying more and more popularity for calculating various
atomic and molecular properties. The balance between accu-
racy and calculation speed in DFT is achieved using an aux-
iliary Kohn—Sham (KS) system of noninteracting electrons.
If the exact exchange-correlation (XC) energy were known
as a functional of the density, DFT would yield exact
ground-state energies.

In principle, all atomic and molecular properties are
functionals of the ground-state density, including the proper-
ties of excited states,” but in practice only the ground-state
energy functional has been usefully approximated. The
excited-state properties of the noninteracting KS reference
system are often used to understand and even approximate
those of the true interacting system, but in most cases this
has no theoretical justification. Thus the results of excited-
state calculations with ground-state DFT must be carefully
examined, since the KS orbitals and energies are (within
ground-state DFT) artificial constructs designed only to re-
produce the ground-state density. The more we understand
about the differences between the KS system and the real
system, the better we can determine whether an excited prop-
erty of the KS system can be justified as an approximation to
the real property. We study the exactness of the KS oscillator
strength at the first ionization threshold in this paper.

On the other hand, time-dependent DFT (TDDFT) in
principle gives several exact properties of excited states.’
Linear response TDDFT is a method that begins from
ground-state DFT, and couples ground-state KS transitions to
give the correct properties of excited states.”® If we could
use the exact time-dependent functional, the TDDFT method
would exactly generate the properties of the real system from
the results of the ground-state KS calculation of systems with
noninteracting electrons. Thus our study of the exactness of
the KS oscillator strength is converted to a question about
the difference between ground-state DFT and TDDFT.
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This may seem to be a simple problem, since ground-
state. DFT is not designed to give the correct oscillator
strength at the ionization threshold. The oscillator strengths
can be extracted from strengths of the poles of the linear
response function, and the KS linear response function does
not involve the Hartree-XC (HXC) kernel [refer to Egs. (10)
and (11)], so there is no a priori reason to expect the exact
KS system to give the correct oscillator strength at the ion-
ization threshold. By “exact KS” we mean the KS potential
as extracted from an extremely accurate ground-state
density,9 thereby avoiding the difficulty of distinguishing the
effect of approximate ground-state XC functionals from that
of KS-DFT itself. However, the ionization threshold of the
exact KS system is equal to the ionization threshold of the
real system, since Koopmans’ theorem holds exactly for the
exact KS system.3 Thus this specific excited-state property is
given exactly by the KS system, despite the lack of input
from the Hartree and XC kernels. This is the only known
direct link between real excited-state properties and their KS
counterparts, and such links have proven invaluable in study-
ing and understanding both ground-state DFT and TDDFT."

Given the usefulness of such links, and how both the
strength and position of the threshold occur at the same fre-
quency, it is important to ask the title question, to see if some
unknown exact condition might be lurking beneath the sur-
face. To do this, we study one specific case. If, for He, we
find definitively that the threshold oscillator strength is not
given by the KS system, the answer is definitely no, and this
cannot be true in general. If we did find it to match, the title
question would remain open, and we would look for other
cases and/or a proof of the equality. As we show below, the
answer is indeed no.

This has important consequences for the unknown exact
XC kernel of TDDFT. To shift an ionization threshold, the
kernel would need to be complex, with a branch cut at the
position of the KS threshold. This is not the case for the first
ionization threshold, but is for all higher ionizations. On the
other hand, since we show that, typically, the oscillator
strength of the KS system is corrected by TDDFT, this means
that, at the threshold, the HXC kernel must have some non-
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FIG. 1. KS and experimental single-electron oscillator strength of He near
threshold (Refs. 12 and 13). The ionization threshold is at 0.9036 Hartree.
The bound-region spectrum is renormalized with the factor 1/ n;, where n; is
the principal quantum number of the final state.

zero off-diagonal matrix elements. To understand this, Ref.
11 showed that, in the absence of off-diagonal matrix ele-
ments, the KS oscillator strengths are unchanged by the ac-
tion of the kernel.

