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The non-relativistic large-Z expansion of the exchange energy of neutral atoms provides an important
input to modern non-empirical density functional approximations. Recent works report results of fitting
the terms beyond the dominant term, given by the local density approximation (LDA), leading to an
anomalous ZlnZ term that can not be predicted from naive scaling arguments. Here, we provide much
more detailed data analysis of the mostly smooth asymptotic trend describing the difference between
exact and LDA exchange energy, the nature of oscillations across rows of the periodic table, and the
behavior of the LDA contribution itself. Special emphasis is given to the successes and difficulties in
reproducing the exchange energy and its asymptotics with existing density functional approximations.

1. INTRODUCTION

Almost a century of painstaking physical and mathemat-
ical work has proven that the asymptotic expansion of the
non-relativistic energy of the neutral atom is

E → −c0 Z
7/3 + Z2/2− c1 Z

5/3 + ... (Z → ∞), (1)

where Z is the nuclear charge (in Hartree atomic units)[1].
Remarkably, the simplest density functional approximation,
that of Thomas-Fermi theory[2, 3], yields precisely the lead-
ing term, allowing c0 to be calculated to arbitrary accuracy
from the solution of the Thomas-Fermi differential equa-
tion for neutral atoms[4]. In fact, Lieb and Simon proved
that Thomas-Fermi theory becomes relatively exact for the
total energy of any electronic system in a carefully defined
semiclassical limit[5, 6].

Modern electronic structure calculations are dominated
by Kohn-Sham density functional theory[7], in which only
the exchange-correlation energy, EXC, need be approxi-
mated as a functional of the density. It has been conjec-
tured (and proven under various assumptions) that, in the
same limit, ELDA

XC becomes relatively exact[1, 8–14]. For
exchange alone,

EX → −d0Z
5/3 + ...(Z → ∞), (2)

where d0 = 9c1/11 and is given exactly by the local den-
sity approximation (LDA) for exchange (given by the Dirac
model[15]), applied to the TF density[4]. It has further
been found numerically that several popular generalized
gradient approximations (GGAs) are quantitatively accu-
rate for the leading correction to LDA.[10] The construc-
tion of several approximate semilocal functionals, including
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FIG. 1. Exchange energy per electron versus nuclear charge
Z for neutral atoms up to Z = 120, exactly (black), within
LDA(blue),and with PBE (red). The leading order term in
the large-Z expansion, Dirac exchange applied to the TF den-
sity, is shown with violet dot-dashed line.

PBEsol[16], SCAN[17], and acGGA[13], have incorporated
these insights. Unfortunately, even the analytic form of
these leading corrections is unknown. Kunz and Rueedi [11]
have discussed possible higher-order terms in the asymptotic
expansion for exchange, distinguishing between a series with
a smooth dependence on Z, and oscillating terms which ap-
pear in higher orders.[18] They argue the need for smooth
corrections to the leading order term in Eq. 2 of order Z4/3

and ZlnZ terms but did not calculate the associated coef-
ficients or provide a proof for their existence.
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Investigations of the exchange energy of neutral atoms in the large-Z limit

Fig. 1 illustrates just how devilishly difficult it can be to
find these leading corrections. The figure shows exchange
energy per electron as a function of Z. It includes the simple
asymptotic behavior, the local density approximation (LDA)
and a popular GGA, as well as highly accurate energies from
OEP calculations. Hidden in these barely distinguishable
lines are all the shell structure of the periodic table, and very
subtle trends in the differences. On this scale, the leading
order term of the expansion, derivable from the primitive
TF-Dirac model for exchange does quite well, and all the
complications of modern functionals only amount to a small
perturbation. This illustrates the challenge of the task of
extracting accurate and correct asymptotic behaviors, when
even the form to be used is uncertain.

Nevertheless, there have been a number of attempts to
elucidate the form and coefficients by careful numerical anal-
ysis of the available data. The quantity ∆EX = EX−ELDA

X

is much smoother and so simpler to model than EX itself.
Original works of this sort [10, 19] used an overly simple
model based on a naive scaling analysis of the gradient ex-
pansion correction to LDA that neglected changes in the
density as a function of Z. This assumes that the form of
the leading correction to∆EX was in simple powers of Z1/3,
neglecting the possibility of non-analytic contributions. In
the range of Z between 10 and 56 and with only noble gas
atoms, this fit is indeed quite reasonable numerically.

