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Ensemble density functional theory (EDFT) is a promising alternative to time-dependent density
functional theory for computing electronic excitation energies. Using coordinate scaling, we prove several
fundamental exact conditions in EDFT, and illustrate them on the exact singlet bi-ensemble of the Hubbard
dimer. Several approximations violate these conditions and some ground-state conditions from quantum
chemistry do not generalize to EDFT. The strong-correlation limit is derived for the dimer, revealing weight-
dependent derivative discontinuities in EDFT.

Sophisticated functional approximations and a relatively
low computational cost have made density functional
theory [1, 2] (DFT) the prevailing method used in electronic
structure calculations. [3–7] Currently, the most popular
way to access excited states in the DFT formalism is
through time-dependent DFT (TDDFT), [7–11] which
has been used to predict electronic excitation spectra
among other properties. Although TDDFT has been
incredibly successful, [11] standard approximations fail
to replicate charge-transfer excitation energies [12],
correctly locate conical intersections [13] or recover
double excitations [11] without an ad hoc dressing. [14]

A less well-known but comparably rigorous alternative
to TDDFT is ensemble density functional theory [15–17]
(EDFT), which is currently experiencing a renaissance.
[18–35] As the EDFT field is revived, it is important
to find exact conditions that can be enforced on newly
developed EDFT approximations. This is especially
important in EDFT, where the choice of ensemble
weights is unlimited (assuming they are normalized
and are monotonically non-increasing with energy) and
can significantly impact the accuracy of the energies.
Exact conditions have been essential in the development
of accurate functionals in ground-state DFT, and we
expect them to be more critical in EDFT. [36–38]

Here, several exact conditions for EDFT are proven and
illustrated. We generalize coordinate scaling inequalities
and equalities of the exchange and correlation energies
and the concavity condition to ensembles. Using the
Hubbard dimer, we show examples of each foundational
condition and examine approximations in EDFT, finding
examples of compliance and violation. Fig 1 illustrates
some of these conditions nicely. [39] It shows the limits
(red) one can place on the U = 5 dimer (black) from results
for U = 4 (blue), using one of our inequalities. The rest of
this paper explains the behavior of these curves, including
non-monotonicity with weight and their shapes for large U.
These exact results provide examples of the many ways in
which EDFT can differ from ground-state DFT.

EDFT is a formally exact generalization of ground-
state KS-DFT, where the ensemble consists of several

FIG. 1: The Hubbard dimer singlet bi-ensemble correlation energies
(negative values) and kinetic contribution (positive values) for U = 4
(light blue) and U = 5 (black) as a function of site-occupation and
different weights. Red curves deduced from U = 4 constrain the
U = 5 curve via Eq. 21.

eigenstates of an N-electron system. Consider any
ensemble density matrix, Γ̂w, of the form

Γ̂w(r1...rN , r′1...r
′
N) =

M∑
m=0

wm |Ψm(r1...rN)〉 〈Ψm(r′1...r
′
N)| , (1)

where Ψm are any orthonormal wave functions, and wm
are positive monotonically non-increasing weights that are
normalized. The expectation value of any operator Â is then

A[Γ̂w] = Tr{Γ̂wÂ} =

M∑
m=0

wm 〈Ψm| Â |Ψm〉 . (2)

An ensemble energy is then the variational minimum of the
Hamiltonian, yielding

Ew = min
Γw

Tr{Γ̂wĤ}, (3)

where m labels the eigenstates, in order of increasing
energy, and Em are the eigenvalues. Transition energies
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can be deduced from differences between ensemble
calculations of differing weights. [40] EDFT tells us that
there exists a w-dependent density functional

Fw[n] = min
Γw→n

Tr{Γ̂w(T̂ + V̂ee)}, (4)

where T̂ is the kinetic energy operator and V̂ee is the
electron-electron repulsion. We denote the minimizer by
Γw[n]. Then

Ew = min
n

{
Fw[n] +

∫
n(r)v(r)dr

}
, (5)

where v(r) is the external potential. Any expectation value
can be converted into a density functional via A[n] =

A[Γw[n]] . The minimizing density is

nw(r) =

M∑
m=0

wmnm(r), (6)

where nm(r) is the density of the m-th level.

A key facet of EDFT is that the equivalence between the
exact density and the non-interacting KS density is only
true for the ensemble average, and it is not necessarily true
for the individual densities within the weighted sum. The
following conditions are true only for the ensemble energy,
not the individual excited-state energies.

