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Abstract
In the last decade, kernel-based learning has become a state-of-the-art technol-

ogy in Machine Learning. We will briefly review kernel PCA (kPCA) and the pre-
image problem that occurs in kPCA. Subsequently, we discuss a novel direction
where kernel-based models are used for property optimization. For this purpose,
a stable estimation of the model’s gradient is essential and non-trivial to achieve.
The appropriate use of pre-image projections is key to successful gradient-based
optimization—as will be shown for toy and real world problems from quantum
chemistry and physics.

Key words: Kernel-based learning, Support Vector Machines, pre-images, density
functional theory, quantum chemistry.

1 Introduction

Since the seminal work of Vapnik and collaborators (see [4, 10, 43, 7, 28]), kernel
methods have become ubiquitous in the sciences and industry.
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Kernel methods have enriched the spectrum of machine learning and statistical
methods with a vast new set of non-linear algorithms. Kernel PCA (kPCA) has been
established as a blueprint for “kernelizing” linear scalar product-based algorithms,
given that a conditionally positive definite kernel is used [35]. The so-called empir-
ical kernel map [33] allows preprocessing of data by projecting it onto the leading
kPCA components; thus non-linear variants of algorithms can be constructed via a
non-linear transformation.

This paper begins with a brief review of some concepts in kPCA and the analysis
of pre-images. A novel aspect we will discuss is the computation of gradients of a
kernel-based model that can be used for the purpose of optimization. The computa-
tion of such gradients turns out to be rather tricky; as we will see, the gradients can
easily be dominated by noise in irrelevant directions, and thus need to be stabilized.
One way of doing so is to apply pre-image methods, which will then allow us to
present some interesting applications from the domain of quantum chemistry—an
area that was only very recently explored with kernel methods [38, 37, 1, 32, 30].

In the following, we will shortly review kernel methods (section 2), kPCA (sec-
tion 3), and the pre-image problem (section 4). Then in section 5, we show how
to use gradient information that is derived from a kernel-based model. A particu-
lar difficulty here is that gradient estimates, in many circumstances, are prone to
large amounts of noise. Pre-images hold the key to solving this issue and achieving
stable gradients, which enable optimization over the data manifold given the kernel-
based learning model. This section will also demonstrate optimization with respect
to model properties for (a) a toy example and (b) real-world problems from quantum
chemistry and physics. Finally we give a brief concluding discussion in section 6.

2 The Kernel Trick

Based on the kernel idea behind support vector machines (SVMs) [4, 10, 43, 7, 28]
to non-linearize the linear classifier formulation, Schölkopf, Smola and Müller [35]
were the first to realize that this trick can be applied to almost any linear algorithm.
The only prerequisite is that one can formulate the algorithm in terms of the dot
product between data points. The key was the re-discovery of a long known mathe-
matical fact: under certain conditions, k(x,x′) :Rm×Rm→R is equivalent to the dot
product in another space F (the feature space)1. Thus, the kernel function k(x,x′)
can be interpreted as Φ(x) ·Φ(x′), where Φ : Rm→ F is the map to feature space.

The consequences were dramatic: it became possible to extend well understood
linear models with a sound theoretical foundation to a much larger class of non-
linear models—seemingly for free. However, there are two prominent drawbacks:

• While most linear methods scale computationally with the number of input di-
mensions m (i.e. O(m3)), most kernel methods scale with the number of sam-
ples n (i.e. O(n3))—which for many applications is tremendously larger than m.

1 In general, x is not restricted to be in Rm and could be any object.
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In particular, most kernel methods handle dense n× n matrices. In the present
era of “big data,” this rapidly becomes intractable. However, it is often possible
to devise clever algorithms or approximations to circumvent this issue (e.g. for
SVM, see [29, 18, 20]).

• The solution of such non-linear algorithms is usually expressed as a linear
combination of the kernel function: f (x) = ∑

n
j=1 α jk(x j,x), where n is the

number of training samples, α j are weights, and x j are the training sam-
ples. This is equivalent to the dot product Φ(x) ·Ψ in feature space, where
Ψ = ∑

n
j=1 α jΦ(x j). This is not a problem if the application requires only f (x).