Recent work [20–22] has revealed a flaw in this approach.
The gradient expansion correction to the LDA energy di-
verges on the TF density. Correction of the TF density
near the nucleus leads to a leading order term of ZlnZ.
Based on this insight, recent work [21] revisited exchange
data for atoms, this time up to Z = 120, finding a re-
markably efficient fit of ∆EX of closed shell atoms to the
form −Z(BlnZ + C). The leading coefficient is several
times larger than that predicted by the gradient expansion
of exchange[23] applied to this system. The fit matches
atomic exchange energies down to Z = 1, and the coeffi-
cients are independent of fit range and details. An explana-
tion for this result comes from analysis of the Bohr atom[24],
consisting of noninteracting electrons in a Coulomb po-
tential. This analysis both validates the need for a ZlnZ
term and provides an explanation for the ratio of the nu-
merically observed B coefficient to that of the gradient
expansion.[21, 22]

The older results have been used in the construction of
several recent approximate functionals. Such fits yield ac-
curate results for the limited range of the fit, and hence
approximations trained on such fits are accurate for large Z
atoms. But the new analysis complicates the picture, espe-
cially as two coefficients are now needed to acheive the same
accuracy. The complicated behavior of the density as a func-
tion of Z makes the relationship between semilocal function-
als of the density complicated, with density functional errors
harder to diagnose and fix. It also leads to a complicated
expansion picture for LDA exchange, with many terms be-
yond the Z5/3 term characterizing the asymptotic limit, and
oscillations as a function of the fractional filling of rows of
the periodic table.

The present work presents a detailed study of both the
oscillatory ELDA

X (Z) data and the much smoother ∆EX(z)
results, with special attention given to the successes and dif-
ficulties in reproducing the exchange energy and its asymp-
totics with existing density functional approximations.
Organization of the rest of this paper is as follows: Sec. 2

presents background of our study, including an overview
of the asymptotic expansion of exchange of atoms and an
analysis of the gradient expansion, including higher order
terms. Sec. 3 briefly reviews numerical methods, Sec. 4
presents a comparison of the beyond-LDA contribution∆EX

for exact exchange and common GGA functionals, Sec. 5
presents our results for LDA exchange, and finally, Sec. 6
presents outcomes and conclusions.

2. BACKGROUND

The connection between asymptotic expansions and mod-
ern density functionals for exchange-correlation was first dis-
cussed in Ref [19], with the appropriate formalism illustrated
for the one-dimensional kinetic energy in Ref [25]. The key
analytic insight is provided by the scaling procedure of the
TF model, expressed in theorems developed by Lieb and
Simon. [5, 6] The Lieb-Simon limit is approached by simul-
taneously scaling the potential by a factor ζ tending to ∞
and changing the particle number. For any potential v(r),
define a ζ-scaled potential vζ(r) = ζ4/3v(ζ1/3r), and si-
multaneously replace N , the electron number, with ζN ,
choosing ζ so the latter remains an integer. This applies
to all atoms, molecules, and solids. For any finite inter-
acting electronic system, the expansion will have the same
form as Eq. 1, but with different, system-dependent coeffi-
cients. Because N changes, this can be a challenging limit
to study in practice, and almost all numerics for interact-
ing systems have been extracted solely in the simple case
of neutral atoms, where ζ-scaling is equivalent to changing
Z, keeping N = Z. The Lieb-Simon theorem states that,
for any electronic system, TF theory yields the leading order
term (the Z7/3 contribution) exactly.
For atoms, Schwinger first showed[8] in convincing detail

that LDA exchange yields precisely the dominant term, with
many further details extracted with Englert[26, 27]. Later,
Conlon [9], followed up with greater mathematical rigor by
Fefferman and Seco[28] gave a general proof for arbitrary
systems.
Beyond the leading order term, however, little is known

for certain, even the form of the large-Z expansion for the
exchange energy. Kunz and Rueedi[11] found success for 2D
quantum dots considered as artificial atoms, but crucially,
these lack the complicating factor of the singular Coulomb
potential. We take their conjecture that the large-Z expan-
sion of the exchange energy of atoms has at its basis a form
that is a smooth function of Z:

EX(Z) → −
(
d1Z

5/3 +AXZ
4/3 + Z(BXlnZ + CX)

)
+ · · ·
(3)

as Z → ∞. However these coefficients are expected to
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FIG. 2. Asymptotic residual of exchange. Shows what is left
over of the exchange energy/particle when the leading term

in the asymptotic expansion for exchange −(9/11)0.2699Z2/3

is removed. Shown is the OEP data from opmks, the LDA,
B88 exchange, PBE, and an asymptotically corrected PBE
from Ref. 12 that might be deleted. The line at zero gives
the Thomas-Fermi limit of the exchange energy. The vertical
lines shows the location of each atom with a filled s2 valence
shell (He and the alkali earths.)

