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Uniform semiclassical approximations for the number and kinetic-energy densities are derived for many
noninteracting fermions in one-dimensional potentials with two turning points. The resulting simple,
closed-form expressions contain the leading corrections to Thomas-Fermi theory, involve neither sums nor
derivatives, are spatially uniform approximations, and are exceedingly accurate.
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Semiclassical approximations are both ubiquitous in
physics [1,2] and notoriously difficult to improve upon.
Most of us will recall the chapter on WKB in our quantum
textbook [3], yielding a simple and elegant result for the
eigenvalues of a particle in a one-dimensional potential.
The more sensitive will have recoiled at the surgical need
to stitch together various regions (allowed, turning point,
and forbidden) to find the semiclassical eigenfunction.
Summing the probability densities in the allowed region
yields the dominant contribution to the density, but what are
the leading corrections?
A little later, we should have learned Thomas-Fermi (TF)

theory [4,5]. Thomas derived what we now call the TF
equation in 1926, without using Schrödinger’s equation [6].
He calculated the energies of atoms, finding results
accurate to within about 10%. TF theory has since been
applied in almost all areas of physics [7]. For the electronic
structure of everyday matter, TF theory is insufficiently
accurate for most purposes, but gave rise to modern density
functional theory (DFT) [8]. The heart of TF theory is a
local approximation, and the success of semilocal approx-
imations in modern DFT calculations of electronic structure
can be traced to the exactness of TF in the semiclassical
limit [9,10]. So, what are the leading corrections?
Despite decades of development in quantum theory, the

above questions, which are intimately related, remain
unanswered. Both the WKB and the TF approximations
can be derived from any formulation of nonrelativistic
quantum mechanics, but none yields an obvious procedure
for finding the leading corrections. Mathematical difficul-
ties arise because ℏ multiplies the highest derivative in the
Schrödinger equation. Physically, the problem is at the
dark heart of the relation between quantum and classical
mechanics.
Here we derive a definitive solution to both these

questions in a limited context: Noninteracting fermions in
one dimension. Researchers from solid-state, nuclear, and
chemical physics have sought this result for over 50 years
[11–21]. TheTFdensity for the lowestN occupied orbitals is

nTFðxÞ ¼ pFðxÞ=ðℏπÞ; pFðxÞ ≥ 0; ð1Þ

where pFðxÞ is the classical momentum at the Fermi energy
EF, chosen to ensure normalization, and vanishes elsewhere.
This becomes

nscðxÞ¼pFðxÞ
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where pFðxÞ is analytically continued into evanescent
regions, ωF is the classical frequency at EF, and zFðxÞ
and αFðxÞ are related to the classical action from the nearest
turning point; Ai and Ai0 are the Airy function and its
derivative (details within). Equation (2) contains the leading
corrections to Eq. (1) for every value of x, without butchery
at the turning points. The primary importance of this work is
the existence of Eq. (2) and its derivation. A secondary point
is the sheer accuracy of Eq. (2): For N > 1, its result is
usually indistinguishable (to the eye) fromexact, as in Fig. 1.
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FIG. 1 (color online). Thomas-Fermi (dashed) and semiclass-
ical (dotted) approximations to the density (solid) of 2 particles in
a Morse potential, vðxÞ ¼ 15ðe−x=2 − 2e−x=4Þ.
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Generalization of Eq. (2) could prove invaluable in any field
using semiclassics or in orbital-free DFT [22].
The crucial step in the derivation is the use of the Poisson

summation formula [23,24]. While long-known [24–26] for
the description of semiclassical phenomena, it has been
little applied to bound states. Although the bare result of its
application appears quite complicated, each of the resulting
terms, which include contributions from every closed
classical orbit at the EF, can be simplified and summed.
We assume only that the potential vðxÞ is slowly varying
with dynamics lying on a topological circle. Accuracy
improves as the number of particles grows except when EF
is near a critical point of vðxÞ.
To begin, at energy E, the left (x−) and right (xþ)

classical turning points satisfy vðx�Þ ¼ E. The action,
measured from the left turning point, is

