
33 Scattering Amplitudes

A. Wasserman and K. Burke

33.1 Introduction

Electrons are constantly colliding with atoms and molecules: in chemical
reactions, in our atmosphere, in stars, plasmas, in a molecular wire car-
rying a current, or when the tip of a scanning tunneling microscope in-
jects electrons to probe a surface. When the collision occurs at low ener-
gies, the calculations become especially difficult due to correlation effects
between the projectile electron and those of the target. These bound-free
correlations are very important. For example, it is due to bound-free corre-
lations that ultra-slow electrons can break up RNA molecules [Hanel 2003]
causing serious genotoxic damage. The accurate description of correlation
effects when the targets are so complex is a major challenge. Existing
approaches based on wavefunction methods, developed from the birth of
quantum mechanics and perfected since then to reach great sophistication
[Morrison 1983, Burke 1994, Winstead 1996], cannot overcome the exponen-
tial barrier resulting from the many-body Schrödinger equation when the
number of electrons in the target is large. Wavefunction-based methods can
still provide invaluable insights in such complex cases, provided powerful com-
puters and smart tricks are employed (see, e.g., [Grandi 2004] for low-energy
electron scattering from uracil), but a truly ab-initio approach circumventing
the exponential barrier would be most welcome. The purpose of this chapter
is to describe several results relevant to this goal.

Imagine a slow electron approaching an atom or molecule that has N
electrons, and is assumed to be in its ground state, with energy EN

GS. The
asymptotic kinetic energy of the incoming electron is ε, so the whole system
of target plus electron has a total energy of EN

GS + ε. This is an excited
state of the (N +1)-electron system, and, as such, it can be described by the
linear response formalism of TDDFT starting from the ground state of the
(N + 1)-electron system. We will explain how.

The targets we will consider must be able to bind an extra electron. For
example, take the target to be a positive ion, so that the (N + 1)-electron
system, with ground-state energy EN+1

GS , is neutral. Previous chapters in this
book have described how to employ TDDFT to calculate, e.g., excitation
energies corresponding to bound → bound transitions from the ground state.
However, in the scattering situation considered here, the excitation energy is
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known in advance: it is I + ε, where I is the first ionization energy of the
(N + 1)-system, I = EN

GS − EN+1
GS . It is the scattering phase shifts, rather

than the energies, which are of interest in the scattering regime.
The TDDFT approach to scattering that we are about to discuss

[Wasserman 2005b] is very different from wavefunction-based methods, yet
exact in the sense that if the ground-state exchange-correlation potential (vxc)
and time-dependent exchange-correlation kernel (fxc) were known exactly, we
could then (in principle) calculate the exact scattering phase shifts for the
system of N + 1 interacting electrons. Any given approximation to vxc and
fxc leads in turn to definite predictions for the phase shifts. The method
involves the following three steps: (i) Finding the ground-state Kohn-Sham
potential of the (N + 1)-electron system, vN+1

KS (r); (ii) Solving a potential
scattering problem, namely, scattering from vN+1

KS (r); and (iii) Correcting the
Kohn-Sham scattering phase shifts towards the true ones, via linear response
TDDFT.

We start by reviewing those aspects of the linear response formalism of
TDDFT that were introduced in Chap. 1 and will be used in the following sec-
tions. We then derive TDDFT equations for one-dimensional scattering, and
work out in detail two simple examples to show how to calculate transmis-
sion and reflection amplitudes in TDDFT. The discussion is then generalized
to three dimensions, where we explain how the familiar single pole approxi-
mation for bound → bound transitions can be continued to describe bound
→ continuum transitions to get information about scattering states. We end
with a brief summary and outlook.

