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Abstract

We argue that any general mathematical measure of density error, no matter how reasonable, is too arbitrary to be of
universal use. However the energy functional itself provides a universal relevant measure of density errors. For the
self-consistent density of any Kohn-Sham calculation with an approximate functional, the theory of density-corrected density
functional theory (DC-DFT) provides an accurate, practical estimate of this ideal measure. We show how to estimate the
significance of the density-driven error even when exact densities are unavailable. In cases with large density errors, the
amount of exchange-mixing is often adjusted, but we show this is unnecessary. Many chemically relevant examples are
given.

The Kohn-Sham (KS) approach to density functional the-
ory (DFT) has become very popular, being employed in more
than 30,000 scientific papers each year[1]. However, its claim
to being first-principles is diluted by the fact that there are
literally hundreds of possible exchange-correlation approxi-
mations available in most codes[2]. Over many decades,
many researchers have tried studying the self-consistent den-
sities of DFT calculations to gain insight into the quality of
approximations[3, 4]. This interest recently intensified with the
publication of Medvedev et al.[5], which appears to show that
the self-consistent densities of recent, empirically-parametrized
functionals are of poorer quality than those that are more
systematically derived, by careful comparison with accurate
densities of atoms and ions. But their conclusions depend
on their choice of how to measure the density error, which
was designed to penalize incorrect oscillations in approximate
densities. Other reasonable choices lead to other conclusions.
Because the density is a function and not a number, the variety
of possible error-measures that people can create is endless.
We give many alternative measures, some of which produce
starkly different rankings. Thus statements such as “densities
became closer to the exact ones" are entirely dependent on
the choice of metric and since every researcher can choose
their own, are of limited value at best.
However, the variational principle provides a natural and

unambiguous measure of the accuracy of a density for any
systems. Moreover, this metric is measured in terms of the
resulting energy error. If errors in densities are so small that
they have negligible impact on calculated energies, they surely
are not the most important indicator for improving functional
approximation. The well-established theory behind density-
corrected DFT (DC-DFT) was constructed precisely to measure
this error, for self-consistent densities from DFT calculations
with approximate functionals. Here we show how this can be
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done, or at least usefully estimated, even in the absence of
the exact density. By measuring density errors via the energy,
we find no evidence that empirical functionals yield greater
density errors.
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Figure 1: He atomic radial density error for HF (gray-dotted),
PBE (red-solid), and M11 (blue-dashed), relative to highly accu-
rate quantum Monte Carlo density. Radii where the M11 density
crosses the QMC density are marked with solid dots.

Begin with the general idea of measuring errors in densities.
While a single number characterizes the error in an approximate
energy, the error in an approximate density, ñ(r), can be
quantified in infinitely many ways. For example, an intuitively
appealing measure is the simple L2 norm:

∆L2[ñ] =

∫
d3r (ñ(r)− n(r))2, (1)

where n(r) is the exact density, and N =
∫
d3r n(r) is the

number of electrons. Ref.[5] looks at many different functionals
(128), on a few very simple systems (14 small closed-shell
atoms and ions) and construct three different measures (a
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discretized ∆, and analogs for gradients and Laplacians) that
are combined in several ways to yield some measure of density
error. However, the relative ranking depends strongly on the
measure.
To understand why such a definition of density error does

not suffice, Fig.1 shows the radial density error of three dif-
ferent approximations for the He atom. The exact reference
density is from a highly accurate quantum Monte Carlo (QMC)
calculation[6], and all results are converged to the basis set
limit. Since we are only interested in general features, 3 ap-
proximations suffice to make our point. We show the error in
the Hartree-Fock (HF) density, that of self-consistent PBE,
and that of M11, a relatively recent Minnesota functional. By
the measures of Ref.[5], M11 has substantially worse densi-
ties than PBE and even HF, despite providing much better
thermochemistry than the latter.
There are infinitely many possible choices of measure. To

give an idea of the possible variety, note that the M11 density
matches the exact density at 6 radial points. If we define our
measure of error as

∆RP [ñ] =
6∑
i=1

(ñ(ri)− n(ri))2, (2)

where the sum is over the crossing points (marked by dots in
Fig.1), then M11 has zero error, but all other approximations
have finite errors (including PBE and HF in the figure), i.e., it
beats all 127 other functionals in the study, if we apply this
strategy to the 14 systems studied. But we could equally as
well have taken the PBE crossing points, making it the winner,
or indeed any of the 128 candidates. While this example may
appear facetious, it explicitly demonstrates that the rankings
can be arbitrarily reordered. We could even include a 129th,
namely setting EXC = 0 (Hartree approximation), and have
it be the best.