vary with each column of the periodic table, leading to os-
cillations in energy across each row of the table. Thus,
for an accurate description of the exchange energy of every
atom, the smooth form must be augmented by an oscil-
latory piece, expressed (at least in part) in terms of coef-
ficients that depend on the fraction of filled shells.[1, 18]
This is straightforward in the case of the kinetic energy of
Bohr atoms[1, 12], but is much more complex for the real
periodic table. Fortunately, as we show below, and as dis-
cussed in Refs. 10, 20, and 21, these oscillations are to a
large degree not relevant to density functional development.

Now define the beyond-asymptotic exchange energy for
each Z as:

EBA
X (Z) = EX(Z) + d1Z

5/3, (4)

so that for large Z, ignoring oscillatory effects,

EBA
X (Z)

Z
→ −

(
AXZ

1/3 +BXlnZ + CX

)
+ · · · . (5)

Figure 2 shows EBA
X (Z) exactly and for various approxima-

tions. Already, the simple subtraction of the leading asymp-
totic contribution highlights the differences and makes the
periodic structure visible. It also illustrates a relatively slow
average variation with Z1/3.
LDA has oscillations strongly correlated with those seen in

exact exchange but a significantly different smooth contri-
bution. Removing this contribution from the asymptotic ex-
pansion removes much of the complications of this periodic
structure while retaining the target of beyond-LDA density
functional models of exchange. Thus, assuming the same
qualitative behavior, we define the local beyond-asymptotic
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FIG. 3. Difference with LDA or beyond-LDA exchange energy
per electron. The details are the same as the previous two
figures.

(LBA) energy as

ELBA
X (Z) = ELDA

X (Z) + d1Z
5/3, (6)

with a smooth large-Z expansion of

ELBA
X (Z)

Z
→ −

(
ALDA

X Z1/3 +BLDA
X lnZ + CLDA

X

)
+ · · · ,

(7)
as LDA surely also yields the correct leading asymptotic
term. Their difference ∆EX(Z) = EX(Z)− ELBA

X (Z), the
beyond-local contribution to exchange, has an expansion

∆EX(Z)

Z
→ −

(
∆AXZ

1/3 +∆BXlnZ +∆CX

)
+ · · · .

(8)
for large Z. Here, then, ∆AX = AX −ALDA

X , etc. Figure 3
shows the difference between LDA and exact energies, and
is clearly far smoother than Fig. 2. As plotted, ∆EX/Z
has a form ∆AZ1/3 + ∆BlnZ + ∆C that lends itself to
visual analysis, and it is apparent that the trend is much
more likely that of a log curve, than, for example, a straigbt
line. As noted by Elliot and Burke in their original work[10],
the approximate exchange energies of PBE[29] and of Becke
88 (B88)[30], the exchange component of BLYP, follow very
closely the smooth asymptotic trend of the exact data. (Un-
fortunately, they plotted data versus Z−1/3, and not Z1/3, a
a strategy optimized for extracting asymptotic coefficients,
but obscuring the trend in the asymptotic form.) A third
density functional, PBEsol,[16] is also shown as a proxy for
the second-order gradient expansion which it approaches
for a system with a slowly varying density. The plot shows
clearly the underestimate of the gradient expansion of the
beyond-LDA exchange as compared to OEP, and the much
better reproduction of this data achieved by PBE and B88
by breaking this constraint.
Fig. 4 confirms the logarithmic behavior of the leading

order term of ∆EX/Z. It shows the results of fits assum-
ing leading order terms in ∆EX/Z to be Z1/3 (brown),
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FIG. 4. Beyond-LDA exchange energies per electron. OEP
is optimized effective potential, the other three curves are fits
to various asymptotic models as described in the text. OEP
data used to make the fits are highlighted in red.

lnZ (blue) or constant (violet), or leading order coefficients
of ∆AX, ∆BX or ∆CX respectively, plotted versus lnZ.
Each fit is on a set of closed-shell atoms highlighted in red
on the figure; they are described in Ref. 21 and partly shown
in Fig. 1 of the same. The fits are all reasonably close to
data within the range of Z values, lnZ ≥ 3, of the fit set.
However, only the logarithmic model has predictive power
outside this range – in fact extrapolating almost exactly
down to Z = 1. It is not surprising that varying the fit set
of atoms (including using all the data) yields no statistically
significant change in this fit. We are thus confident that an
expression for ∆EX of the form

∆Efit
X → −(∆BXZlnZ +∆CXZ) (9)

gives an accurate description of exact exchange for the data
available.