In this paper we will show the answer to the title ques-
tion is no. To prove that the KS oscillator strength does not
have to be exact at the ionization threshold, we only need to
provide a counter-example, so we study the helium oscillator
strength spectrum in this paper. The helium atom is the sim-
plest multielectron system, and thus a theorists’ favorite. Fig-
ure 1 shows the photoabsorption spectrum of helium near the
ionization threshold (24.6 €V), and the two curves are of the
real helium and of the exact ground-state KS helium. Figure
1 suggests the answer to the title question is no, but there
could conceivably be near-degeneracies near the ionization
threshold, and we wish to demonstrate that the oscillator
strength curve can be expected to be smooth near the ioniza-
tion threshold explicitly. Hence we use a fit to explicitly
show that the oscillator strength curves of the real helium
and the KS helium are smooth across the ionization thresh-
old, showing there are no near-degeneracies at the threshold.
This allows the comparison of the value of the oscillator
strengths at the ionization threshold of these two systems,
showing that the difference between the spectra near the
threshold of KS and real systems is inherent. Since our pur-
pose is to understand the difference between KS system and
the real system, the fit is not done to the data points but to the
general properties, such as the oscillator strength sum rules.
We test our fit on the hydrogen oscillator strength spectrum,
and then apply the fit to KS helium, real helium, and the
result of using approximated TDDFT on the exact ground-
state KS spectrum.

Il. BACKGROUND

In this section we provide a brief definition of notation
and concepts used in this article. For any interacting elec-
tronic problem, the exact ground-state KS system is de-
scribed by the KS equations2

1
- EVZ +u,(r) (¢(r) = €4(r), (1)

and has the exact ground-state density
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N
n(r) = 2 |(r)|. (2)
i=1

Here and unless otherwise noted, we use atomic units so that
energies are in Hartrees and distances in Bohr radii. The KS
orbitals and eigenenergies are denoted as #;(r) and €;, and
v,(r) is the KS potential, which can be separated into three
pieces: external, Hartree, and XC potential.z’3 The exact de-
pendence of the XC contribution on the density is unknown
and many approximation schemes are available, but in this
article we use the exact value.” This is calculated by first
obtaining the accurate density from a quantum Monte-Carlo
calculation, then inserting the density into the KS equations
and finding the potential that gives this density.9

The absorption spectrum in terms of photoabsorption
cross section o is defined as below'*

71,2
o) =TS £, 000~ 0,) + T, ®)
q

where ¢ denotes bound-to-bound transitions from state i to
state f, f, is the oscillator strength of transition g, and 0oy
which begins at w=/ is the spectrum of the continuum re-
gion. For bound-to-bound transitions, the oscillator strengths
are defined as

2

f=20(W|3 7w

(4)

As defined in Eq. (3), the spectrum comprises the discrete
bound-to-bound transitions and the continuous bound-to-
continuum transitions. We define ¢(w) as the analytical con-
tinuation of o, (w) for w<<I. This can be found easily by
considering the bound oscillator strength as a continuous
function of w,, yielding14

de

o= (49

dn ®)

e=w—1I

In reverse, the usual oscillator strength for transition g=1s
—np is given by

fq=(f)&<1+e), (6)

n

where € is the energy of the np state.
The oscillator strengths are related to the dynamic polar-
izability a(w) by the following equations:

a(w)zjcﬁrf &Er'zz' X, o), (7)
FHw) = 4%3@(@)], (8)

where x(r,r’;w) is the linear response function of the real
system, defined by the Fourier transform of the linear re-
sponse function in time
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The polarizability and the linear response function of the KS
spectrum is defined similarly. The KS linear response func-
tion is related to the real (or “exact TDDFT”) linear response
function by a Dyson-like equation15

X(r,r’;w)=YKs(r,r’;w)+Jd3r1Jd3r2XKS(r,r1;w)foc
X(ry, ;@) X(rs,r' s o), (10)

where fuxc(r,r’; o) is the HXC kernel in frequency domain,
defined as the Fourier transform of the HXC kernel in time
domain

1 5vxc(r,t)
on(r',t')’

(11)

Juxc(r,r';e—1") = ;
r—r’|

The linear response function is also represented in Lehmann
-
representation 6

Tra'io)= lim S { LADEI) g0l }

70, 0 | @=Qu+in w+Q,+in

(12)

where g,(r)=(¥,|i(r)|¥,) and Q,=E,—E,;.