One might claim that such measures are unreasonable, while
using the ingredients of semilocal functional approximations
is more reasonable. But the number of such combinations
is endless and other energy components, such as the KS
kinetic energy or the Hartree energy, are also used in a Kohn-
Sham (KS) calculation. In fact, the original approximate
DFT, Thomas-Fermi theory, has been rigorously proven to
yield relatively exact energies for all systems[7], despite never
producing the correct density pointwise, in a certain limit
of large particle number. As that limit is approached, the
density develops an ever more rapid oscillation (shell structure)
which such reasonable measures penalize. The same has been
argued for the local density approximation (LDA) [8] within
KS-DFT[9], and even the ionization energies of atoms appear
to become relatively exact in this limit[10]. In all these cases,
the approximate functional derivatives (potentials) miss shell
structure, with corresponding oscillating errors in the densities
(Fig.4 of Ref.[10]).

There have been many responses and follow-up analysis to
Ref.[5], and we highlight only a few. In a technical comment,

Kepp shows that errors in approximate energies and their cor-
responding approximate density errors (as defined in Ref.[11])
are largely uncorrelated and chemically irrelevant. Brorsen et
al.[12] come to a similar conclusion, but studying specifically
the density accumulation in a bonded region. Wang et al.[13]
argue that, with a smaller, more standard basis, the recent
Minnesota functionals rank more favorably. This is heresy
in terms of traditional quantum chemistry, as it argues that
an unconverged calculation yields more useful results than a
converged one. But, since different measures evaluated on
different systems yield different rankings, why not this one?
In fact, the reply to Kepp’s comment beautifully summarizes
the deep intellectual argument for non-empirical functional
approximation[14], and the recent successes of the SCAN meta-
GGA confirm its practical significance[15], but such arguments
do not determine a metric. While it is true that when trying
to evaluate the quality of an approximate density functional,
databases of different systems and properties are often used.
Some functionals are designed only for molecular problems,
while others also include materials. All such evaluations re-
quire human choices of which systems to include and how
to weight the errors, i.e., prudent use of statistics. But in
the deterministic world of electronic structure, we should not
resort to statistics unless we must.
In fact, there is a simple measure of density error that

circumvents all these difficulties. To see this, consider regular
quantum mechanics, where the variational principle tells us,
for a given system:

E = min
ψ
〈ψ|Ĥ|ψ〉, (3)

where Ĥ is the Hamiltonian, ψ is any allowed normalized trial
wavefunction, and E is the ground-state energy. Thus we nat-
urally say one wavefunction is better than another, meaning
it yields a lower energy. The Hamiltonian itself provides an
unambiguous metric for the quality of a wavefunction for a
specific system. The exact wavefunction is always the winner,
and no choices have been made. Of course, a better wave-
function does not mean better by every measure. Moreover,
the error is measured in precisely the units we typically care
most about, i.e., the energy.
The variational principle also applies to DFT. For a given

system, determined by its one-body potential v(r), there is a
well-defined, exact ground-state energy Ev and density, n(r).
(For simplicity, we limit ourselves to non-degenerate, spin-
unpolarized cases.) An ideal metric for the error in an approxi-
mate density ñ is

∆Eid[ñ] = E[ñ]−E[n], (4)

where E[n] is the exact total energy functional for a given
system. This is never negative and, if it is much smaller than
the corresponding energy error in the approximate functional
that produced ñ(r), would tell you that such density errors
are unimportant. In principle, this provides an unambiguous

2



Quantifying density errors in DFT • TCCL Yonsei Preprint

Δ𝐸𝐸𝐷𝐷
�𝐸𝐸[ �𝑛𝑛]

𝐸𝐸[ �𝑛𝑛]

𝐸𝐸[𝑛𝑛]
ΔEF

�𝑛𝑛 𝑛𝑛

�𝐸𝐸[𝑛𝑛]
ΔE

ΔEDid[ �𝑛𝑛]