2.1. Application to KS DFT

In KS DFT, we are required to give EX as a functional
of the density. As ζ becomes large, the exchange functional
approaches the local density approximation:

EX[nζ ] →
∫

d3r eLDA
X (nζ(r)) = −cX

∫
d3r nζ(r)

4/3,

(10)
where cX = (3/4)(3/π)1/3. As the density also weakly ap-
proaches the TF density, evaluation on that density yields
the coefficient d1 in Eq. 2 [4]. Next, we equate ∆EX(Z)
defined in Eq. (8) with the difference between the LDA and
exact exchange functional

∆EX(Z) = EX[nZ ]− ELDA
X [nLDA

Z ], (11)

where nZ is the exact KS density for the Z electron system
and nLDA

Z the LDA density for the same. This formulation

may be extended to approximate exchange functionals. Al-
most all those in modern use (including all those discussed
here) recover LDA in the uniform (or large-Z) limit, so that
∆EX/EX → 0 as s2 → 0.

2.1.1. Gradient expansion

The natural next step beyond the local density approxi-
mation is the gradient expansion. For a slowly-varying (in-
finitely extended) electron gas, this is the expansion of its
energy in increasing (higher-order) gradients of the density.
This expansion is well-defined, and is likely asymptotic when
applied to any gas of slow but finite variation[31]. The appli-
cation of this expansion to finite systems as an approximate
density functional is called the gradient expansion approxi-
mation, GEA.

For atoms, most of the density becomes slowly varying in
the LS limit, i.e., the local dimensionless gradient vanishes
as the limit is approached. But the region near the nucleus
and the vicinity of the evanescent region, do not. As the nu-
cleus is approached, the GEA produces an anomalous con-
tribution to kinetic energy of order Z2 (but not the correct
-1/2 coefficient)[4] For exchange, as we show below, GEA
produces an anomalous ZlnZ term, suggesting that such a
term might be present in the exact functional. Moreover,
modern semilocal approximations can be expanded in the
slowly-varying limit, although many do not recover the cor-
rect coefficient for the slowly-varying gas. Thus both the
exact and most approximate functionals can be expected to
manifest this logarithmic behavior for exchange for large Z.
For exchange, we write the gradient expansion in terms

of second-order ∆E
(2)
X and fourth order ∆E

(4)
X terms as

EGE
X = ELDA

X +∆E
(2)
X +∆E

(4)
X + · · · . (12)

The second-order gradient correction is of most importance
here and is given by

∆E
(2)
X = µ2

∫
s2eLDA

X (n(r))d3r (13)

with µ2 = 10/81 [23] and s2 is a scale-invariant gradient
given by

s2 =
|∇n|2

4k2Fn
2

(14)

where kF = (3π2n)1/3 is the local Fermi wavevector. To
generate the leading beyond-LDA term in the exchange ex-
pansion, one can first try a naive scaling argument. Ap-
ply the second-order gradient expansion to the TF density
nTF(r). Note [4] that for any finite value of r, s2 ∼ Z−2/3

for the TF density, while the LDA gives a factor of Z5/3.
The end result of Eq. 13 should give the order of the first
term beyond leading order, and is of order Z.
To obtain a logarithmic term from the gradient requires

more careful analysis of the contribution from the very high
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density inner core of the large-Z atom.[21] Here, nTF(r) di-
verges as 1/x3 and s2 diverges as 1/x, where x = Z1/3r/a
is the scaled distance derived from TF theory[1], and a =
(1/2)(3π/4)2/3. Thomas-Fermi theory breaks down for
s2 ∼ 1 and care must be taken to ensure finite integrals.
Including the divergence of the TF density at the nucleus
produces divergent integrals. For the region inside x ∼ 1,
the location of the peak of the radial density probability, we
have

n(r) ∼ Z2

4πa3
x−3/2 (15)

eLDA
X d3r ∼ Z5/3 cX

(4π)1/3
dx (16)

s2 ∼ a21
Z2/3

x−1 (17)

where a1 = (1/2)(9/2π)2/3 [4]. With the resulting inte-

grand diverging as 1/x as x → 0, ∆E
(2)
X diverges logarith-

mically. The natural small-radius cutoff is r ∼ 1/Z, the
distance from the nucleus in units of aB inside which TF
theory fails. This translates to x ∼ Z−2/3 so we find a net
contribution to the leading order of