33.2 Linear Response for the (N + 1)-Electron System

For a thorough treatment, see Chap. 1. Here we only review what will be
needed for the following sections. The central equation of the linear response
formalism of TDDFT is the Dyson-like response equation relating the sus-
ceptibility χN+1(r, r′, ω) of a system of interacting electrons with that of its
ground-state Kohn-Sham analog, χN+1

KS (r, r′, ω) [Petersilka 1996a], see (1.23).
The N + 1 superscript was added in order to emphasize that we are going
to perturb the ground-state of the (N + 1)-electron system, where N is the
number of electrons of the target. In what follows, however, for notational
simplicity, the (N + 1) superscript will be dropped from all quantities. We
write the spin-decomposed susceptibility in the Lehman representation:

χσσ′(r, r′, ω) = lim
η→0+

[
∑

i

Fiσ(r)F ∗
iσ′(r

′)
ω −Ωi + iη+

+ c.c.(ω → −ω)

]
, (33.1)

with

Fiσ(r) = 〈ΨGS|n̂σ(r)|Ψi〉 ; n̂σ(r) =
N+1∑

l=1

δ(r − r̂l)δσσ̂l
(33.2)



33 Scattering Amplitudes 495

where ΨGS is the ground state of the (N + 1)-electron system, Ψi its ith

excited state, and n̂σ(r) is the σ-spin density operator. In (33.1), Ωi is the
ΨGS → Ψi transition frequency. The term “c.c.(ω → −ω)” stands for the
complex conjugate of the first term with ω substituted by −ω. The sum
in (33.1) should be understood as a sum over the discrete spectrum and
an integral over the continuum. All excited states (labelled by i) with non-
zero Fiσ(r) contribute to the susceptibility. In particular, the scattering state
discussed in the introduction consisting on a free electron of energy ε and an
N -electron target, contributes too. How to extract from the susceptibility the
scattering information about this single state? The question will be answered
in the following sections, starting in one dimension.

33.3 One Dimension

33.3.1 Transmission Amplitudes from the Susceptibility

Consider large distances, where the (N + 1)-electron ground-state density is
dominated by the decay of the highest occupied Kohn-Sham orbital [Katriel
1980]; the ground-state wavefunction behaves as [Ernzerhof 1996]:

ΨGS −→
x→∞

ψN
GS(x2, . . . , xN+1)

√
n(x)
N + 1

SGS(σ, σ2, . . . , σN+1) (33.3)

where ψN
GS is the ground-state wavefunction of the target, SGS the spin func-

tion of the (N+1)-electron ground-state and n(x) the (N+1)-electron ground-
state density. Similarly, the asymptotic behavior of the ith excited state is:

Ψi −→
x→∞

ψN
it

(x2, . . . , xN+1)
φki

(x)√
N + 1

Si(σ, σ2, . . . , σN+1) , (33.4)

where ψN
it

is an eigenstate of the target (labeled by it), Si is the spin function
of the ith excited state of the (N + 1)−system, and φki

(x) a one-electron
orbital (not to be confused with ϕ, notation reserved for Kohn-Sham orbitals).

The contribution to Fiσ(x) (33.2) from channels where the target is ex-
cited vanishes as x→∞ due to orthogonality. We therefore focus on elastic
scattering only. Inserting (33.3) and (33.4) into the 1D-version of (33.2), and
taking into account the antisymmetry of both ΨGS and Ψi,

Fiσ(x) −→
x→∞

√
n(x)φki

(x)δ0,it

∑

σ2...σN+1

S∗GS(σ . . . σN+1)Si(σ . . . σN+1) (33.5)

The susceptibility at large distances is then obtained by inserting (33.5) into
the 1D-version of (33.1):
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χ(x, x′, ω) =
∑

σσ′

χσσ′(x, x′, ω) −→
x,x′→±∞

√
n(x)n(x′)

×
∑

i

φki
(x)φ∗ki

(x′)
ω −Ωi + iη

δ0,it
δSGS,Si

+ c.c.(ω → −ω) (33.6)

Since only scattering states of the (N + 1)-electron optical potential con-
tribute to the sum in (33.6) at large distances, it becomes an integral over
wavenumbers k =

√
2ε, where ε is the energy of the projectile electron:

∑

i

φki
(x)φ∗ki

(x′)
ω −Ωi + iη

−→
x,x′→±∞

1
2π

∫ ∞

0[R],[L]

dk
φk(x)φ∗k(x′)
ω −Ωk + iη

(33.7)

Inthisnotation,thefunctionsφki
are box-normalized, and φki

(x) = φk(x)/
√
L,

where L→∞ is the length of the box. The transition frequency Ωi = EN+1
i −

EN+1
GS is now simply Ωk = EN

GS + k2/2 − EN+1
GS = k2/2 + I, where I is the

first ionization potential of the (N + 1)-electron system, and EM
GS and EM

i

are the ground and ith excited state energies of the M -electron system. The
subscript “[R],[L]” indicates that the integral is over both orbitals satisfying
right and left boundary conditions:

φ
[R]
[L]

k (x) →
{

e±ikx + r(k)e∓ikx , x→ ∓∞
t(k)e±ikx , x→ ±∞

. (33.8)

When x → −∞ and x′ = −x the integral of (33.7) is dominated by
a term that oscillates in space with wavenumber 2

√
k2 − 2I and amplitude

given by the transmission amplitude for spin-conserving collisions t(k) at that
wavenumber. Denoting this by χosc, and setting ε = 1

2k
2 we obtain:

t(ε) = lim
x→−∞

[
i
√

2ε√
n(x)n(−x)

χosc(x,−x, ε + I)

]
. (33.9)

Therefore, in order to extract the transmission amplitude t(ε) from the sus-
ceptibility when an electron of energy ε collides with an N -electron target
in one dimension, one should first construct the ground-state density of the
(N + 1)-electron system, perturb it in the far left with frequency I + ε, and
then look at the oscillations of the density change in the far right: the am-
plitude of these oscillations [“amplified” by i

√
2εn(x)−1] is the transmission

amplitude t(ε) (see Fig. 33.1).
The derivation of (33.9) does not depend on the interaction between the

electrons. Therefore, the same formula applies to the Kohn-Sham system:

tKS(ε) = lim
x→−∞

[
i
√

2ε√
n(x)n(−x)

χosc
KS(x,−x, ε + I)

]
. (33.10)

In practice, the Kohn-Sham transmission amplitudes tKS(ε) are obtained
by solving a potential scattering problem, i.e., scattering from the (N + 1)-
electron ground-state KS potential.



33 Scattering Amplitudes 497

Ground−state density 
of N + 1 systemPerturbation

Density change

Fig. 33.1. Cartoon of (33.9). To extract the transmission amplitude for an electron
of energy ε scattering from an N -electron target: apply a perturbation of frequency
ε + I on the far left of the (N + 1)-ground-state system (I is its first ionization
energy), and look at how the density changes oscillate on the far right. Once am-
plified, the amplitude of these oscillations correspond to t(ε). Reproduction from
the roof of the Sistine Chapel, with permission from artist

Illustration of (33.10)

For one electron, the susceptibility is given by [Maitra 2003b]:

χKS(x, x′, ε+ I) =
√

n(x)n(x′) [gKS(x, x′, ε) + g∗KS(x, x′,−ε− 2I)] , (33.11)

where the Green’s function gKS(x, x′, ε) has a Fourier transform satisfying
{
−i

∂

∂t
− 1

2
∂2

∂x2
+ vKS(x)

}
gKS(x, x′, t− t′) = −iδ(x− x′)δ(t− t′) . (33.12)

Let’s find the transmission amplitude for an electron scattering from a double
delta-function well, vext(x) = −Z1δ(x) − Z2δ(x − a). The Green’s function
can be readily obtained in this case as

gKS(x, x′) = g1(x, x′)−
Z2g1(x, a)g1(a, x′)

1 + Z2g1(a, a)
, (33.13)

where g1 is the Green’s function for a single delta-function of strength Z1 at
the origin. It is given by [Szabo 1989]:

g1(x, x′) =
1
ik

{
eik|x−x′| − Z1eik(|x|+|x′|)

ik + Z1

}
, (33.14)

with k =
√

2ε. Having constructed χKS explicitly, application of (33.10) yields
the correct answer

tKS =
ik/(Z1 + ik)

1 + Z2g1(a, a)
. (33.15)
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33.3.2 TDDFT Equation for Transmission Amplitudes

The exact amplitudes t(ε) of the many-body problem are formally related to
the tKS(ε) through (33.9), (33.10) and (1.23): the time-dependent response
of the (N +1)-electron ground-state contains the scattering information, and
this is accessible via TDDFT. A potential scattering problem is solved first
for the (N +1)-electron ground-state KS potential, and the scattering ampli-
tudes thus obtained (tKS) are further corrected by fHxc to account for, e.g.,
polarization effects.