𝑬𝑬�𝑬𝑬

Figure 2: Cartoon of the exact (black) and approximate (purple,
denoted with tilde) energy functionals. The minima are marked as
n and ñ, respectively. Our ∆ED mimics the ideal (but practically
uncomputable) ∆Eid

D , the energy error of the exact functional
due to evaluation on ñ instead of n. The calculation shown
is abnormal. (If ñ is brought much closer to n, the red errors
become much smaller than the blue, and the system is normal.)

relevant measure for all systems and approximate densities.
(Of course, for specific properties of practical interest, one
might use a different measure, such as the density at a nucleus
for NMR shifts.)
Unfortunately, evaluating E[ñ] requires the inversion of

a many-body problem, which is more difficult than solving
the original problem exactly, and has only been achieved in
a few model cases[16]. However, in the special case of a
self-consistent density from an approximate KS-DFT calcu-
lation, we have an excellent proxy for ∆Eid[ñ], from the
well-established theory of DC-DFT. The true error in an XC
approximation, ẼXC , on any given density is

∆EF [n] = ẼXC [n]−EXC [n] = ∆EXC [n], (5)

called the functional error. The density-driven error is defined
as the difference between this and the total energy error:

∆ED = ∆E − ∆EXC [n] = Ẽ[ñ]− Ẽ[n], (6)

where Ẽ is the total energy functional when ẼXC is used. As
illustrated in Fig.2, if the approximate functional has the same
curvature as the exact one and the densities are sufficiently
close, ∆ED ≈ −∆Eid[ñ]. Practically, we can evaluate ∆ED
once we know the exact density and energy, without needing
E[ñ]. Of all the 30,000+ DFT calculations published each
year[1], in any case where the exact energy and density is
known, the DFT errors can be decomposed in this way.

Examination of the ratio of the magnitudes of the functional-
and density-driven errors has shown that, in the vast majority
of KS calculations, including all those of Ref.[5], the error
reported in the energy is dominated by the functional error[17].
Such calculations are labelled normal in DC-DFT, and the

density-driven error is a small fraction of the total and so is
irrelevant to the energy error. But in several important classes
of DFT calculations with standard functionals (electron affini-
ties, reaction barriers, stretched heteronuclear bonds, and ions
and radicals in solution, for example), density-driven errors are
significant. These are labelled abnormal, and errors decrease
significantly if exact densities are used instead of self-consistent
ones[18, 19, 20]. In practice, it is rarely straightforward (or
inexpensive) to generate highly accurate densities (and hybrid
functionals also require KS orbitals). In practice, for molecules,
HF densities usually suffice, because they do not suffer from
self-interaction (or delocalization) error as semilocal approx-
imations do. With a simple script[21] and at no additional
computational cost, a HF-DFT calculation (i.e., DFT energy
on HF density) can be run and yields substantially improved
energetics.
To illustrate our assertions, begin with simple one- and

two-electron calculations, where highly accurate densities are
available, so that density-driven errors can be precisely cal-
culated. We choose an energy error standard of ∆s = 2
kcal/mol, as we do not expect our approximations to achieve
that accuracy, and so regard errors smaller than ∆s as not
meaningful. In Table 1, we show energy errors for the humble
H atom. All approximations in the table have errors below ∆s.
We also see that the true and density-driven errors are also
below threshold. Ironically, the non-empirical PBE has almost
exactly zero error in this case, but our decomposition show
this is accidental, as the functional and density-driven errors
cancel almost perfectly.

Turn next to He+. The density-driven errors are unchanged
(as the shape of the density barely changes), but the greater
dominance of exchange unbalances PBE, which is then im-
proved upon by PBE0. Next consider He, where now errors
are noticeably bigger. Most have reasonable density errors
(except MN15), and all errors are dominated by the XC error.
But chemistry concerns energy differences, so at the bottom
of Table 1, we give the ionization potential (IP) of He and the
electron affinity (EA) of H. We apply exactly the same formulas
to energy differences as we have used for total energies. All
He ionization potential calculations have small density errors,
and the error in the ionization potential is dominated by the
XC error: these are all normal calculations.