∆E
(2)
X ∼

∫ 1

Z−2/3

x−1dx =
2

3
ZlnZ +O(Z). (18)

Restoring constants produces

∆E
(2)
X ∼ ∆BGEA

2 ZlnZ +∆CGEA
2 Z, Z → ∞ (19)

with

∆BGEA =
3

4π2
µ2. (20)

To see if higher orders in the gradient expansion alter this
coefficient, we proceed with the fourth-order contribution in
a similar fashion. The general form is

∆E
(4)
X =

∫
(µppp

2 + µpqpq + µqqq
2)eLDA

X d3r, (21)

where the µ’s are known coefficients. Here, p = s2 and q =
∇2n/4k2Fn is the scale-invariant Laplacian of the density.
Since q = p/3 for the region of space where the logarithmic

divergence in ∆E
(2)
X occurs,[4] we find

∆E
(4)
X ∼ µ4

∫
d3rp2eLDA

X , (22)

where µ4 = µpp+µqp/3+µqq/9. An analysis similar to that

for 2nd-order shows that the integral scales naively as Z1/3,
but the integrand varies as 1/x2. The overall behavior is

∆E
(4)
X ∼ Z1/3

∫ x2

Z−2/3x1

x−2dx ∼ Z/x1 (23)

In this case we can’t eliminate a constant x1 that deter-
mines the exact small-radius cutoff, but a good criterion

for this can be found, as we show below. More important
is to note that neither the fourth-order GE, nor any high-
order order term in the gradient expansion contributes to
the logarithmic contribution ∆BX to ∆EX: it only comes
only from the second-order gradient expansion as far as we
can tell.

Thus, the minimal density functional approximation that
captures the leading order term in exchange beyond the LDA
is the GGA, which has the general formulation given by

EGGA
X =

∫
d3rFX(s

2)eLDA
X , (24)

which typically reduces to the form of the second-order gra-
dient expansion, FX ∼ 1 + µs2, in the slowly-varying limit,
s2 → 0. As we show in Sec. 4.4, meta-GGAs only add
significant corrections to this form to fourth-order and are
less relevant here. Different GGA’s produce different ∆BX

coefficients because of differing values for µ. Thus the
PBEsol [16] uses the gradient expansion coefficient, µ =
10/81 ∼ 0.123, but PBE [29] has µ = βπ2/3 ∼ 0.21951
based on a different choice of constraints, and B88 [30], has
µ = 0.275. But our asymptotic model [Eq. (19)] of actual
atom exchange energies has µ ∼ 1/3, considerably larger
than all these.

This discrepancy indicates the limitation (first pointed
out in Ref. 19) of the gradient expansion as a model for
Coulombic systems. The gradient expansion is derived for
slowly-varying gases, without classical turning points at the
Fermi level – something that is not true for any atom with
finite Z. In addition to the Coulomb singularity that ensures
there will be a finite region near the nucleus where Thomas-
Fermi analysis fails, the classical turning point at the valence
edge necessarily requires corrections of fundamentally differ-
ent form than the gradient expansion, as discussed in Ref.
[32]. Indeed, the Scott term in the total energy[33], of order
Z2 [Eq. (1)], is evidence of such corrections. More precisely,
a term ∼ Z2 is generated from the gradient expansion for
the total energy by using an analysis of the inner core equiv-
alent to that discussed here for exchange, but the coefficient
has the wrong sign and magnitude. The correct coefficient
of -1/2 is easily deduced by the direct analysis of the Bohr
atom however.[12]. It seems likely, therefore, that the same
thing is happening for exchange: the gradient expansion in-
dicates the need for an anomalous ZlnZ term but does not
determine the correct coefficient.

Based on this insight, Ref. 21 applied an analysis of the
exchange energy of the Bohr atom to find that the exact
exchange indeed had a logarithmic ZlnZ term, with a coef-
ficient that was exactly 2.7 times the value obtained by the
GEA applied to that system. Assuming that the same ratio
should hold for real atoms, yields a correction of 2.7∆BGEA

[Eq. (20)] or 1/4π2. Further requiring, with probably some-
what less reasonability, that Z = 1 should yield the exact
EX for hydrogen produces the following conjecture for the
beyond-local contribution: ‘

∆EX = −Z
(
lnZ/(4π2) + 5/16− 0.2564

)
. (25)
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This remarkably matches our numerical parameters within
their statistical error.