Sðx; EÞ ¼
Z

x

x−ðEÞ
dxpðx; EÞ; ð3Þ

where pðx; EÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E − vðxÞ�p

is the classical momen-
tum. The WKB quantization condition [2,25,27] is then

S½xþðEjÞ; Ej� ¼ πℏ

�
jþ 1

2

�
; j ∈ N: ð4Þ

The accuracy of WKB quantized energies generally
improve as either j or m grows, ℏ shrinks, or the potential
is stretched such that its rate of change becomes smaller
[2,28]. But the WKB wave function is singular in the
turning point region [2,27,29–31]. Langer [32] obtained
a semiclassical wave function for the case where turning
points are simple zeroes of the momentum:

ϕjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2mωj

pjðxÞ

s
z1=4j ðxÞAi½−zjðxÞ�; ð5Þ

where ωj ¼ ℏ−1∂Eλ=∂λjλ¼j is the frequency of the
corresponding classical orbit, and zj ¼ ½3SjðxÞ=2ℏ�2=3.
In a classically forbidden region, −pðxÞ ¼ −ijpðxÞj ¼
e3iπ=2jpðxÞj, ensuring continuity through the turning point.
The Langer solution can also be used for problems with two
turning points [33]. In this work we match Langer functions
from each turning point at the midphase point xjm, where
SjðxjmÞ ¼ ℏðjþ 1=2Þπ=2. This procedure ensures continu-
ity everywhere.
Our task is to use Langer orbitals to find the asymptotic

behavior of the density of N occupied orbitals,

nðxÞ ¼
XN−1

j¼0

jϕjðxÞj2: ð6Þ

We use the Poisson summation formula:

XN−1

j¼0

fj ¼
X∞
k¼−∞

Z
N−1=2

−1=2
dλfðλÞe2πikλ; ð7Þ

where fðλÞ is essentially any continuous function with
bounded first derivatives (except for a finite number of
points) that matches the fj when λ ∈ N [23,24,34]. Write

nðxÞ ¼ n0ðxÞ þ n1ðxÞ; ð8Þ

where n0ðxÞ is the contribution from k ¼ 0, and n1ðxÞ is all
the rest. Then, for m ¼ 1,

n0ðxÞ ¼ 2

Z
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−1=2
dλ

ωλ

ffiffiffiffiffiffiffiffiffiffi
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p
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Ai2½−zλðxÞ�: ð9Þ

The lower bound of the integral corresponds to the stable
fixed point of the potential well, and the upper bound
defines EF as that obtained by solving Eq. (4) for
j ¼ N − 1=2, where N is the number of particles in the
system. Hereinafter, a subscript F denotes evaluation at EF,
and x is treated as a parameter. For instance, to approximate
the integral in Eq. (9) we employ the transformation
λ → pλðxÞ. Integrating by parts, using the Airy differential
equation [35], changing variables, and neglecting higher-
order terms from the lower bound of the integral in Eq. (9),
we find

n0ðxÞ ∼ ℏ−1pFðxÞgþ½zFðxÞ� þ
Z

zFðxÞ

z−1=2ðxÞ
dz

ffiffiffi
z

p ∂f
∂z g−ðzÞ;

ð10Þ

where

g�ðzÞ ¼ z1=2Ai2ð−zÞ � z−1=2Ai02ð−zÞ; ð11Þ

fðzÞ ¼ pðzÞ= ffiffiffi
z

p
, and Ai0ðzÞ ¼ dAiðzÞ=dz.

Equation (10) is useful for the extraction of the dominant
terms in an asymptotic expansion for n0ðxÞ. As N grows,
the coefficients

ffiffiffi
z

p ∂f=∂z become ever more slowly vary-
ing functions of the energy. Integrating by parts, ignoring
the remaining higher-order contribution, and using

∂f
∂z

����
EF;x

¼ ωF

pFðxÞαFðxÞ
−

pFðxÞ
2ℏz3=2F ðxÞ

; ð12Þ

where αFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
zFðxÞ

p
ℏ−1∂zλðxÞ=∂λjλ¼N−1=2 (e.g., ¼

ωF

R
x
x−ðEFÞ dx

0=pðx0Þ for x−ðEFÞ < x < xm). We find

n0ðxÞ ∼ ℏ−1pFðxÞgþ½zFðxÞ� þ
∂f
∂z

����
EF;x

A0½zFðxÞ�; ð13Þ

where A0ðzÞ ¼ Aið−zÞAi0ð−zÞ.
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To evaluate the k ≠ 0 components of Eq. (7), we use the
integral representation of Ai2ð−zÞ [35] and change the
variable to GλðxÞ ¼ 2πkλ − zλðxÞt,

n1ðxÞ ¼ 2
X∞0

k¼−∞
lim
T→∞

Z
T

−T
dtκðtÞ

Z
GF

G−1=2

dGλωλ
ffiffiffiffi
zλ

p

pλ
∂Gλ∂λ

eiGλ ;