Next, we consider a paradigm of abnormality, namely the
hydrogen anion. Its density errors are shown in Fig.3. Note
the scale is larger than Fig.1, and some errors do not oscillate.
With many semilocal approximations, a self-consistent solution
leads to about 0.35 electrons escaping the system (the HOMO
is then at 0, unlike in calculations where the anion is bound
artificially by the basis, and the HOMO is positive[17]). It is
not the scale of the density errors that determines abnormality,
but their effect on the calculated energy. Thus, H, He+, and
He are generically normal systems with semilocal DFT, while
atomic anions are generically abnormal[22, 23].
A crucial practical point is if abnormality in a system can
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XXXXXXXXXXXSystem
Error PBE PBE0 M06 MN15

∆E ∆EF ∆ED ∆E ∆EF ∆ED ∆E ∆EF ∆ED ∆E ∆EF ∆ED
H 0.0 0.4 -0.4 -0.8 -0.7 -0.2 -0.1 0.3 -0.4 0.3 2.0 -1.7
He+ 3.9 4.3 -0.4 2.0 2.3 -0.2 0.2 0.6 -0.3 -3.8 -2.0 -1.8
He 6.8 7.5 -0.7 5.4 7.5 -2.1 -4.1 -1.8 -2.3 -11.0 -7.1 -3.9
H− -6.5 -1.1 -5.4 -1.4 4.3 -5.7 -1.9 4.0 -5.9 -2.1 2.8 -5.0
He (IP) -2.9 -3.2 0.3 -3.3 -5.2 1.9 4.3 2.3 2.0 7.2 5.1 2.1
H (EA) 6.5 1.5 5.0 0.6 -5.0 5.5 1.8 -3.7 5.5 2.4 -0.8 3.3

Table 1: Errors (kcal/mol) in DFT approximations for one- and two-electron systems. Two-electron systems are calculated with
CASSCF density as for the reference and compared with reference QMC energies.
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Figure 3: H− radial density errors, for the same approxima-
tions as in Fig.1.

be detected without access to the exact density (if the exact
n(r) were always needed, there could be no practical benefit
for larger systems). The many successes of HF-DFT[20, 24]
show that, for almost all abnormal calculations, use of the
HF density instead of the exact density yields an excellent
estimate of the density-driven error, yielding a very practical
scheme for correcting those errors. (The only exceptions are
due to spin contamination of the HF calculation[19] or the
ultra abnormal paradigm, H−[17].) We thus use this in our
analysis of non-trivial abnormal systems. Initial DC-DFT work
showed that, when the KS gap in a self-consistent semilocal
DFT calculation becomes unusually small, there is likely to
be a substantial density-driven error[17]. This is true for all
cases listed above. However, this leaves open the question of
"how small is small enough?", i.e., it does not provide a clear
quantitative answer, and also does not use only energies of
ground-state calculations.
The answer lies in measuring the sensitivity of the energy

to different densities. In recent work extending HF-DFT to
the energy differences between spin states of Fe(II) complexes,
"rainbow" plots take a range of different functionals of dif-
ferent classes, and show the energy of every functional on
every self-consistent density[24]. The spread in such a plot
indicates the sensitivity to the density: If there is more vari-
ation with density than there is with functional choice, then

the system is abnormal. Kepp took 4 popular approximations
of different kinds and estimated the degree of normality in
a calculation[25] by averaging over their evaluation on each
other’s self-consistent densities. But this misses a key element
in DC-DFT: Separation of accuracy of densities and energies.
For example, the HF density yields much improved energetics
with semilocal DFT energies, but the HF energy is so poor it
is rarely used. Thus Kepp’s scheme does not include pure HF
densities.

To detect abnormality, we should measure the sensitivity of
a functional to the density. So we evaluate on two extreme
non-empirical densities: HF and LDA. For any approximate
functional, define:

S(ẼXC) =
∣∣∣Ẽ[nLDA]− Ẽ[nHF]

∣∣∣, (7)