3. METHODS AND NUMERICAL CHECKS

In the following we must distinguish between trends with
Z, Z logZ and Z4/3. To do so, we extend our data set
to as high a Z as possible, ignoring issues of experimen-
tal stability and relativity, a task that involves two differ-
ent atomic DFT codes. First we use the optimized effec-
tive potential code opmks [34] to perform nonrelativistic
exact exchange and spin-density dependent, self-consistent
density functional calculations for all neutral atoms up to
Z = 120. Unfortunately, the inversion problem used to find
the potential in the OEP begins to fail for Z > 120 and
DFT calculations using OPMKS fail to converge reliably for
Z > 362.
For GGAs and the LSDA for large-Z atoms (Z > 120)

we use the atomic pseudopotential code FHI98PP[35] in its
all-electron, non-relativistic mode. This code enables us to
make GGA and LDA calculations extending the periodic ta-
ble to Z = 978 without significant sign of numerical stress.
This corresponds to 16 full shells of the periodic table, and
one filled 17s shell – the alkali earth metal with valence shell
17s2. (A few atoms had frontier orbitals that failed to con-
verge properly, mostly open-shell atoms and two closed-shell
atoms of the extended periodic table with frontier orbitals
with a high angular momentum.)

FHI98PP computes wavefunctions on a grid of radial
points, with spacing between successive points increasing
by a geometric factor γ. We use the default grid which
starts at r = 0.00625/Z, with a step size that increments
by a growth factor γ = 1.0247 out to a maximum radius of
80. To check the quality of FHI98PP energies, the highest
occupied orbital energy eigenvalues were compared to those
of OPMKS for closed shell atoms with Z < 362 using LSDA
exchange. These calculations were done both using a finer
and more course grid than the default. The results are in-
distinguishable within machine precision. The details of the
stress test can be seen in the supplementary materials.

The shell structure of the large-Z atoms was assumed
to follow the Madelung principle for closed shell atoms.
The validity of this extension has been tested by comparing
the total energy of Aufbau-constructed shells versus several
other shell configurations for elements 976 (filled 16p), 970
(filled 15d), and 816 (filled 16s). For all cases tested, the
Aufbau construction yields the nonrelativistic ground state
for these atoms.

An important potential source of error is the use of OEP
to obtain exact exchange energies – the true ground state
has correlation energy, which will slightly change the density
and orbitals used to evaluate exchange. We do not have a
way to assess this issue directly. However, as a proxy, we
have calculated beyond-local exchange energies using the
difference between OEP and LDAX (i.e. using LDA ex-
change only), on the principle that this should cancel some
of the error of not treating correlation in the OEP. Refitting

the coefficient ∆BX for the leading beyond-local term in
exchange leads to a value of 0.0248, a 2% change in the
fitted value of 0.0254 reported in Ref. 21. A similar calcula-
tion, comparing OEP with PBE correlation to LSDA, yields
0.0250. These results are an order of magnitude smaller an
effect than the discrepancies we see between the predictions
for this quantity by GGA and our model, and is nearly within
statistical error.
Statistical fits used gnuplot plotting and Levenberg-

Marquardt nonlinear regression. A list of approximate and
exact exchange energies used in this paper is included in the
supplementary materials.

4. RESULTS WITH APPROXIMATE
FUNCTIONALS

4.1. Generalized gradient approximations

How do standard DFT approximations perform in repro-
ducing the asymptotic behavior of exact exchange data?
To find out, we recast our data so as to extract efficiently
the asymptotic character of the exchange energy. Starting
with the asymptotic form ∆Easy

X [Eq. (9)] describing the
nonoscillatory contribution to the beyond-LDA exchange en-
ergy in the large Z limit, we reframe it as

∆Easy
X

ZlnZ
= ∆BX +∆CXx, (26)

where x = 1/lnZ. Plotting ∆Easy
X /ZlnZ versus x casts

this relation as a straight line with y-intercept ∆BX and
slope ∆CX. This plotting convention yields an easy visual
comparison to the behavior of exact exchange and of approx-
imate functionals. Fig. 5 shows the results. Black crosses
show the beyond-LDA exchange energy for OEP, and the
black line extrapolating to x = 0 is the asymptotic model
Eq. 25, with the y-axis intercept shown as a green circle.
We place vertical lines at the location on the x axis of the
alkali earth atoms, from 8s2 (Z = 120 or x = 0.21) to 2s2

(Z = 4, x = 0.72). Helium and hydrogen have x > 1 and
are not shown.
Similar plots are included on the figure for three different