ð14Þ

where the sum is over all k ≠ 0, and κ ¼
i expðit3=12Þ=ð4

ffiffiffiffiffiffiffiffi
iπ3t

p
Þ. Integration by parts assuming

negligible contributions from the lower bound yields, to
leading order in ℏ (or 1=N):

n1ðxÞ∼2
ωF

ffiffiffiffiffi
zF

p
pF

X∞0

k¼−∞
ð−1Þk lim

T→∞

Z
T

−T
dt
κðtÞe−izFt
2πk−yFt

; ð15Þ

where yF ¼ αF=
ffiffiffiffiffi
zF

p
. The factor ð2πk − yFtÞ−1 may be

expressed as geometric series in tyF=ð2πkÞ, with a radius
of convergence RF ¼ j2πk=yFj, which becomes arbitrarily
large as jkj becomes greater and jyFj becomes smaller.
This condition is generally fulfilled when vðxÞ has an
infinite number of bound states, or if the semiclassical
limit is approached by stretching the coordinate [10,21,36].
Assuming any errors introduced by this sequence of
operations vanish in the semiclassical limit the integrals
required for the evaluation of n1ðxÞ can be performed [35]
and the results summed to give an asymptotic expansion for
n1ðxÞ in terms of A0½z� ¼ Ai½−z�Ai0½−z�, A1½z� ¼ Ai2½−z�
and A2½z� ¼ Ai02½−z�:

n1ðxÞ ∼
ωF

pF

X2
p¼0

X∞
j¼0

ð−zFÞ−3j−pξ3jþpðαFÞAp½zF�; ð16Þ

where fξjðαFÞg corresponds to different power series in
αFðxÞ, e.g.,

ξ0ðαÞ ¼
X∞
k¼1

ð−1Þk−12ð22k−1 − 1ÞB2k

ð2kÞ! α2k−1; ð17Þ

where B2k denotes the 2kth Bernoulli number [37].
Equation (17) may also be expressed as −1=αþ csc α.
However, to extract the leading term of n1ðxÞ, only the term
with highest power in zFðxÞ needs to be considered,
yielding

n1ðxÞ ∼
ωF

pFðxÞ
�
csc ½αFðxÞ� −

1

αFðxÞ
�
A0½zFðxÞ�: ð18Þ

The sum of Eqs. (13) and (18) yields Eq. (2). The relative
orders of each term in ℏ only become explicit after
accounting for the zFðxÞ dependence, which changes in
different regions (see below). For instance, while the

rightmost term in Eq. (2) has a multiplying factor of
ℏ−1, it is canceled by the ℏ−1 in z−3=2F ðxÞ. Equation (2)
also illustrates the vital balance between the asymptotic
expansions constructed for n0ðxÞ and n1ðxÞ. The former
[see Eq. (13)] contains the pole α−1F of the Laurent series for
cscðαFÞ about αF ¼ 0 (turning point), whereas Eq. (17)
contains all remaining terms of the series.
Further, if we choose

tðxÞ ¼
XN−1

j¼0

p2
jðxÞjϕjðxÞj2=2; ð19Þ

similar steps produce

tscðxÞ ¼ p2
FðxÞ
6

nscðxÞ þ pFðxÞωF

3 sin αFðxÞ
A0½zFðxÞ�: ð20Þ

Equations (2) and (20) define closed form global uniform
semiclassical approximations to nðxÞ and tðxÞ, which are
asymptotically exact as ℏ → 0 or N → ∞.
These approximations simplify in different regions.
Classically allowed.— For zFðxÞ ≫ 1, the asymptotic