Sum rules are moments of the oscillator strength spec-
trum, and they are related to various theoretical or experi-
mental physical properties of the ground-state atom. They
are expressed with the following formula'”'®

e’}

S;=> a/;aﬁf dow/o(w), (13)

1

where s denotes the discreet 1s— np transitions and j is an
integer. We only use —2=;=2 in this article. These sum
rules have simple relations to physical properties, such as the
ground-state density, polarizability, and kinetic energy, and
thus they are easily calculated or determined from experi-
ment. The specific relations we use are

S_, = al0), S_1=§<‘2jrj‘2>o, So=N,
(14)
Sl=§<‘szj‘2>0’ S2=;—17'an(0),

where Z is the nuclear charge. Egs. (13) and (14) not only
provide connections between the spectrum and several physi-
cal properties, but also imply that S, and S, are identical in
the KS and the real spectrum, since the ground-state density
in exact DFT is by definition equal to that of the real system.
These equations also suggest the possibility of a fit which
takes general physical properties as input and is able to gen-
erate the entire spectrum for the H atom.

As shown in Eq. (13), sum rules of the bound-region of
the spectrum are calculated by a summation of the discrete
Rydberg states, and there is no trivial formula for calculating
the energies of these states in multielectron atoms. In order
to characterize these energies for the summation, we use
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FIG. 2. Exact hydrogen spectrum. The ionization threshold is at 0.5 Hartree.
Note that the bound-region spectrum has been renormalized so that it joins
smoothly with the continuum region spectrum.

quantum defect theory.14 In quantum defect theory, the en-
ergy of the orbital with principle quantum number n in a
multielectron atom is expressed thus

o
2(” - /'l“n)2 .

This expression is used in calculating the bound part of sum

rules if the formula for u is known. The quantum defect is a

smooth function of energy, and can be very accurately
. 19, . .

approximated ~ by its Taylor expansion around u=0

En= (15)

p

wP(E)= 2 wE, E=w-I. (16)
i=0

For helium, this curve is essentially linear, so u= o+ uE,
where ©y=0.0164 and ©;=0.0289 for KS helium, and u,=
—0.0122 and wu;=-0.0227 for real helium. Inserting this ex-
pression into the E, formula and solving self-consistently
yields highly accurate excitation energies.20

To illustrate these features in an exactly soluble case, we
use the hydrogen spectrum as an example in this article. The
exact form of the hydrogen oscillator strength is available
using Eq. (4) (n is the principal quantum number)

-2n
<'f1w,,,=256ng<n+ 1) 13(n% - 1)4], (17)
n—1
Fry gy =128 exp[h(k)]csch(%)/[S(l +10)4, (18)

where h(k)={m+2 tan~'[2k/ (k2= 1)]=2m0(k=1)}/2, k=12
is the wavevector of the continuum wave function, and 6 is
the Heaviside step function. The wave functions of the bound
states are energy-normalized by n*2, so the bound state wave
functions and continuum wave functions agree with each
other at ionization threshold. The hydrogen spectrum is
shown in Fig. 2. We represent the bound transitions as by
simple line segments whose height is &.

lll. HIGH-FREQUENCY LIMIT

Figure 1 suggests the KS oscillator strength and exact
oscillator strength share the same asymptotic form. Real os-
cillator strength spectra of atoms decay as @™/ 2 182122 Here
we derive the decay of the KS oscillator strength.
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The oscillator strength is related to the transition dipole
matrix element (W,[2Z;|¥;) by Eq. (4). In the KS system,
the matrix element is greatly simplified, and can be written
with one-electron KS orbitals as (i|r cos 6]¢;). For the ab-
sorption spectrum of the KS helium atom, the final orbital is
a p orbital with wavevector k, and the initial orbital is the 1s
orbital. In the high-frequency limit of the absorption spec-
trum (w— ), k— o as well, and ¢y, (r) is highly oscillatory,
where ¢ denotes radial wave functions. Then the matrix el-
ement is determined by the integrand near the nucleus. Thus
the matrix element can be evaluated with the approximation
of the initial KS orbital below

¢i(r) = exp(— ar)[ ¢,(r)exp(ar)]
~ exp(— ar){ & (0)r + %[2(1(# (0) + ¢;’(0)]r2},

(19)

where ¢; is the spherical wave function of the initial KS
orbital, and « is a positive real number characterizing the
decay of the wave function. The cusp condition® holds in
KS helium, so ¢!(0)=-2Z¢;(0), where Z=2 is the nuclear
charge. Then ¢; is rewritten as

$i(r) = exp(= an{r + (= 2)r*}¢/(0). (20)

In k—cc limit, only the —2/r Coulomb well in the KS
potential is important to ¢y,,. Then ¢y, is approximated with
hydrogenic wave functions, and the approximation becomes
exact when k— . The transition dipole matrix element is
evaluated at k— o limit.