Uniform coordinate scaling has been responsible for
multiple advances in DFT. However, coordinate scaling
investigations in EDFT have thus far only been used to
define the adiabatic connection formula for the exchange-
correlation energy [41] or examining the behavior of
EDFT in the low-density and high-density regimes, without
formal theorems based on scaling. [42] Additional work
on foundational theorems include the virial theorem for
EDFT by Nagy [43–45] and the signs of correlation energy
components, by Pribram-Jones et al. [19] We build on this
foundation by deriving uniform scaling inequalities based
on the variational definition of the ensemble functional. [37,
46] We also provide numerical verification and proofs of the
basic principles and some additional exact conditions.

We use norm-preserving homogeneous scaling of the
coordinate r→ γr with 0 < γ < ∞. The scaled density
matrix is defined as

Γw,γ(r1...r′N) := γ3N Γw(γr1...γr′N), (7)

and a scaled density is nγ(r) = γ3n(γr). Trivially,

T [Γw,γ] = γ2T [Γw], Vee[Γw,γ] = γVee[Γw]. (8)

Because these scale differently, Γw,γ[n] , Γw[nγ]. By the
variational principle, F[nw,γ] ≤ F[Γ̂w,γ[n]], which gives the
fundamental inequality of scaling,

Tw[nγ] + Vee,w[nγ] ≤ γ2Tw[n] + γVee,w[n]. (9)

Manipulation of this formula yields, for γ ≥ 1, [37]

Tw[nγ] ≤ γ2Tw[n], Vee,w[nγ] ≥ γVee,w[n], γ ≥ 1 (10)

and setting γ → 1/γ yields results for γ ≤ 1.

Next, we turn to the KS scheme, used in modern EDFT
approaches. Here Fw[n] = TS,w[n] + EHXC,w[n] where TS,w is
the KS kinetic energy and EHXC,w is the Hartree-exchange-
correlation. Because there is no interaction,

TS,w[nγ] = γ2TS,w[n]. (11)

Moreover, because the Hartree-exchange is linear in the
scaling parameter:

EHX,w[nγ] = γEHX,w[n]. (12)

In EDFT, separation of Hartree from exchange is more
complicated than in ground-state DFT. [24, 33, 42]
Subtracting these larger energies following the usual
procedure from ground-state DFT [37] yields, for γ ≥ 1,

TC,w[nγ] ≤ γ2TC,w[n], EC,w[nγ] ≥ γEC,w[n], γ ≥ 1 (13)

where EC,w[n] is the correlation energy, and TC,w = Tw−TS,w
is its kinetic contribution. Considering γ = 1 + ε in Eq.13,
and taking ε → 0, yields differential versions of Eq. 13:

d
dγ

{
TC,w[nγ]
γ2

}
≤ 0,

d
dγ

{
EC,w[nγ]

γ

}
≥ 0 (14)

Combining these using Nagy’s generalization (Eq. 24 of
Ref. 44) of the ground-state equality

dEC,w[nγ]
dγ

∣∣∣∣∣∣
γ=1

= EC,w[n] + TC,w[n], (15)

we find (
2 − 2γ

d
dγ

+ γ2 d2

dγ2

)
EC,w[nγ] ≤ 0, (16)

the condition for concavity in the ensemble correlation
energy. This is the ensemble form of Eq. 40 in Ref. 47.
Eqs. 9, 13, and 16 are primary results of the current work,
being the ensemble generalizations of their ground-state
analogs.

An immediate application of Eq. 12 is to extract the HX
component from any HXC approximation. As the conditions
limit growth with γ,

EHX,w[n] = lim
γ→∞

EHXC,w[nγ]/γ, (17)

an exact condition which can prove useful for separating
HX from C components. [21, 42]

To conclude this section, we use the pioneering
relationship between coupling constant and coordinate
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FIG. 2: Correlation inequalities (Eq. 21) for the total (top), kinetic
(middle), and potential (bottom) correlation energies, depicted by
varying λ in the Hubbard dimer bi-ensemble with U = 1. More
cases are provided in Figs. S6-S7 of the supplemental material.

scaling. Defining λ dependence via

Fλ
w[n] = min

Γw→n
Tr{Γw(T̂ + λV̂ee)}, (18)

Nagy showed [41]

Eλ
HXC,w[n] = λ2EHXC,w[n1/λ]. (19)

Using Eq. 19, it is possible to rewrite all results given in
terms of scaled densities as λ-dependent relations. Such
relations are well known and much used in ground-state
DFT, via the adiabatic connection formalism. [48, 49]
For real-space Hamiltonians, these relations are simply a
rewriting of the scaling relations in a more popular form,
but they also apply to lattice Hamiltonians, where scaling is
not possible. Converting from scaling in Eq. 15 gives