If S > ∆s, our 2 kcal/mol cutoff, this suggests abnormality,
which in turn implies a density-driven error that would be
cured by using HF densities (for molecules). Moreover, S
approximates the density-driven error (see Eq.(6)) if the LDA
density is close to the self-consistent density and the HF density
is close to the exact one. In principle, abnormality of a DFT
calculation depends on the approximate functional used, the
system, and the energy difference being calculated. However,
abnormal calculations with standard semilocal approximations
are often much improved by use of HF densities. We calculate
S̄m, an average over m approximate XC functionals. Here, we
chose S1 as using just PBE, but S̄3 averaging over LDA, PBE,
and BLYP (i.e., generalized gradient approximation (GGA)
level), and S̄4 as averaging over PBE, PBE0, BLYP, and
B3LYP, i.e., semilocal and hybrid level. Table 2 shows results
for many different chemical processes. While there is some
spread in the different measures, there is great consistency:
Whenever the density sensitivity is above 2 kcal/mol, the
system is abnormal at the semilocal/hybrid level. Atomization
energies, standard reaction energies, and ionization energies are
all normal. In such cases, use of the HF density barely changes
the result, and may not improve it. In normal calculations,
there is no reason to think the HF density is more accurate
than the self-consistent DFT density (and many reasons to
think it is not[4]). All entries for the systems of Ref.[5] indicate
their normality, and their density-driven errors are very small.
But transition-state barriers[26, 27, 28], spin energy dif-
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XXXXXXXXXXXSystem
a S1 S̄3 S̄4 Nb S̄K

DFT Errorsc
PBE [HF] B3LYP [HF] M06 [HF] MN15 [HF]

Atomization energy
HCl N 0.2 0.3 0.1 0.1 0.4 0.5 0.4 1.8 1.7 0.6 -0.1 -1.0 -1.7
LiH N 0.6 0.5 0.4 0.1 0.4 4.8 5.3 -0.2 0.1 0.1 0.5 -5.6 -6.7
NaCl N 0.7 0.6 0.4 0.2 0.9 3.2 3.7 4.9 4.8 -6.8 -4.4 -2.7 -1.5
CH2(3B1) N 0.8 1.4 1.1 0.3 1.2 -2.1 -1.2 0.1 1.6 0.1 1.5 4.3 3.3
CH N 1.0 1.2 0.9 0.1 1.0 -1.2 -0.2 -1.8 -0.9 -0.6 0.2 1.8 1.9
CH2 N 1.1 1.2 0.9 0.1 1.0 3.3 4.4 1.2 2.1 -0.2 0.8 3.9 1.4
NH N 1.2 1.8 1.2 0.2 2.0 -5.9 -4.5 -5.5 -4.1 0.1 2.8 1.0 2.0
CH4 N 1.4 1.6 1.1 0.1 1.6 0.9 2.2 -0.2 1.0 2.0 4.0 3.3 -0.7

Reaction energy
HCl+CH3→CH4+Cl N 0.5 0.6 0.2 0.2 0.7 1.8 2.3 -0.6 -0.3 -0.1 0.8 1.7 1.2

Ionization energy
C2H2 N 0 .0 0.1 0.1 0.0 0.1 2.1 2.0 2.0 2.0 5.7 6.0 2.6 2.2
He N 0.4 0.5 0.3 0.3 0.3 2.6 3.1 -8.4 -7.9 0.6 -0.1 -1.0 -1.7

Double Ionization energy
Ne6+/Ne8+ N 0.4 0.8 0.3 0.2 0.6 -21 -22 -14 -15 -66 -67 -37 -44
B+/B3+ N 0.5 0.7 0.4 0.2 0.6 -3.9 -4.6 3.5 3.0 -21 -21 -16 -18
N3+/N5+ N 0.5 0.7 0.4 0.2 0.6 -11 -11 -2.0 -2.5 -38 -38 -24 -28
O4+/O6+ N 0.4 0.7 0.3 0.2 0.6 -14 -15 -5.7 -6.2 -47 -47 -28 -33

Electron affinity
H A 8.5 10 5.8 0.7 6.7 6.7 -1.6 4.6 3.3 2.0 -2.6 2.6 1.3

Reaction barrier height
H+HF→HF+H A 3.4 3.9 2.9 0.2 3.7 -15 -11 -11 -7.7 -1.5 2.9 -5.0 -2.6
CH4+Cl→HCl+CH3 A 3.7 4.1 2.9 0.2 3.2 -7.8 -4.1 -1.1 1.5 -0.6 2.0 0.3 5.6
HCl+CH3→CH4+Cl A 4.2 4.7 3.1 0.2 3.9 -6.0 -1.8 -1.7 1.2 -0.7 2.7 2.0 6.7
H+N2O→OH+N2 A 11 13 9.9 0.1 12 -8.0 3.5 -6.6 2.8 0.3 11 -2.3 7.0
OH+N2→H+N2O A 20 21 16 0.7 18 -29 -9.2 -8.8 5.9 -10 5.3 -6.2 7.4