However, if one would like to interpret Ψ or map back to input space Rm, one
needs the idea of pre-images (see section 4).

As noted above, Schölkopf et al. [35] exemplified the “kernelization” procedure
for the popular PCA algorithm. Meanwhile, a plethora of other algorithms were ker-
nelized, ranging from Linear Discriminants [21, 22, 2], over nonlinear variants of
ICA [15] and One Class SVM [34] to Canonical Correlation Analysis [40], Princi-
pal Manifolds [36], Relevance Vector Machines [41], and many more. In addition,
kernel methods have been devised to analyse other learning machines [25] or trained
kernel machines [6, 24]. The new formulation of these algorithms as a linear tech-
nique in some kernel feature space provided extremely valuable insights, both from
a theoretical point of view as well as from an algorithmic point of view (e.g. the
strong connection between mathematical optimization and learning [5]).

3 Kernel PCA

Principal Component Analysis (PCA) [11] is an orthogonal basis transformation
which is found by diagonalizing the centered covariance matrix of a data set,
{x j ∈ Rm, j = 1, . . . ,n}, defined by C = X>X/n, where X = (x1, . . . ,xn)

> and the
samples are assumed to be centered, i.e., ∑

n
j=1 x j = 0. The eigenvectors vi of C are

called the principal components (PCs), and the sample variance along vi is given by
the corresponding eigenvalue λi. Projecting onto the eigenvectors with the largest
eigenvalues (i.e. the first q PCs) is optimal in the sense that minimal information is
lost. In many applications these directions contain the most interesting information.
For example, in data compression, one projects onto the PCs in order to retain as
much information as possible, and in de-noising one discards directions with small
variance (assuming that low variance is equivalent to noise).

As mentioned in section 2, kernel PCA (kPCA) is a non-linear generalization of
PCA using kernel functions [35]. To state the result, the principal components are
given by vi = ∑

n
j=1 ai, jΦ(x j), where ai are the eigenvectors of the kernel matrix

K, given by Ki j = k(xi,x j), sorted in order of decreasing corresponding eigenvalue.
Hence kPCA amounts to computing the eigenvectors of the kernel matrix K instead
of the covariance matrix C. To project onto the PCs as in linear PCA, we define a
projection Pq by
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PqΦ(x) =
q

∑
i=1

βivi, (1)

where βi = vi ·Φ(x) are the projections of Φ(x) onto the PCs. If q is chosen such that
all PCs with non-zero eigenvalues are kept, we can perfectly reconstruct the data (i.e.
PqΦ(x j) = Φ(x j)). While the equivalent for linear PCA would often amount to a
lower dimensional representation of the data (i.e. q < m) this is less likely for kPCA
as the representation in feature space is much higher-dimensional (i.e. q ≤ n but
often q ≥ m). If some PCs with non-zero variance are thrown away, kPCA fulfills
the PCA property that PqΦ(x) will be the optimal least-squares approximation to
Φ(x) when restricted to orthogonal projection—but this holds true only in feature
space.

4 Pre-Images

As already mentioned above there are many applications for which one needs an
optimal reconstruction of PqΦ(x) in input space Rm. Examples would be (lossy)
compression (e.g. of images) or de-noising. One straightforward approach to this
issue was proposed in Ref. [23]. The idea is to find an approximate pre-image x̃ in
input space that will map closest to the projection PqΦ(x) in feature space:

x̃ = argmin
x′∈Rn

‖Φ(x′)−PqΦ(x)‖2. (2)

It can be shown (see [23, 33] for details) that this equation can be formulated entirely
in terms of the kernel k(x,x′)=Φ(x) ·Φ(x′). The pre-image x̃ can then be optimized
using standard gradient descent methods. For kernels of the form k(x,x′) = f (‖x−
x′‖) (e.g. Gaussian kernels) Refs. [23, 33] devise an iteration scheme to find x̃.