T λ
C,w[n] = Eλ

C,w[n] − λ
dEλ

C,w[n]
dλ

. (20)

The scaling inequalities (Eqs. 13) become

T λ
C,w[n] ≤ TC,w[n], Eλ

C,w[n] ≥ λEC,w[n], λ ≤ 1, (21)

with differential versions

dT λ
C,w[n]
dλ

≤ 0, Eλ
C,w[n] ≥ λ

dEλ
C,w[n]
dλ

, (22)

while Eq. 16 becomes quite simply:

d2Eλ
C,w[n]

dλ2 ≤ 0. (23)

Note that all inequalities for EC,w, both coordinate-scaled
(Eqs. 13, 14) and λ-dependent (Eqs. 21, 22), are also
true for UC,w = EC,w − TC,w, the potential contribution to
correlation. The HX energy (Eq. 17) may be extracted via

EHX,w[n] = lim
λ→0

Eλ
HXC,w[n]/λ. (24)

Our last condition concerns the relationship between
DFT and traditional approaches to quantum chemistry. In
the ground state, it has long been known [50, 51] that
0 ≥ EHF

C ≥ EC, where EHF
C is the traditional definition

of the correlation energy, i.e., relative to the Hartree-
Fock (HF) energy (we treat only restricted HF here, RHF).
Given the complications of EDFT, we discuss here only the
case of the first singlet bi-ensemble for two electrons. In
this case, we equate EHF with an EDFT EXX calculation
(’exact exchange only’). The only difference between
EHF and EDFT is that the EHF quantities are evaluated
on the approximate EHF density, while EDFT quantities
are evaluated on the exact density. Exactly the same
variational reasoning leads us to

0 ≥ EHF
C,w ≥ EC,w[n] (25)

where EHF
C,w = Ew−EHF

w , and EHF
w minimizes Fw = TS,w+EHX,w.

We leave the more general case to braver souls.
The Hamiltonian of the Hubbard dimer is

Ĥ = −t
∑
σ

(ĉ†1σĉ2σ + h.c.) + U
∑

i

n̂i↑n̂i↓ +
∑

i

vin̂i, (26)

where t is the hopping parameter, U the on-site
electrostatic self-repulsion, and vi the on-site potential
(which controls the asymmetry of the dimer). For this lattice
system, with N = 2, the electronic density is characterized
by a single number, the difference between occupations of
the two sites, ∆n = n2 − n1. The λ-dependence of any
quantity is found by replacing U by λU, keeping ∆n fixed.
We choose t = 1/2 everywhere.

We consider the simplest bi-ensemble, a mixture of the
ground-state with the first excited singlet. Full analytic
expressions of |Ψ0〉 and |Ψ1〉, as well as plots of various bi-
ensemble quantities, are given in the supplemental material
in section 1. The value of ∆nw is constrained by w:

|∆nw| ≤ 2w, (27)

where w = 1 − w, i.e. is smaller than that of the ground
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FIG. 3: Ensemble adiabatic connection with ∆nw = 0 and U = 5;
circles represent the weight-dependent HX energy, which the HXC
expression approaches as λ → 0 (Eq. 24). More cases are provided
in Fig. S8 of the supplemental material.

state (w = 0). Densities are shown in Fig. S1 of the
supplemental material. The total energy of the ensemble
is defined as

Ew = w 〈Ψ0| Ĥ |Ψ0〉 + w 〈Ψ1| Ĥ |Ψ1〉 . (28)

Plots of Ew are depicted in Figs. S2-S3 of the supplemental
material, showing the quantity both as a function of ∆v and
∆nw. We also show analogous plots of Fw = Ew − ∆v∆nw/2
in Figs. S4-S5. For this bi-ensemble, the exact HX energy
has the simple analytical form [23]:

EHX,w =
U
2

[
1 + w +

(1 − 3w)

w2

∆n2
w

4

]
. (29)

Inequalitites. We plot λ-dependencies in Fig. 2
that have a definite sign according to Eq. 13. We
show several values of w for two densities for U = 1
(moderate correlation). Scanning over all U and ∆nw, these
inequalities are always satisfied. For the symmetric dimer
(∆nw = 0), w = 0.0 has the largest maximum and w = 0.5
has the smallest. As ∆nw is increased, the trend disappears
and the curves are not monotonic in w. For w = 0.5, the
inequality becomes an equality for ∆nw = 1, the maximum
representable value of ∆n for the ensemble. In Fig. 3, we
show that all UHXC,w curves approach their corresponding
HX value as λ → 0, in accordance with Eq. 24. More plots
of Figs. 2 and 3 for various combinations of w and ∆nw are
provided in Figs. S6-S8 of the supplemental material.