(ylr cos 0|¢i>—>{4\/iz¢;(0)]k-9/2 Jk—oo. (21)
3

The oscillator strength spectrum then decays as
2\6
(w) — 3 [¢/(0)ZP 0™ o— . (22)
aa

Equation (22) implies the asymptotic decay of the oscil-
lator strength only depend on the properties at the nucleus.
For hydrogen and helium, Eq. (22) is related to the electronic
density by

842
(w) — %Zzn(O)oo_w2 L@ — 0, (23)

For hydrogen, the coefficient of the w™”'? term is 8\/5/377.
Equations (22) and (23) give the correct result. With these
equations, the asymptotic behavior of the oscillator strength
spectrum is determined. The discussion of the high-
frequency part of the KS helium oscillator strength spectrum
can be extended to other KS atoms easily, as the KS system
is an one-electron picture. Following similar procedure as
described here, it can be easily verified that the high-
frequency part of the KS oscillator strength of other KS at-
oms can also be expressed in terms of the density at the
nucleus. As only s orbitals has nonzero contribution to the
density at the nucleus, one would expect that Eq. (23) also
holds for other atoms, using the corresponding Z and n(0).

J. Chem. Phys. 131, 114308 (2009)

The half-power decay of Eq. (23) differs noticeably from
the decay discussed by van Leeuwen,'® but here we are con-
sidering the imaginary part of the response function, whereas
there it is the real part of the response function. We are
currently investigating relationship between the two in the
general case.

IV. FITTING OF ONE- AND TWO-ELECTRONS
SPECTRA USING SUM RULES

We fit the oscillator strength spectra to answer the title
question. Since we want to study the near threshold behavior
of the oscillator strength spectrum, the position of the ion-
ization threshold is treated explicitly in our fit. We define x
and g(x) as

x=2(w-1),
(24)
ot _
g(x)= ?U(w).

The fit has to satisfy a few criteria to generate the correct
shape for the oscillator strength spectrum. The fit is em-
ployed to study the exactness of the KS oscillator strength at
the ionization threshold, where the fit needs to have the cor-
rect series expansion. We take the expansion of the hydrogen
oscillator strength at the ionization threshold

Go—D=cy+ci(w=D+c(w=1D*+ . (25)

We assume the fit formula has the same expansion near
the ionization threshold. This assumption is justified by the
following consideration. Near the ionization threshold, the
oscillator strength spectrum of real helium is determined by
the Rydberg states, which resembles the hydrogenic states.
The KS helium is a system with noninteracting electrons, so
the oscillator strength spectrum resembles that of one-
electron systems.

We use the fit to show that the oscillator strength spec-
trum around the ionization threshold is smooth and that no
near-degeneracies exist around the ionization threshold. Thus
the fit also need to accurately generate the entire oscillator
strength spectrum, including both discrete and continuum re-
gions, so that the conclusions from the fit are convincing. To
generate the correct continuum spectrum, the fit need to have
the correct series expansion when w— . As in Sec. III, the
asymptotic series expansion of helium has the same form as
hydrogen

Fo—0)=diw " +dyow* + dyo™ " + -+ (26)

The shape of the g(x) function is shown in Fig. 5. Our g-fit
formula is

glx)=a+b[1-exp(-—cx)]+ d\r’m, (27)

where a, b, ¢, d, and e are fit parameters. Note that aside
from giving the correct series expansion at the ionization
threshold and asymptotically, the form does not have other
explicit physical motivation. It is solely designed to recover
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TABLE I. Sum rules from &(w) and g(x) fit.