5 Pre-Images for Gradient-Based Optimization

In many applications of machine learning, one would like to use the estimator to
optimize some property with respect to the data representation. For example, in
image compression, one wants to optimize the representation to reduce the size
without losing useful information. In neuroscience, one can optimize a stimulus to
increase response. For these types of optimization, the quality of the gradient of
the estimator is crucial. In certain circumstances, however, the gradient exhibits a
high amount of “noise”. In the following, we explore a simple example that clearly
illustrates the origin of this noise and the problems that it creates in optimization.
We then describe how properties of kernel PCA and pre-images offer a solution.
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5.1 Example: Shape Optimization

The perimeter of simple two-dimensional shapes, represented by single-valued ra-
dius r as a function of angle θ , is given exactly by the integral

P[r] =
∫ 2π

0
dθ

√
r(θ)2 + r′(θ)2, (3)

where r′(θ) = dr/dθ . P[r] is called a functional of r(θ). Now suppose we are not
given this formula, but only a set of examples {r j,Pj} j=1,...,n to learn from, where
r j ∈ Rm are sufficiently dense histogram representations (e.g. 100 bins) of r(θ) on
θ ∈ [0,2π]. In particular, we are given noise-free examples of ellipses with axes a
and b

r(θ) = ab/
√

b2 cos2 θ +a2 sin2
θ . (4)

Given this data, we use kernel ridge regression (KRR) [16] to predict the perimeter
of new ellipses:

PML(r) =
n

∑
j=1

α jk(r,r j), (5)

where α j are the weights and k is the kernel. We choose the gaussian kernel
k(r,r′) = exp(−‖r− r′‖2/(2σ2)), where σ is the length scale. Minimizing the
quadratic cost plus regularization ∑

n
j=1(P

ML(r j)−Pj)
2 +λαααT Kααα yields

ααα = (K +λ I)−1P, (6)

where ααα = (α1, . . . ,αn)
>, P = (P1, . . . ,Pn)

>, K is the kernel matrix, and λ is a con-
stant known as the noise level [16].

Fig. 1 shows a sample dataset of 16 ellipses with (a,b)∈{1, 4
3 ,

5
3 ,2}×{1, 4

3 ,
5
3 ,2}

(the model does not account for rotational symmetry, so we distinguish between,

Fig. 1 The dataset of 16 el-
lipses represented in Cartesian
coordinates.
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Fig. 2 (a) Contour plot of the perimeter of the ellipse as a function of axes lengths a and b. (b)
Contour plot of the percentage error (PML(r)−P[r])/P[r]×100% of the model.

e.g., (1,2) and (2,1)). After cross validation of hyperparameters, we choose σ = 13
and λ = 10−6. Contours of the perimeter values and percentage error of the model
are given in Fig. 2 as a function of a and b. The model has less than 0.1% error
within the interpolation region 1 < a,b < 2.

Now suppose we use our model PML to find the shape with area A0 = 9π/4 and
minimum perimeter. Of course, the solution is a circle with radius r = 3/2 with
perimeter 3π , which is well within the interpolation region of the model (but not
in the training set). This constrained optimization can be formulated in a variety of
ways (see e.g. [39]). For example, the penalty method enforces the constraint by
regularizing deviations of the area from A0, and solves a series of unconstrained
minimization problems, slowly increasing the penalty strength until convergence.
Define the penalty function

Fp(r) = PML(r)+ p(A(r)−A0)
2, (7)

where the area functional

A[r] =
1
2

∫ 2π

0
dθ r(θ)2, (8)

can be approximated by a Riemann sum A(r) from our histogram representation of
r(θ). Let r∗(p) minimize Fp(r). Then the solution to the optimization is given by

r∗ = lim
p→∞

r∗(p). (9)

Standard unconstrained minimization methods can be applied to find a solution for
each p [39]. This requires the gradient of the model

∇PML(r) =
n

∑
j=1

α j(r j− r)k(r,r j)/σ
2, (10)

while the exact functional derivative of P[r] is given by
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Fig. 3 (a) The gradient of the model and exact functional, for a = 1.2 and b = 1.3. (b) These
gradients projected onto the tangent space of the data manifold.

δP[r]
δ r(θ)

=
r(θ)3 +2r(θ)r′(θ)2− r(θ)2

(r(θ)2 + r′(θ)2)3/2 . (11)

Also ∇A(r) = r∆θ , where ∆θ = 2π/m is the spacing between bins. Fig. 3a com-
pares the gradient of the model with the exact functional derivative. The large error
in ∇PML is typical for all shapes within the interpolation region. In addition, these
errors are not a result of overfitting—no combination of hyperparmeters yields ac-
curate gradients in this case. Increasing the number of training samples does not
improve the gradient either.