GGA’s: PBEsol, PBE, and BLYP, each evaluated on an ex-
tended data set including closed shell atoms up to Z = 978.
The asymptotic trend to large Z for each is estimated by
taking a linear fit for x < 0.18 (Z ≥ 260) and extrapolat-
ing to x = 0 and shown as a straight line. As discussed in
Sec. 3, the theoretical large-Z limit of a GGA is determined
by the its coefficient µ, yielding a prediction for B [Eq. (20)]
proportional to µ. The prediction for each GGA is shown as
an additional green circle on the y-axis.
We do not compare directly to the gradient expansion

because of the large errors it suffers in the exponential tail
of small atoms (where s2 diverges to infinity). Instead we
use PBEsol as a surrogate, as it yields the exact second-
order gradient expansion (µ = 10/81) for the slowly-varying
gas. PBEsol mimics the general trend of the OEP correctly,
i.e., it has a reasonably close slope or ∆CX coefficient. But
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4.1 Generalized gradient approximationsInvestigations of the exchange energy of neutral atoms in the large-Z limit
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FIG. 5. Extrapolation of beyond-LDA exchange energies per
electron to the Z → ∞ limit for OEP data and several com-
mon GGA’s. The y-axis intercept yields the coefficient ∆BX.
PBEsol is included as a proxy for the gradient expansion.
Black line is the semi-theoretical result of Ref. [21] while the
other straight lines are fit to DFT models for Z > 259. Green
dots are calculated theoretical limits of each model and the
OEP.

its intercept is nearly one-third too small, consistent with
the finding in Sec. 2. This leads to a significant error in
exchange energies of atoms.

At the same time, by roughly doubling µ compared to the
gradient expansion, PBE and BLYP correct for the PBEsol
errors for Z of chemical relevance but still fall short of reach-
ing the predicted ∆BX from asymptotic analyis. The ex-
trapolated large-Z behavior of each density functional, with
the notable exception of BLYP, is close to that obtained
from the coefficient of the second-order gradient expan-
sion of each model. This corroborates the assessment in
Sec. 2 that the value of ∆BX obtained in a gradient ex-
pansion is determined from the second-order contribution
only, [Eq. (20)], and not from higher-orders. As we shall
see below, even B88, the exchange functional of BLYP, can
be made to comply with a little extra work.

4.2. Asymptotic analysis of remainder

We performed one further piece of analysis, to plot the
difference between the exchange energy-per-particle of sev-
eral approximations and the “nearly” theoretical model of
Eq. (25). This is shown for the OEP and several GGA ap-
proximations to the exchange energy in Fig. 6 using the
same convention for x and y axes as Fig. 5.

At the fine energy scale revealed by subtracting off the
leading order terms to the beyond-LDA expansion, the small
oscillations in the OEP data becomes significant.

The figure shows that our theoretical model for the
asymptotic limit has, to some extent, captured the trend
of the lower energy edge of the oscillations in OEP. The up-
per peaks occur at filled 2p, 3d, 4f valence shells (Ne, Zn,
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FIG. 6. Extrapolation of difference between DFT exchange
energies-per-particle and our smooth asymptotic model to the
Z → ∞ limit. acPBE has a gradient expansion coefficient of
µ = 0.2605 as suggested by Ref. 10. Theoretical values for
extrapolated ∆BX coefficients shown as green dots and fits to
functionals as straight black lines. Location of alkali earths
indicated by vertical black lines as guide to the eye.

Yb), and trend to a rather different asymptote. (To identify
Ne, note that the bars show filled alkali earths, starting with
the 8s2 filled valence shell and working back to 2s2. Ne is
the peak two atoms from Mg, the vertical line at x ∼ 0.4).
The amplitude of oscillation is roughly 0.003 ZlnZ (3ZlnZ
in mHa) in the range of Z values for which we have data,
i.e. an order of magnitude lower than the ZlnZ coefficient
for the smooth asymptotic trend. It is also quite possible
that these oscillations grow as Z4/3, as do those of the to-
tal energy [1] and, as we shall show presently, those of the
LDA exchange energy of real atoms. In comparison, the
GGA’s greatly underestimate the magnitude of these oscil-
lations, although it seems that they do have small “kinks”
at roughly the same Z values as the minima in the OEP
data trend.