form of the Airy function applies, leading to

nscðxÞ → pFðxÞ
ℏπ

−
ωF cos ½2SFðxÞ=ℏ�
2πpFðxÞ sin αFðxÞ

ð21Þ

(simplifying Eq. (3.36) of Ref. [15]; see also [19]). The
dominant smooth term arises from the direct short-time
classical orbit [18,25]. The oscillatory contributions arise
from single [in n0ðxÞ] and multiple [in n1ðxÞ] reflections
from each turning point [18,19,25,38].
Evanescent.—For x far outside the classically allowed

region for the density −zFðxÞ ≫ 1 and

nscðxÞ →
�
pFðxÞ
3SFðxÞ

−
ωF

pFðxÞ sin αFðxÞ
�
e−2jSFðxÞj=ℏ

4π
; ð22Þ

generalizing the approximation of Ref. [15]. Similarly,

tscðxÞ →
�
p3
FðxÞ

3SFðxÞ
−
3ωFpFðxÞ
sin αFðxÞ

�
e−2jSFðxÞj=ℏ

24π
; ð23Þ

Turning point.—At a Fermi energy turning point x0,
where v0ðx0Þ ≠ 0, the leading term in the density is known:

nscðx0Þ ¼ c0ℏ−2=3jdv=dxj1=3; ð24Þ

where c0 ¼ ð2=9Þ1=3=Γ2ð1=3Þ [15]. In addition,

tscðx0Þ ¼ −d0jdv=dxj; ð25Þ

where d0 ¼ 1=½9Γð2=3ÞΓð1=3Þ�.
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The present development unifies all earlier partial results
[15,19,36,38]. In Fig. 1, we showed how accurate the
semiclassical density is in a Morse potential that supports
21 levels. In Fig. 2, we plot the density error for 2 and
8 particles. The cusp in the center is at the midphase
point xN−1=2

m , where the left- meets the right-turning point
solution. To quantify, we define a measure of density
difference as

η ¼ 1

N

Z
∞

−∞
dxjnscðxÞ − nðxÞj; ð26Þ

which only vanishes when two densities are identical
pointwise, and remains comparable in magnitude
to the pointwise difference. In Fig. 3, we plot this
error measure for the uniform approximation for the
number density in Eq. (2) and for the TF density
[Eq. (1)] as a function of N. As N grows, η shrinks
until levels close to the unstable point of the well are
included.
In Fig. 4, we plot tðxÞ. The TF result clearly misses the

oscillations and everything beyond the turning points. The

exact tðxÞ becomes negative near the turning points and
this effect is well captured by the uniform semiclassical
approximation. Brack et al. [39] noted that tloc½n� ¼ π2n3=6
evaluated on the exact density can yield an accurate
approximation, but only in the classically allowed region.
The improvement of the uniform approximation with
increasing N is reflected in Fig. 5, in which ηT is defined
analogously to Eq. (27) except with the exact T in the
denominator. We find qualitatively similar results for
several other systems including those with uncountable
(Rosen-Morse [40] potential) and countable spectra (simple
harmonic oscillator and quartic oscillator). Longer accounts
of the derivation, performance, and relation to DFT are in
preparation.
Equation (2) cannot be applied to three dimensions,

Coulomb potentials, multicenter problems, or interacting
particles, whereas TF theory can be applied to almost any
fermionic problem. But Eq. (2) strongly suggests correc-
tions to TF exist (even if they can only be evaluated
numerically), are extremely accurate, and must reduce to
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FIG. 3 (color online). Integrated measure of error [Eq. (26)] in
TF density multiplied by 0.1 (top) and semiclassical uniform
approximation (bottom) for the Morse potential of Fig. 1.
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FIG. 4 (color online). Thomas-Fermi (dashed), uniform semi-
classical (dotted), and exact (solid) kinetic energy density for
2 particles in the Morse potential of Fig. 1. The value of
π2½nscðxÞ�3=6 is also shown (dot-dashed).

5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

N

η T

FIG. 5 (color online). Error (see text) in kinetic energy densities
in the Morse potential of Fig. 1 with the semiclassical uniform
approximation (squares), Thomas-Fermi theory (dots), and
tloc½nsc� (rhombs).
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FIG. 2 (color online). Error in semiclassical density for N ¼ 2
(solid), and N ¼ 8 (dashed) in the Morse potential of Fig. 1.
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Eq. (2) where applicable. Without Eq. (2), we would have
no reason to search for them. Now we have.
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thank Michael Berry for useful discussions.