Fig. 4a shows a sample optimization in which gradient descent is used to min-
imize Fp(r), for p = 5, starting from r with a = 2, b = 4/3. The shape quickly
deforms due to the noise in the gradient, leaving the region spanned by the data.
Each step in the gradient descent introduces more noise into the shape. One can
attempt to remedy this by applying the de-noising procedure described in section 4
during the optimization:

Modified Gradient Descent Algorithm

* Start from initial guess r0.
1. Take a step rk+1 = rk− ε

k
∇PML(rk)
‖∇PML(rk)‖

, where ε is a constant.
2. De-noise rk+1 by replacing it with r̃k+1. Repeat this ` times (depending on

how much noise we introduced in the last step).
3. Repeat until ‖rk+1− rk‖< δ , where is δ is the desired accuracy.

The result is shown in Fig. 4b, where the de-noising is performed with a gaus-
sian kernel with length scale σ ′ = 18.1 and we keep q = 5 principal components.
The minimization gives a decent approximate solution, based solely on our learned
model. This method gets us quickly close to the solution, but convergence near the
solution is sensitive to the choice of the parameters σ ′, q, and `. In addition, we
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Fig. 4 (a) Minimization of Eq. 7 for p = 1 using the bare gradient of the model. The shape quickly
develops spurious wiggles due to the noise in the gradient. The initial guess for the shape was
a = 2, b = 4/3. (b) The same minimization in (a) using denoising with a gaussian kernel with
length scale σ ′ = 18.1, keeping q = 5 PCs in kPCA, and applying the de-noising `= 5 times each
iteration.

find that the optimal parameters depend on the initial guess for the shape as well
as where the solution lies in input space. In the next section, we discuss where this
“noise” in the gradient comes from and how to remove it, leading to a much better
method for performing the optimization.

5.2 Origin of the “Noise”

The noise in the gradient of the model occurs generally when the data set is intrin-
sically low-dimensional, embedded in a high-dimensional input space. Assuming
the data is generated by a smooth mapping ψ from an underlying parameter space
Θ ⊂ Rd to input space Rm, we define the data manifold as the image M = ψ(Θ).
The noise in the gradient occurs when d� m. The reasoning is as follows:

• The gradient measures change in the target value in all directions in input space,
but all the given data lies on M.

• Regression is a method of interpolation, particularly with the gaussian kernel.
• If we consider a point x ∈M and move in input space while confined to M, the

model is given information about how the target value changes (e.g. interpola-
tion).

• If we move orthogonal to the tangent space of M at x, the model has no in-
formation about the change in the target value. The “noise” comes from this
extrapolation.

• Thus, we should be able to remove the noise if we project the gradient of the
model onto the tangent space of M.

For our example, Fig. 3b compares the model gradient (Eq. 10) with the exact func-
tional derivative (Eq. 11) when both are projected onto the tangent space of M at
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a = 1.2, b = 1.3. Clearly, the discrepancy is restricted to the orthogonal comple-
ment of the tangent space.

Based on this analysis, we can understand how the de-noising optimization
worked in the previous section. Each step, the noise in gradient takes r far off the
data manifold, away from the data. The de-noising step effectively returns r back
onto M. However, a smarter way to perform the optimization would be to de-noise
the gradient of the model, by projecting it onto the tangent space of the manifold at
each step of the gradient descent. This would constrain the optimization to lie within
the data manifold, never leaving the interpolation region. In general, however, one
does not know the structure of the data manifold a-priori! One needs an accurate
method to approximate M, at least locally near a given point.

5.3 Optimization Constrained to the Data Manifold

Such methods of locally approximating or globally reconstructing the data mani-
fold fall under the general technique of nonlinear dimensionality reduction. This
includes kernel PCA (kPCA) [35], Laplacian eigenmaps [3], diffusion maps [9], lo-
cal linear embedding [31], Hessian local linear embedding [12], and local tangent
space alignment [45, 44]. These methods provide a coarse reconstruction of M, but
the local linear approximation breaks down when data sampling is too sparse, or M
has a high curvature.