Even though (33.9) is impractical as a basis for computations (one can
rarely obtain the susceptibility with the desired accuracy in the asymptotic re-
gions, as we did in the previous example) it leads to practical approximations.
The simplest of such approximations is obtained by iterating (1.23) once, sub-
stituting χ by χKS in the right-hand side of (1.23). This leads through (33.9)
and (33.10) to the following useful distorted-wave-Born-type approximation
for the transmission amplitude:

t(ε) = tKS(ε) +
1

i
√

2ε
〈〈HOMO, ε|f̂Hxc(ε + I)|HOMO, ε〉〉 . (33.16)

In (33.16), and from now on, the double-bracket notation stands for:

〈〈HOMO, ε|f̂Hxc(ε + I)|HOMO, ε〉〉 =
∫

dx
∫

dx′ ϕ∗HOMO(x)ϕ[L]∗
ε (x)fHxc(x, x′, ε + I)ϕHOMO(x′)ϕ[R]

ε (x′) , (33.17)

where ϕHOMO is the highest-occupied molecular orbital of the (N+1)-electron
system, and ϕ

[R]
ε (x) is the energy-normalized scattering orbital of energy ε

satisfying [R]-boundary conditions (see (33.8)). This is reminiscent of the
single-pole approximation for excitation energies of bound → bound transi-
tions, (1.31). Many other possibilities spring to mind for approximate solu-
tions to (33.9).

33.3.3 A Trivial Example, N = 0

The method outlined above is valid for any number of particles. In particular,
for the trivial case of N = 0 corresponding to potential scattering. Consider
an electron scattering from a negative delta-function of strength Z in one
dimension [Fig. 33.2]. The transmission amplitude as a function of ε is given
by (see Sect. 2.5 of [Griffiths 1995]):

t(ε) =
ik

Z + ik
; k =

√
2ε . (33.18)

How would TDDFT get this answer?: (i) Find the ground-state KS potential
of the (N+1) = 1−electron system. The external potential admits one bound
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ε
0

= −Z 2/2

ε
t ( ε) = ?

Fig. 33.2. Left: cartoon of an electron scattering from a negative delta-function
potential. Right: cartoon of an electron bound to the same potential; the ground-
state density decays exponentially, just as in hydrogenic ions in 3D

ε
t ( ε) = ?

Fig. 33.3. Left: cartoon of an electron scattering from 1D-He+. Right: cartoon of
two electrons bound to the delta function in a singlet state

state of energy −Z2/2. The ground-state KS potential is given by vKS(x) =
vext(x) + vHxc(x), but vHxc = 0 for one electron, so vKS(x) = vext(x) =
−Zδ(x); (ii) Solve the ground-state KS equations for positive energies, to
find tKS(ε) = ik/(Z + ik). (iii) In this case, fHxc = 0, so χ = χKS, and

Au: Please provide
figure citation in
text for Fig. 33.3.

t = tKS. Notice that approximations that are not self-interaction corrected
(to guarantee vHxc = 0) would give sizable errors in this simple case.

33.3.4 A Non-Trivial Example, N = 1

Now consider a simple 1D model of an electron scattering from a one-electron
atom of nuclear charge Z [Rosenthal 1971]:

Ĥ = −1
2

d2

dx2
1

− 1
2

d2

dx2
2

− Zδ(x1)− Zδ(x2) + λδ(x1 − x2) , (33.19)

The two electrons interact via a delta-function repulsion, scaled by λ. With
λ = 0 the ground state density is a simple exponential, analogous to hydro-
genic atoms in 3D.
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(i) Exact solution in the weak interaction limit: First, we solve for the
exact transmission amplitudes to first order in λ using the static exchange
method [Bransden 1983]. The total energy must be stationary with respect to
variations of both the bound (φb) and scattering (φs) orbitals that form the
spatial part of the Slater determinant: [φb(x1)φs(x2)± φb(x2)φs(x1)] /

√
2,

where the upper sign corresponds to the singlet, and the lower sign to the
triplet case. The static-exchange equations are:

[
−1

2
d2

dx2
+ γ|φs,b(x)|2 − Zδ(x)