Dissociation of stretched molecule
H+

2 (at 5.0 Å) A 2.8 2.3 2.5 0.1 2.1 -50 -47 -41 -39 -41 -39 -36 -35
NaCl (at 6.0 Å) A 14 13 10 2.0 8.2 -10 3.5 -3.7 4.2 -13 -9.6 -4.1 -5.2
NaCl (at 10.0 Å) A 28 28 23 2.0 20 -24 3.9 -15 4.5 -21 -9.4 -9.4 -5.3

Radical reaction energy
NH2+H→NH3 N 0.5 0.7 0.3 0.2 0.8 -0.8 -0.1 -0.6 -0.1 0.4 1.6 2.5 4.7
NHCH3+H→NH2CH3 A 2.1 2.8 1.4 0.4 2.0 -3.8 -1.3 -2.7 -1.1 -1.1 0.8 0.5 3.7
H+N2O→OH+N2 A 8.1 8.3 6.3 0.5 6.1 -21 -13 -2.2 3.2 -10 -6.1 -3.8 0.4

High- and Low-spin energy difference
[Fe(NCH)6]2+ A 44 43 28 3.4 32 48 3.7 24 2.2 14 -11 24 -2.0

Table 2: Classification of anormal (N) versus abnormal (A) calculations (S >2 kcal/mol). In all cases, classification agrees with
previous observations of abnormality. bKepp’s N function[25] should be above 1 kcal/mol for abnormal systems, but often is not.
cCCSD(T) value was used for the reference value to evaluate the DFT errors. Note that the basis set information is classified in the
computational details section.

ferences of Fe(II) complexes[24], dissociation of stretched
molecules[19], and some (but not all) radical reaction
energies[18] are abnormal. In almost every abnormal case,
use of a HF density in place of the self-consistent density im-
proves the energetics, often substantially. This is an illustration
of the greater accuracy of the HF density in such cases by our
measure. Because of averaging only self-consistent densities,
Kepp’s measure, precisely as given in Ref.[25], is too insensitive
to indicate many abnormal cases (although altering the cutoff
might improve its performance). However, SK , using Kepp’s
functionals but on LDA versus HF densities, does work.

To illustrate the use of our measure in the present context,
we consider the broad range of processes covered by Table 2.
Those labelled normal have density errors that are irrelevant by
our measure: they do not matter to the accuracy of predicted
energies. But our abnormal systems are, by definition, those

in which the density error is relevant. In Fig.4, we plot the
density-driven errors of several functionals against the density-
driven error of PBE for all abnormal processes in Table 2. Even
in these extreme cases, we see no clear evidence of particularly
large density errors for specific classes of functionals. Moreover,
the mean absolute error (MAE) of these approximations over
the abnormal systems is 9.1 (kcal/mol) for PBE, 6.1 for PBE0,
5.4 for B3LYP, 5.3 for M06, and 4.7 for MN15, again with
no obvious pattern. (The inset suggests that, for abnormal
calculations with density-driven errors less than 10 kcal/mol,
the empirical functionals may be trading density-driven errors
against functional errors, as one might expect from fitting
data.)
Our last topic concerns the amount of exchange mixing in

a global hybrid functional:

Ehyb[n] = a(EHF
X [n]−EGGA

X [n]) + EGGA
XC [n] (8)
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Figure 4: Comparison of density-driven errors (calculated with
HF densities as the reference) for abnormal systems of different
functionals against PBE in Table 2. B3LYP is labeled as green
diamond, PBE0 for the blue dot, M06 for the pink square box,
and MN15 for the orange triangle. All points between diagonals
(solid black lines) have density-driven errors smaller than those
of PBE. The electron affinity of H− has been excluded.