J. Chem. Phys. 131, 114308 (2009)

S, S S, S,
g-fit 4.4999 2 0.6667 1.3371
H Exact 45 2 213 43
g-fit 0.7563 0.7952 1.9114* 15.167°
He KS° Exact 0.7579° 0.7957¢ 1.9114° 15.167¢
g-fit 0.691 0.7504 2.09° 15.167°
He Exp.” Exact 0.698 0.754 2.09 15.167°
g-fit 0.6912° 0.7519 2.0414 15.167°
He ALDA" Exact 0.6912° 0.7957 1.9114° 15.167

“This sum rule is a constraint. S, is always a constraint.(S,=1 for all systems after converted to single-electron

model).

PAll the sums are converted to corresponding single-electron sums.

‘Reference 24.

The expected value of S_; and S, are calculated from the exact helium density (Ref. 9).
“The expected value of experimental data are listed in Ref. 18.

"Reference 25.

the shape of the oscillator strength curves. We determine the
parameters by the process below.

The important points are fixed on the fit. Since we use
the fit to study the oscillator strength around the ionization
threshold, we fix the value and the first derivative of the
oscillator strength at the ionization threshold. The asymptotic
coefficient in Sec. III is not fixed, but used as the initial point
of search. The remaining three parameters are determined by
applying oscillator strength sum rules [Eq. (13)] to the fit
curve. We evaluate the sum rule of a fit curve by adding the
contributions from the discrete transitions and that from the
continuum. For the discrete region, we calculate the fre-
quency of a transition with quantum defect theory [refer to
Egs. (15) and (16)]. The oscillator strength of the transition is
then evaluated with the fit formula (with a certain initial
choice of parameters). We add the contribution of different
discrete transitions up to n=1000. For the continuum region,
we carry out a numerical integration over the entire con-
tinuum.

The exact values of the oscillator strength sum rules are
available for both KS and real helium, since these sums are
related to various physical properties [refer to Eq. (14)]. To
fit the oscillator strength spectrum, we choose an initial set of
the parameters. Only three fit parameters are independent, so
we choose three sum rules to fit. We minimize the difference
between the sums evaluated on the fit curves and the exact
sums obtained from physical properties by varying the three
parameters numerically. The search ends when the accuracy
of the fitted sums reach a predetermined goal. In our appli-
cation, the difference between the sums of the fit and the
exact sums is smaller than 1078, The accuracy of the fit is
also checked by evaluating the unused sum rules (Table I).

The fit can use two to four sum rules depending on how
many points are fixed in the beginning. Applying more sum
rules increases the overall accuracy of the fit, but the process
of numerically fitting sum rules becomes more difficult. All
results in this paper are obtained with three sum rules. With
Eq. (27), the sum rules of the fit curve can be written out in
terms of the parameters.

o 8) 4. - 5 .3
S.i=S;L +§ 2°7d(2I - ey S/ZBl—em(E —J’E>

+P7la+b+b(j = 3)exp(2eD)Ey [(2eD) (3 =) [,

(28)

)

Sé = 22 BHa+b[1—exp(cf)]+dVe - B}y.
n=2

where B=(-uo—pi/n*+n)7", y=(I-B*/2)™, py and w,
are the parameters in the quantum defect formula [Eq. (16)],
B is the incomplete beta function, and E is the exponential
integral function.”®

With Eq. (27), we obtain the oscillator strength curves of
KS helium and real helium. We also apply our method to the
ALDA (adiabatic local density approximation) helium (with
exact KS ground-state) as the first step of studying the
threshold behavior in TDDFT (Fig. 6). The comparison of
results and figures of oscillator strength curves are shown in
Sec. V and in Fig. 3.

Note that the fit is not designed to be used as an inter-
pretation tool, but to recover the shape of the oscillator
strength spectrum. Thus comparing the fit parameters of dif-

1.2 T

= KS fit ———--
2 1 Experiment fit
g 09 F 1st ionization threshold i
z ' 2nd ionizaiton threshold
% Experiment data .
= KS data v
% 0.6 E
=]
8
E o3f |
=)
9]
<]
1

0 Il Il Il I

20 40 60 80 100

w(eV)