]
φb,s(x) = µb,sφb,s(x) , (33.20)

where γ = 2λ for the singlet, and 0 for the triplet. Thus the triplet transmis-
sion amplitude is that of a simple δ-function, (33.18). This can be understood
by noting that in the triplet state, the Hartree term exactly cancels the ex-
change (the two electrons only interact when they are at the same place, but
they cannot be at the same place when they have the same spin, from Pauli’s
principle). The results for triplet (ttriplet) and singlet (tsinget) scattering are
therefore:

ttriplet = t0 , t0 ≡
ik

Z + ik
(33.21a)

tsinglet = t0 + 2λt1 , t1 ≡
−ik2

(k − iZ)2(k + iZ)
(33.21b)

(ii) TDDFT solution: We now show, step by step, the TDDFT procedure
yielding the same result, (33.21). The first step is finding the ground-state
KS potential for two electrons bound by the δ-function. The ground-state of
the (N + 1)-electron system (N = 1) is given to O(λ) by:

ΨGS(x1σ1, x2σ2) =
1√
2
ϕGS(x1)ϕGS(x2) [δσ1↑δσ2↓ − δσ1↓δσ2↑] , (33.22)

where the orbital ϕGS(x) satisfies [Lieb 1992, Magyar 2004b]:
[
−1

2
d2

dx2
− Zδ(x) + λ|ϕGS(x)|2

]
ϕGS(x) = µϕGS(x) (33.23)

To first order in λ,

ϕGS(x) =
√
Ze−Z|x| +

λ

8
√
Z

{
2e−3Z|x| + e−Z|x|(4Z|x| − 3)

}
. (33.24)

The bare KS transmission amplitudes tKS(ε) characterize the asymptotic
behavior of the continuum states of vKS(x) = −Zδ(x) + λ|ϕGS(x)|2, and
can be obtained to O(λ) by a distorted-wave Born approximation (see, e.g.,
Sect. 4.1.4 of [Friedrich 1991]):

tKS = t0 + λt1 . (33.25)
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Fig. 33.4. Real and imaginary parts of the KS transmission amplitude tKS, and
of the interacting singlet and triplet amplitudes, for the model system of (33.19).
Z = 2 and λ = 0.5 in this plot. Reprinted with permission from [Wasserman 2005b].
Copyright 2005, American Institute of Physics

The result is plotted in Fig. 33.4, along with the interacting singlet and triplet
transmission amplitudes, (33.21). The quantity λt1 is the error of the ground-
state calculation. The interacting problem cannot be reduced to scattering
from the (N + 1)-KS potential, but this is certainly a good starting point; in
this case, the KS transmission amplitudes are the exact average of the true
singlet and triplet amplitudes [compare (33.25) with (33.21)].

We now apply (33.9) to show that the fHxc-term of (1.23) corrects the
tKS values to their exact singlet and triplet amplitudes. The kernel fHxc is
only needed to O(λ):

fHx, σσ′(x, x′, ω) = λδ(x− x′)(1− δσσ′) , (33.26)

where the fHxc of (1.23) is given to O(λ) by fHx = fH + fx = 1
4

∑
σσ′ fHx, σσ′

(= 1
2fH here). Equation (33.26) yields:

χ(x, x′, ω) = χKS(x, x′, ω) +
λ

2

∫
dx′′ χKS(x, x′′, ω)χ(x′′, x′, ω) . (33.27)

Since the ground state of the 2-electron system is a spin-singlet, the Kronecker
delta δSGS,Si

in (33.6) implies that only singlet scattering information may be
extracted from χ, whereas information about triplet scattering requires the
magnetic susceptibility M =

∑
σσ′(σσ

′)χσσ′ , related to the KS susceptibility
by spin-TDDFT [Petersilka 1996b]:

M(x, x′, ω) = χKS(x, x′, ω)− λ

2

∫
dx′′ χKS(x, x′′, ω)M(x′′, x′, ω) . (33.28)
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For either singlet or triplet case, since the correction to χKS is multiplied
by λ, the leading correction to tKS(ε) is determined by the same quantity,
χ̂

(0)
KS ∗ χ̂

(0)
KS, where χ̂

(0)
KS is the 0th order approximation to the KS susceptibility

[i.e., with vKS(x) = v
(0)
KS(x) = −Zδ(x)]. Its oscillatory part at large distances

[Maitra 2003b] [multiplied by
√

n(x)n(−x)/ik, see (33.9)] is precisely equal
to λt1. We then find through (33.9), (33.27), and (33.28) that

tsinglet = tKS + λt1 , ttriplet = tKS − λt1 , (33.29)

in agreement with (33.21).
The method illustrated in the preceeding example is applicable to any one-

dimensional scattering problem. Equations (33.9) and (1.23) provide a way to
obtain scattering information for an electron that collides with an N -electron
target entirely from the (N + 1)-electron ground-state KS susceptibilty (and
a given approximation to fxc).