Becke introduced the idea and the B3LYP functional uses
a = 0.20[29]. Using arguments from perturbation theory,
Perdew et al. argued[30, 31, 32] a = 1/4, the value used in
PBE0[33]. A crucial aspect of such hybrids is that the amount
of exchange mixing is fixed in the functional, and not system-
dependent, to retain size-consistency. Moreover, large values
of a typically yield highly inaccurate ground-state energetics
(almost as bad as HF). On the other hand, for many properties
related to orbital eigenvalues, orbital-dependent functionals
are more accurate. The hybrid HSE06 often yields better gaps
for semiconductors within generalized KS calculations, and
this can be crucial when studying localized impurity levels[34].
Recent papers often adjust a to improve the positions of orbital
energies. However, such adjustments will destroy the quality
(and generality) of the ground-state energy functional but,
worse still, create non-size-consistent schemes with ambiguities
in even the definition of the ground-state energy. Thus, there
is a parameter dilemma: Increasing a often improves response
properties, but destroys the accuracy of ground-state energetics
and even the rigor of the calculation.
Here we show how HF-DFT avoids this dilemma, because

the amount of mixing mostly affects the quality of the density,
not the energy. In Fig.5, we see that, for a typical abnormal
calculation (a reaction barrier), the total energy error is very
sensitive to a because the density-driven error is. But the
functional error barely changes with a.
We close with some discussion of context. The fact that

the exact functional recovers the exact energy and density
tells us nothing about the accuracy of approximate functionals,
for either the energy or the density. The concept of accuracy
of approximations requires a quantitative measure of error.
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Figure 5: Density-driven and functional errors for a-PBE
calculation of abnormal reaction barrier H + N2O → OH + N2,
as a function of amount of exact exchange mixing (calculated
with HF densities as the reference).

For any given system, an approximate functional makes an
error in the ground-state energy, but no single number can
characterize all errors in the density. The choices of Ref.[5],
while emminently reasonable, are arbitrary, and any subsequent
ranking of approximations can be reordered with different
choices. In the most extreme case, any approximation can be
made the best.
The energy functional itself provides a natural universal

measure of density error, which is easily estimated if a density
is the result of an approximate KS calculation. Moreover, it
has led to the concept of abnormal DFT calculations, i.e.,
those in which the density error contributes significantly to the
calculated energy, and where results can often be improved
by using a ‘better’ density. In many (but not all) abnormal
molecular calculations, the HF density suffices, yielding the
extremely trivial trick of performing HF-DFT calculations.
We note that HF-DFT is not a panacea, as it gives up the
use of self-consistency. Apart from the practical difficulties
of dealing with the failure of the Hellmann-Feynman[28]
theorem, and while HF-DFT often improves energetics by a
factor of 2 or 3 for well-founded reasons, it does not apply to
all delocalization errors, and can never replace the need to get
both energy and density accurately from a single functional.
The work of Bartlett and co-workers, called ab-initio DFT,
yields acccurate XC potentials and hence densities, while
retaining self-consistency[35]. Similarly, the work of Yang
and co-workers to develop locally-scaled corrections that
restore the linearity of the energy with particle number
produces approximate functionals that solve these problems
self-consistently.[36]

Computational Details
All HF, DFT (SVWN[37, 38], PBE[39], B3LYP[40],
PBE0[31], M06[41], M11[42], MN15[43]) HF-DFT, and
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CCSD(T) results are performed with Gaussian16 package
[44]. Dunning’s augmented correlation-consistent quintuple
zeta basis set (aug-cc-pV5Z) is used for the calculations in
Table 1[45, 46]. For Table 2, aug-cc-pVTZ basis set[47, 48]
was used for almost all calculation while Ahlrichs’ newer
redefinition quadruple zeta (def2-QZVP) basis set[49] is
used for the dissociation of stretched molecules for the
comparison with the previous work[19]. To perform every
calculation at their given orientation, molecular symme-
try within the calculation was not considered. Molecular
geometry data are from the G2 database set[50] for the
atomization energy and ionization energy while molecular
reaction geometries are from Zhao et al.[51, 52]. The high
and low spin [Fe(NCH)6]2+ geometries are from Ref.[24].
For the radical reaction energies, B3LYP/aug-cc-pVTZ is
used for the geometry optimization. Since the hydrogen
anion of Tables 1 and 2 has the positive HOMO problem,
SVWN, PBE, B3LYP, PBE0, and M06 calculations are per-
formed with TURBOMOLE package[53] for calculating the
fractional occupation within unrestricted KS scheme. For
the energy convergence criteria, SCF=tight option for the
Gaussian16 while scfconv=8 and denconv=1.0d-8 are used
for TURBOMOLE. To calculate errors in Table 1, DFT
exchange-correlation energies for two-electron systems are
calculated on the CASSCF density from 60 active spaces and
2 active electrons[54] and compared with QMC energies[6].
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