The non-monotonic behavior in Fig. 1 can be easily
understood. By definition, Ew(∆v) is linear in w, as is Fw.
But, when converted to density functionals, and with KS
quantities subtracted, these become highly non-monotonic,
as shown in Figs. S2 and S3 in the supplemental material.

FIG. 4: Exact correlation energy (black), leading-order expansion in
large U (red) and the expansion in the symmetric limit (blue) for the
correlation energy are all plotted as a function of the exact density.
Small arrows indicate the region between 2w and −2w where the
symmetric expansion matches the exact.

Strong Correlation. In Fig. 4 we plot the exact
correlation energy, our approximation (Eq. S.16 of the
supplemental material), and the symmetric limit expansion
of Deur et al. [52], each evaluated at the exact density.
The last yields the strongly correlated correlation energy
only for |∆nw| ≤ 2w, but our expansion yields the correct
limit for all allowed ∆nw, including the slope discontinuity at
|∆nw| = 2w. Such w-dependent derivative discontinuities
occur only in EDFT. The approximate weight-dependent
strongly correlated correlation energy is derived in the
supplemental material along with further analysis of the
energy components and approximation of the density. For
the strong-interaction limit of the dimer, the correlation
energy contains a non-trivial weight-dependence. This
differs from real space [42] where the energies were found
to be weight-independent. This is not a counter example,
because the dimer is a site-model. This difference
manifests in the expansion of the strongly correlated
energies in powers of the coupling-constant. Our first
correction, relative to the leading term, is O(λ−2) and differs
qualitatively from the O(λ−1/2) behavior found by Gould and
coauthors.

Concavity Condition of the Correlation Energy. We
illustrate the concavity condition of Eq. 23 using contour
plots depicting all possible combinations of U and n1,
making use of the reduced variable ũ = U/

√
1 + U2.

Illustrated by Fig. 5, the second derivative is negative for
all values of U and thus satisfies the concavity condition for
all electronic correlation strengths.

The standard use of exact conditions in DFT is to ensure
that approximate functionals satisfy them. [38] We illustrate
our conditions by applying them to existing approximations
on the Hubbard model. The first is the standard many-
body expansion in powers of the interaction, U, which
we perform up to 2nd-order, i.e., the analog of Møller-
Plesset perturbation theory, denoted U-PT2. The second
is less familiar: an expansion in powers of ∆n around the
symmetric case, ∆n = 0, called δ-PT2. [52] This can be
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FIG. 5: The second derivative of the Hubbard dimer bi-ensemble correlation energy with respect to U for all values of the reduced variable
ũ = U/

√
1 + U2. The concavity condition is satisfied, but is violated by the δ-PT2 approximation in certain regimes (red denotes positive).

But U-PT2 automatically satisfies it, by construction.

considered a (tortured) analog of the gradient expansion of
DFT, [36] as it is an expansion around the uniform limit.
Fig. 5 shows that the δ-PT2 approximation violates the
concavity condition, even for w = 0, while U-PT2 never
does. The violations are not monotonic with increasing
weights, as w = 0.4 has none. Deur et al. reported that,
compared to U-PT2, δ-PT2 produced more accurate equi-
ensemble energies and densities. Likely, the accuracy of
δ-PT2 could be further improved by imposing concavity.
Recent advances in EDFT, such as the direct ensemble
correction [20] and the perturbative EDFT method, [53] are
explicitly computed in the perturbative limit, w → 0+. If
an approximation is derived before such a limit is taken,
and its ground-state approximation satisfies concavity; the
resulting approximation should satisfy concavity also.

Quantum Chemistry. Finally, we examine in detail the
difference between the DFT and HF correlation energies
and their components in Figs. S5, S6, and S7 in the
supplemental material. We provide plots of the exact/EHF
total correlation energies for the dimer bi-ensemble, where
we show the ground-state inequalities (EHF

C ≥ EC) holds for
any w-value (Figs. S3 and S4). It also is known that T HF

C

can become negative in the ground state of the Hubbard
dimer, [54] and we find this is also true when w , 0, but this
is likely an artifact of lattice Hamiltonians that cannot occur
in the real-space analog.[50, 55]

This work provides new exact conditions for EDFT which
can be used to analyze and/or improve new approximations
in EDFT. Further work is being performed to improve
approximations and provide a pathway to accurate EDFT
functionals.

Supplemental material for this article can be accessed
at https://doi.org/XX.XXXX/XXXXXXXXXXX. We provide
analytical expressions (and plots) for various weight-
dependent quantities of interest for the Hubbard dimer bi-
ensemble, giving both the exact/EHF solution.
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