In the denoising procedure (see sections 3 and 4) a sample x ∈ X is mapped into
feature space Φ(x) and projected onto the first q principal components, PqΦ(x) (see
Eq. 1). Then, the approximate pre-image x̃ is found (Eq. 2). If x is far from the
data manifold, then its representation in feature space will be poor. The kernel PCA
projection error

pq(x) = ‖Φ(x)−PqΦ(x)‖, (12)
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Fig. 5 Log contour plots of (a) pq(ra,1.5 + ξ z)2 and (b) dq(ra,1.5 + ξ z)2, where z is a randomly
chosen direction of length 1. The qualitative features are the same for both (a) and (b), and are
indepedent of the choice of z. The length scale σ ′ in kPCA was 6.0, chosen as twice the median
over all nearest neighbor distances between training samples, and all principal components with
nonzero eigenvalues were used (q=15).
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and the denoising magnitude

dq(x) = ‖x− x̃‖, (13)

provide useful information that can be used to characterized the data manifold. For
our toy example, these quantities are plotted in Fig. 5. The line ξ = 0 corresponds
to the data manifold. Qualitatively, both quantities are small on M, and increase
quickly as one moves away from M. In particular, p2

q is flat along the direction of
M, and highly convex in directions moving away from M. This information can be
used to find the tangent space of M at a point r as follows:

Nonlinear gradient denoising (NLGD)

1. Compute the Hessian of p2
q, H, evaluated at a point r which is known to be

on the data manifold M.
2. Compute the eigenvalues λ1, . . . ,λm and eigenvectors u1, . . . ,um of H(r)

and order them in order of increasing eigenvalue magnitude.
3. The first d eigenvalues correspond to directions with small curvature. The

corresponding d eigenvectors form a basis for the tangent space TM(r). The
remaining eigenvalues will be large and positive.

4. Finally, the projection onto the tangent is given by

PT (r) =
d

∑
j=1

u ju>j (14)

This procedure can be used to approximate the tangent space of M based solely
on the data given. The denoising magnitude can be used likewise in place of the

(a)

M

Projection step

Correction step

rk

rk+1

TM(rk)

r0k+1

Thursday, February 14, 13

(b)
0 π 2π

θ

1.0

1.5

2.0

r(
θ)

Solution

k=0

k=100

k=1000

Fig. 6 (a) The projection algorithm [39], where the gradient of the model is projected onto the
tangent space of the data manifold at each step. Because we move slightly off M, we require
a correction step. (b) The same minimization as in Fig. 4, using the NLGD projected gradient
descent algorithm, keeping all PCs in kPCA with σ ′ = 6.0.
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kernel PCA projection error. In all cases we have observed so far, the two give
similar results, but p2

q is easier to compute.
Applying this to our optimization leads to a new algorithm (see Fig. 6a):

NLGD projected gradient descent algorithm

* Start from initial guess r0.
1. Compute the tangent space TM(rk) of the data manifold M and the NLGD

projection PT (rk).

2. Projection step. Take a step r′k+1 = rk− ε

k PT (rk)
∇PML(rk)
‖∇PML(rk)‖

, where ε is a
constant.

3. Correction step. Minimize p2
q(r) starting from r′k+1 within the orthogonal

complement of TM(rk). Let the solution be rk+1.
4. Repeat until ‖rk+1− rk‖< δ , where is δ is the desired accuracy.

Applying this to our toy example yields the result in Fig. 6b. The sensitivity of
of the solution on the initial condition r0 and the parameters σ ′ and q is removed,
and convergence is well conditioned. In the next section, we describe some real
applications of this method in recent literature.