33.4 Three Dimensions

33.4.1 Single-Pole Approximation in the Continuum

We have yet to prove an analog of (33.9) for Coulomb repulsion in three
dimensions. But we can use quantum-defect theory [Seaton 1958] to deduce
the result at zero energy. Consider the l = 0 Rydberg series of bound states
converging to the first ionization threshold I of the (N +1)-electron system:

Ei − EGS = I − 1/
[
2(i− µi)2

]
, (33.30)

where µi is the quantum defect of the ith excited state. Let

εi = −1/
[
2(i− µKS, i)2

]
(33.31)

be the KS orbital energies of that series. The true transition frequencies
ωi = Ei − EGS, are related through TDDFT to the KS frequencies ωKS, i =
εi − εHOMO, where εHOMO is the HOMO energy. Within the single-pole
approximation (SPA) [Petersilka 1996a], applicable to Rydberg excitations
according to the criteria of applicability discussed in [Appel 2003]:

ωi = ωKS, i + 2〈〈HOMO, i|f̂Hxc(ωi)|HOMO, i〉〉 (33.32)

Numerical studies [Al-Sharif 1998] suggest that ∆µi = µi − µKS, i is a small
number when i→∞. Expanding ωi around ∆µi = 0, and using I = −εHOMO,
we find:

ωi = ωKS, i −∆µi/(n− µKS, i)3 . (33.33)

We conclude that, within the SPA,
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Fig. 33.5. s-phase shifts as a function of energy for electron scattering from He+.
Dashed lines: the line labeled KS corresponds to the phase shifts from the exact KS
potential of the He atom; the other dashed lines correspond to the TDDFT singlet
and triplet phase shifts calculated in the present work according to (33.35). Solid
lines: accurate wavefunction calculations of electron-He+ scattering from [Bhatia
2002]. The solid line in the center is the average of singlet and triplet phase shifts.
Dotted lines: Static exchange calculations, from [Lucchese 1980]. The asterisks at
zero energy correspond to extrapolating the bound→ bound results of [Burke 2002].
Reprinted with permission from ref.[Wasserman 2005b]. Copyright 2005, American
Institute of Physics

∆µi = −2(i− µKS, i)3〈〈HOMO, i|f̂Hxc(ωi)|HOMO, i〉〉 . (33.34)

Letting i → ∞, Seaton’s theorem [π limi→∞ µi = δ(ε → 0+)] [Seaton 1958]
implies:

δ(ε) = δKS(ε)− 2π〈〈HOMO, ε|f̂Hxc(ε + I)|HOMO, ε〉〉 (33.35)

a relation for the phase-shifts δ in terms of the KS phase-shifts δKS applicable
when ε→ 0+. The factor (i−µKS, i)3 of (33.34) gets absorbed into the energy-
normalization factor of the KS continuum states.

We illustrate in Fig. 33.5 the remarkable accuracy of (33.35) when applied
to the case of electron scattering from He+. For this system, an essentially
exact ground-state potential for the N = 2 electron system is known. This
was found by inverting the KS equation using the ground-state density of an
extremely accurate wavefunction calculation of the He atom [Umrigar 1994].
We calculated the low-energy KS s-phase shifts from this potential, δKS(ε)
(dashed line in the center, Fig. 33.5), and then corrected these phase shifts
according to (33.35) employing the BPG approximation to fHxc [Burke 2002]
(which amounts to using the adiabatic local density approximation for the
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antiparallel contribution to fHxc and exchange-only approximation for the
parallel contribution). We also plot the results of a highly accurate wave-
function calculation [Bhatia 2002] (solid), and of static-exchange calculations
[Lucchese 1980] (dotted). The results show that phase shifts from the (N+1)-
electron ground-state KS potential, δKS(ε), are excellent approximations to
the average of the true singlet/triplet phase shifts for an electron scattering
from the N -electron target, just as in the one-dimensional model of the pre-
vious section; they also show that TDDFT, with existing approximations,
works very well to correct scattering from the KS potential to the true scat-
tering phase shifts, at least at low energies. In fact, for the singlet phase
shifts, TDDFT does better than the computationally more demanding sta-
tic exchange method, and for the triplet case TDDFT does only slightly
worse. Even though (33.35) is, strictly speaking, only applicable at zero en-
ergy (marked with asterisks in Fig. 33.5), it clearly provides a good descrip-
tion for finite (low) energies. It is remarkable that the antiparallel spin ker-
nel, which is completely local in space and time, and whose value at each
point is given by the exchange-correlation energy density of a uniform elec-
tron gas (evaluated at the ground-state density at that point), yields phase
shifts for e-He+ scattering with less than 20% error. Since a signature of
density-functional methods is that with the same functional approximations,
exchange-correlation effects are often better accounted for in larger systems,
the present approach holds promise as a practical method for studying large
targets.