[1] M. Brack and R. K. Bhaduri, Semiclassical Physics,
Frontiers in Physics (Westview Press, Boulder, CO, 2003).

[2] M. S. Child, Semiclassical Mechanics with Molecular
Applications (Clarendon Press, Oxford, 1991).

[3] D. J. Griffiths, Introduction to Quantum Mechanics
(Pearson Prentice Hall, Upper Saddle River, 2005).

[4] L. H. Thomas, The calculation of atomic fields, Math. Proc.
Cambridge Philos. Soc. 23, 542 (1927).

[5] E. Fermi, Un Metodo Statistico per la Determinazione di
alcune Proprieta dell'Atomo, Rend. Accad. Naz. Lincei 6,
602 (1927).

[6] E. Schrödinger, Quantisierung als eigenwertproblem,
Ann. Phys. (Berlin), 384, 361 (1926).

[7] L. Spruch, Pedagogic notes on Thomas-Fermi theory (and
on some improvements): Atoms, stars, and the stability of
bulk matter, Rev. Mod. Phys. 63, 151 (1991).

[8] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[9] E. H. Lieb and B. Simon, Thomas-Fermi Theory Revisited,
Phys. Rev. Lett. 31, 681 (1973).

[10] E. H. Lieb, Thomas-Fermi and related theories of atoms and
molecules, Rev. Mod. Phys. 53, 603 (1981).

[11] L. C. R. Alfred, Quantum-corrected statistical method for
many-particle systems: The density matrix, Phys. Rev. 121,
1275 (1961).

[12] M. J. Stephen and K. Zalewski, On the classical approxi-
mation involved in the Thomas-Fermi theory, Proc. R. Soc.
A 270, 435 (1962).

[13] H. Payne, Nature of the quantum corrections to the
statistical model, Phys. Rev. 132, 2544 (1963).

[14] H. Payne, Approximation of the dirac density matrix,
J. Chem. Phys. 41, 3650 (1964).

[15] W. Kohn and L. J. Sham, Quantum density oscillations in an
inhomogeneous electron gas, Phys. Rev. 137, A1697 (1965).

[16] R. Grover, Asymptotic expansions of the dirac density
matrix, J. Math. Phys. (N.Y.) 7, 2178 (1966).

[17] N. L. Balazs and G. G. Zipfel Jr., Quantum oscillations in
the semiclassical fermion-space density, Ann. Phys. (N.Y.)
77, 139 (1973).

[18] J. C. Light and J. M. Yuan, Quantum path integrals and
reduced fermion density matrices: One-dimensional non-
interacting systems, J. Chem. Phys. 58, 660 (1973).

[19] S. Y. Lee and J. C. Light, Uniform semiclassical approxi-
mation to the electron density distribution, J. Chem. Phys.
63, 5274 (1975).

[20] B.-G. Englert, Semiclassical theory of atoms, Lect. Notes
Phys. Vol. 300 (Springer-Verlag, Berlin, 1988).

[21] P. Elliott, D. Lee, A. Cangi, and K. Burke, Semiclassical
Origins of Density Functionals, Phys. Rev. Lett. 100,
256406 (2008).

[22] A. Cangi, E. K. U. Gross, and K. Burke, Potential
functionals versus density functionals, Phys. Rev. A 88,
062505 (2013).

[23] P. M.Morse andH. Feshbach,Methods of Theoretical Physics
(McGraw-Hill Science/Engineering/Math, New York, 1953).

[24] B. J. B. Crowley, Some generalisations of the poisson
summation formula, J. Phys. A 12, 1951 (1979).

[25] M. V. Berry and K. E. Mount, Semiclassical approximations
in wave mechanics, Rep. Prog. Phys. 35, 315 (1972).

[26] M. V. Berry and M. Tabor, Closed orbits and the regular
bound spectrum, Proc. R. Soc. A 349, 101 (1976).

[27] H. A. Kramers, Wellenmechanik und halbzählige quanti-
sierung, Z. Phys. 39, 828 (1926).

[28] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill,
New York, 1978).

[29] H. Jeffreys, On certain approximate solutions of lineae
differential equations of the second order, Proc. London
Math. Soc. s2–23, 428 (1925).