5.4 Applications in Density Functional Theory

Density functional theory (DFT) is now the most commonly used method for elec-
tronic structure calculations in quantum chemistry and solid state physics [8]. DFT
attempts to circumvent directly solving the Schrödinger equation by approximating
the energy as a functional of the electron density (instead of using the traditional
wavefunction) [17, 19]. Recently, machine learning was used for the first time to
directly approximate the kinetic energy density functional of one-dimensional elec-
trons confined to a box (a toy model commonly used to test new approximations)
[38]. The authors used kernel ridge regression with a gaussian kernel to predict the
kinetic energy of new densities based on examples of electron densities and their
exact kinetic energies. The generalization error of the model was extremely low,
but in density functional theory, traditionally an energy functional is useless unless
its functional derivative is accurate as well (since ground-state densities are found
through a self-consistent minimization of the total energy) [13].

This situation is exactly as described in the toy problem. The inputs (electron
densities) are represented as high-dimensional (i.e. 500) vectors while the data is
generated from a parameter space of only a few dimensions. The noise in the gradi-
ent the authors observed was due to this general phenomenon. To remedy the noise,
the authors’ solution was to project the gradient of the model on a local linear PCA
subspace using only a few principal components. Using this method, they were able
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Fig. 7 The functional deriva-
tive of the kinetic energy
functional of the ML model
(MLA) compared with the
exact. This derivative suffers
from the same “noise” we
described in Sec. 5.2 (i.e.
the large deviation between
ML and the exact). Using the
NLGD technique, the noise
was removed by projecting
the derivative onto the tangent
space of the data manifold.
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to perform accurate optimizations with the ML model, although the final density
was slightly sensitive to the initial guess.

In later work [37], the same authors moved on to a more difficult system: a one-
dimensional model of chemically bonded diatomics. Again, the gradient was found
to be noisy (see Fig. 7), and the local linear PCA method of [38] was inaccurate due
to the high curvature of the data manifold. Instead, the authors applied the NLGD
projected gradient descent algorithm, achieving high accuracy, and were able to
compute highly accurate binding curves and molecular forces from a model trained
from sparse sampling of data.

6 Conclusion

The present paper has briefly reviewed kernel methods and discussed in particular
kernel PCA and the pre-image problem. When a kernel-based model has learned to
predict a certain property, say, the atomization energy of a certain compound, then
an interesting question is whether we can use the gradient of the model for opti-
mization of some related (e.g. chemical) property. We have shown that the naive
use of gradient information fails, due to noise that in many cases contaminates the
gradient. Adapting techniques from pre-image computation, we can define projec-
tions that make the gradient of the ML model more meaningful, so that it can be
used for optimization. A simple toy example illustrates this nonlinear gradient de-
noising (NLGD) procedure and shows its use for property optimization. We briefly
reviewed two real world applications of NLGD stemming from the domains of
quantum chemistry and physics. Other future work will continue along the suc-
cessful path of applying kernel-based methods in quantum chemistry and physics
[38, 37, 1, 32, 30] with the aim to contribute in the quest for novel materials and
chemical compounds.

Many open challenges need to be resolved in kernel-based learning: all kernel
algorithms scale in the number of data points (not in the dimensionality of the data),
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thus the application of kernel methods for large problems remains an important
challenge (see e.g. [29, 18, 20, 42]). There may be large “big data” problems that
are practically only amenable to neural networks (see [27, 26]) or other learning
machines that allow for high-throughput streaming (see e.g. [14]). However, a large
number of mid-scale applications in the sciences and technology will remain where
kernel methods will be able to contribute with highly accurate and robust predictive
models.
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9. Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Har-
monic Analysis, 21(1):5–30, 2006.

10. C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273 – 297, 1995.
11. K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks. Wiley, New York,

1996.
12. David L Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding techniques

for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–
5596, 2003.

13. R. M. Dreizler and E. K. U. Gross. Density Functional Theory: An Approach to the Quantum
Many-Body Problem. Springer, 1990.



14 John C. Snyder, Sebastian Mika, Kieron Burke, and Klaus-Robert Müller

14. Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierarchical
features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2013. in press.

15. S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind source
separation. Neural Computation, 15:1089–1124, 2003.

16. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Data Mining, Inference, and Prediction. Springer, New York, 2 edition, 2009.

17. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. B, 136(3B):864–871,
Nov 1964.

18. T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C.J.C. Burges, and
A.J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 169–184,
Cambridge, MA, 1999. MIT Press.

19. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects.
Phys. Rev. A, 140(4A):1133–1138, Nov 1965.
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