33.4.2 Partial-Wave Analysis

For the case of spherically symmetric (N + 1)-electron ground states, useful
expressions can be derived for the transition matrix elements (t-matrix) in
the angular momentum representation. For example, the matrix elements in
the usual definition [Gonis 1992] tl ≡ −k−1 exp[−ikδl] sin δl are given by:

tl = tKS
l + 4〈〈fHxc〉〉l , (33.36)

where the tKS
l are the Kohn-Sham t-matrix elements, and

〈〈fHxc〉〉l =
∫

dr1

∫
dr2

ϕHOMO(r1)φ(r2)
(r1r2)2

fHxc(r1, r2; ε + I)×

× ϕkl(r1)φkl(r2)Y r̂1r̂2
lHOMOmHOMO

Y∗r̂1r̂2
l0 , (33.37)

with Y r̂r̂′

lm ≡ Y m
l (r̂)Y m∗

l (r̂′). In (33.37), the ϕ’s are radial Kohn-Sham orbitals
regular at the origin, and the φ’s are quasiparticle amplitudes determined
by the asymptotic behavior of the interacting radial Green’s function (see
Sect. 2.3.2 of [Wasserman 2005a]). These are generally difficult to obtain in
practice, but approximating them by the corresponding Kohn-Sham orbitals
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yields a simple prediction for the t-matrix elements. Furthermore, the single-
pole approximation of (33.35) is obtained from (33.36) after expanding it to
first order in δl − δKS

l .

33.5 Summary and Outlook

Based on the linear response formalism of TDDFT we have discussed a new
way of calculating elastic scattering amplitudes for electrons scattering from
targets that can bind an extra electron. In one dimension, transmission ampli-
tudes can be extracted from the (N+1)-electron ground-state susceptibility,
as indicated by (33.9). Since the susceptibility of the interacting system is
determined by the Kohn-Sham susceptibility within a given approximation to
the exchange-correlation kernel, the transmission amplitudes of the interact-
ing system can be obtained by appropriately correcting the bare Kohn-Sham
scattering amplitudes. Equation (33.16), reminiscent of the single-pole ap-
proximation for bound → bound transitions, provides the simplest approxi-
mation to such a correction. A similar formula for scattering phase shifts near
zero energy, (33.35), was obtained in three dimensions by applying concepts
of quantum defect theory.

These constitute first steps towards the ultimate goal, which is to accu-
rately treat bound-free correlation for low-energy electron scattering from
polyatomic molecules. An obvious limitation of the present approach is that
it can only be applied to targets that bind an extra electron because the start-
ing point is always the (N + 1)-ground-state Kohn-Sham system, which may
not exist if the N -electron target is neutral, and certainly does not exist if the
target is a negative ion. In addition to extending the formalism to treat such
cases, there is much work yet to be done: a general proof of principle in three
dimensions, testing of the accuracy of approximate ground-state KS poten-
tials, developing and testing approximate solutions to the TDDFT Dyson-like
equation, extending the formalism to inelastic scattering, etc. Thus, there is
a long and winding road connecting the first steps presented here with the
calculations of accurate cross sections for electron scattering from large tar-
gets when bound-free correlations are important. The present results show
that this road is promising. Of course,“the road goes ever on and on. . . ”
[Baggins 1973] but this section looks worthwhile.
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