[30] G. Wentzel, Eine verallgemeinerung der quantenbedingun-
gen für die zwecke der wellenmechanik, Z. Phys. 38, 518
(1926).

[31] L. Brillouin, La mecanique ondulatoire de schrödinger:
une methode generale de resolution par approximations
successives, Comptes Rendus de l'Academie de Sciences
183, 24 (1926).

[32] R. E. Langer, On the connection formulas and the solutions
of the wave equation, Phys. Rev. 51, 669 (1937).

[33] W. H. Miller, Uniform semiclassical approximations for
elastic scattering and eigenvalue problems, J. Chem. Phys.
48, 464 (1968).

[34] M. V. Berry, Uniform approximation for potential scattering
involving a rainbow, Proc. Phys. Soc. London 89, 479
(1966).

[35] O. Vallee and M. Soares, Airy Functions and Applications to
Physics (Imperial College Press, London, 2004).

[36] A. Cangi, D. Lee, P. Elliott, and K. Burke, Leading
corrections to local approximations, Phys. Rev. B 81,
235128 (2010).

[37] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions: With Formulas, Graphs, and Mathematical
Tables, Applied Mathematics Series (Dover Publications,
New York, 1965).

[38] J. Roccia and M. Brack, Closed-Orbit Theory of Spatial
Density Oscillations in Finite Fermion Systems, Phys. Rev.
Lett. 100, 200408 (2008).

[39] J. Roccia, M. Brack, and A. Koch, Semiclassical theory for
spatial density oscillations in fermionic systems, Phys. Rev.
E 81, 011118 (2010).

[40] N. Rosen and P. M. Morse, On the vibrations of polyatomic
molecules, Phys. Rev. 42, 210 (1932).

PRL 114, 050401 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 FEBRUARY 2015

050401-5

http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1103/RevModPhys.63.151
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRevLett.31.681
http://dx.doi.org/10.1103/RevModPhys.53.603
http://dx.doi.org/10.1103/PhysRev.121.1275
http://dx.doi.org/10.1103/PhysRev.121.1275
http://dx.doi.org/10.1098/rspa.1962.0235
http://dx.doi.org/10.1098/rspa.1962.0235
http://dx.doi.org/10.1103/PhysRev.132.2544
http://dx.doi.org/10.1063/1.1725785
http://dx.doi.org/10.1103/PhysRev.137.A1697
http://dx.doi.org/10.1063/1.1704904
http://dx.doi.org/10.1016/0003-4916(73)90412-0
http://dx.doi.org/10.1016/0003-4916(73)90412-0
http://dx.doi.org/10.1063/1.1679253
http://dx.doi.org/10.1063/1.431327
http://dx.doi.org/10.1063/1.431327
http://dx.doi.org/10.1103/PhysRevLett.100.256406
http://dx.doi.org/10.1103/PhysRevLett.100.256406
http://dx.doi.org/10.1103/PhysRevA.88.062505
http://dx.doi.org/10.1103/PhysRevA.88.062505
http://dx.doi.org/10.1088/0305-4470/12/11/007
http://dx.doi.org/10.1088/0034-4885/35/1/306
http://dx.doi.org/10.1098/rspa.1976.0062
http://dx.doi.org/10.1007/BF01451751
http://dx.doi.org/10.1112/plms/s2-23.1.428
http://dx.doi.org/10.1112/plms/s2-23.1.428
http://dx.doi.org/10.1007/BF01397171
http://dx.doi.org/10.1007/BF01397171
http://dx.doi.org/10.1103/PhysRev.51.669
http://dx.doi.org/10.1063/1.1667946
http://dx.doi.org/10.1063/1.1667946
http://dx.doi.org/10.1088/0370-1328/89/3/301
http://dx.doi.org/10.1088/0370-1328/89/3/301
http://dx.doi.org/10.1103/PhysRevB.81.235128
http://dx.doi.org/10.1103/PhysRevB.81.235128
http://dx.doi.org/10.1103/PhysRevLett.100.200408
http://dx.doi.org/10.1103/PhysRevLett.100.200408
http://dx.doi.org/10.1103/PhysRevE.81.011118
http://dx.doi.org/10.1103/PhysRevE.81.011118
http://dx.doi.org/10.1103/PhysRev.42.210