FIG. 3. KS and experimental single-electron oscillator strength and fit curve
of He near threshold (Refs. 12 and 13) The ionization threshold is at 0.9036
Hartree. The curves are converted from g(x) fit [Eq. (27)]. The upper curve
represents the exact KS helium oscillator strength data and fit curve, and the
lower curve represents the experimental helium oscillator strength data and
fit curve.
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FIG. 4. KS and experimental single-electron oscillator strength and fit curve
of He (Refs. 12 and 13) This figure show the overall shape of the oscillator
strength curves. The solid dots and curve represents the exact KS helium
oscillator strength data and fit curve, and the triangular dots and dashed
curve represents the experimental helium oscillator strength data and fit
curve.

ferent curves (exact KS, ALDA, and experimental) is largely
meaningless as there is no visible trend. An exception is the
fit parameter d, which describes the shape of the asymptotic
part of the oscillator strength curve, as it is related to the
coefficient of the leading term (w™"?) of the asymptotic ex-
pansion of the oscillator strength. The fit parameters of re-
lated systems are provided in the supplementary material.”’

V. RESULTS

The g-fit curves of the KS helium and the real helium are
shown in Figs. 3 and 4. The fit is very accurate in the entire
range of w. The accuracy is also checked with the unused
sum rules, listed in Table I. The results of the hydrogen atom
are listed as a reference, and it shows that the inherent error
of the method is small. With these curves, we explicitly show
that the oscillator strength spectrum is a smooth curve
around the ionization threshold, and thus the oscillator
strength of the exact KS helium is not that of the real helium.
The autoionizing resonances in real helium are not included
in our fit, but the fit is still accurate even near the resonances
(Fig. 7). The errors in the sum rules are small, so the fit curve
can be used as a background for studying these autoionizing
resonances, and the pure resonance peaks can be obtained by
subtracting the fit curve from the experimental spectrum.

One reason for the good performance near the reso-
nances is that the autoionization resonances occur at rela-
tively high frequencies, so their contributions to the smaller
sum rules are neglectable. The other reason is the shape of

0.6 T

Exact Hydrogen
0.5 Tonization threshold

04 -

03 | b

g(x)

02 i

0 Il Il
0 100 200 300

x(eV)

FIG. 5. g(x) of hydrogen [Eq. (24)]. The ionization threshold is at x=0.
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FIG. 6. Exact/ALDA oscillator strength and fit curve of He. These oscillator
strength data are obtained from an ALDA calculation with exact KS ground-
state. We use a box code (Ref. 20) to calculate these data. There is a kink in
our data near the ionization threshold, because the continuum near the ion-
ization threshold mixes with higher Rydberg states, which are not well-
described by the box code.

the autoionization resonances in He is asymmetric, which
have both a dip and a peak in the resonance region.z&29 The
contribution of these two parts to the sum rules cancels, so
the values of the sum rules are not influenced by the auto-
ionization resonances too much (even for S,), and thus the fit
accurately generates the oscillator strength curves for He.

VI. CONCLUSIONS

If the answer to the title question had been yes, then it
would yield a strong exact condition on the XC kernel in
TDDFT, which many approximations would fail. Thus we
studied the title problem. We have shown that KS oscillator
strength of He is not exact at the ionization threshold (even
though the position of the threshold is exact), and so the
answer to the title question is no. This implies that the HXC
kernel in TDDFT has nonzero off-diagonal matrix elements
at the threshold, and simple approximations such as the
single-pole approximation are insufficient in this region.

We also developed a numerical fit to generate the spec-
trum near the ionization threshold from a few physical con-
ditions such as sum rules. The fit is accurate for all frequen-
cies due to the smoothness of the oscillator strength near the
threshold, but also works well for the spectrum far from the
ionization threshold due to the correct asymptotic behavior.
The fit is not physically motivated, but is a simple accurate
representation of the curves.
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FIG. 7. g-fit of the experimental helium oscillator strengths near the au-
toionizing resonances.
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These results are not general since we only studied at-
oms with one or two electrons, and multielectron resonances
are ignored as in Fig. 3. However, obvious generalizations
can be performed for atoms with more electrons since we
only use the general properties (the asymptotic behavior, the
value and first derivative of the spectrum at ionization
threshold, and sum rules) in our method. Thus multielectron
resonances can be dealt with by subtracting their contribu-
tion from sum rules, and thus our method can be extended to
other atoms by following the methods of Secs. III and IV.
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