4.3. Generalized gradient approximations

We studied two GGA’s with the PBE form. PBEsol has
µ matching that of the gradient expansion, while PBE is
about double that. The impact seen in Fig. 5 is to im-
prove exchange energies overall, lowering ∆BX and increas-
ing the slope ∆CX. What happens if we should continue
the trend? Fig. 6 includes an PBE model that was asymp-
totic adjusted using the old fit. It has µ = 0.2609, closer to
what B88 exchange tends to, and suggested by Ref. 10, but
otherwise keeping the same functional form as the PBE and
PBEsol. The result (downward triangles) is clearly to over-
shoot the OEP, with much too steep a slope in the data.
Arguably, PBE already had the close to optimal slope in Z
for 10 < Z < 120; attempting to shift the magnitude of
the correction to the OEP by changing µ worsens the fit to
the data as a function of 1

logZ .
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4.3 Generalized gradient approximationsInvestigations of the exchange energy of neutral atoms in the large-Z limit

Model µ ∆BX ∆Bfit
X ∆Cfit

X Ratio
PBEsol 0.1235 9.38 9.22 46.0 4.9
PBE 0.209 16.68 16.60 78.5 4.7
acPBE 0.2609 19.83 20.82 90.3 4.5
B88 0.275 20.9 90.8 4.3
Theory 25.33 56.0 2.2

TABLE I. Results of analysis of the large-Z limit of various
GGAs described in the text. µ is the coefficient of the gradient
expansion used in each functional, ∆BX, the theoretical value
of the logarthimic coefficient derived from the gradient expan-
sion, ∆Bfit

X and ∆Cfit
X are the results of fitting GGA data to

Eq. (9) for PBE and its variants, or to Eq. (eq:delexb88) for

B88. Ratio is the ratio ∆Cfit
X /∆BX. Asymptotic coefficients

are reported in mHa.

Secondly, we can verify that the linear extrapolations to
x = 0 that we made in Fig. 5 (shown again in Fig. 6 as
solid lines) hold up, at least for the PBE-like functionals.
Clearly, the y-axis intercepts nearly exactly reproduce those
predicted from theory for the gradient expansion of each
model. This confirms that all these models approach their
asymptotic limits fairly quickly. This also gives us confi-
dence that we can make reasonable estimates for the slope
(or the ∆CX coefficient in the asymptotic analysis). The
results are summarized in the following table. We see that
∆CX as well as B in the PBE “family” of GGA’s varies
roughly linearly with µ, with a nearly constant ratio of
∆CX/∆BX. Interestingly, this ratio is double that predicted
by our semi-theoretical model, indicating that no PBE-like
functional could capture the basic trend in exchange data
well. In this context, PBE is perhaps the best choice since
it balances errors in ∆BX and ∆CX roughly evenly.

We turn next to B88, which has designed on very dif-
ferent principles, including fitting one parameter to the ex-
change energies of the noble gas series. Clearly B88 matches
OEP very well for 10 < Z < 120, as is well known. The
main issue is a poor description of oscillations, particularly
that of the first row atoms needed for organic chemistry.
Thus, if we follow the protocol for obtaining ∆BX and ∆CX

that we used for the OEP, using the same data set of se-
lected closed-shell atoms between Z = 20 and 120, we find
∆BB88

X = 25.72(9) mHa, ∆CB88
X = 55.0(4), close to our

derived results of Eq. (25). (Interestingly this fit does not
extrapolate as well to the B88 data in the first row as it
does the OEP data.)

On the other hand, if we follow B88 for x < 0.2,i.e,
Z > 120, we find it soon begins to deviate from this trend.
Ultimately the asymptotic trend has to match a y intercept
consistent with ∆BB88

X = 20.9, the theoretical value de-
rived by expanding the B88 functional about small s2, and
roughly 4 mHa higher than the ∆BX value predicted by our
work. That is to say, the asymptotic trend of beyond-LDA
exchange in B88 is to some extent only reached for Z’s
larger than those we have OEP data for.

To check that this is reasonable, we fit beyond LDA ex-

change for B88 to the form

∆EB88
X =− Z

(
3

4π2
µB88lnZ +∆CB88

X

)
− Z2/3

(
∆DB88

X lnZ +∆EB88
X

) (27)

finding ∆CB88
X = 90.8 mHa, ∆DB88

X = −4.18, and
∆EB88

X = −46.5 for Z > 12. This is shown as a yellow
dashed curve and gives a plausible if imperfect fit to the
BLYP data for Z > 12, failing for small Z. The ∆CX

coefficient is quite plausible, yielding a 4.3 : 1 ratio for
∆CX/∆BX, close to that of the PBE-like functionals.
This analysis suggests somewhat disquietingly two possi-

ble scenarios for OEP exchange. One is our picture – that
it is described by a simple and highly accurate asymptotic
model one which B88 only matches within the range of
data 10 < Z < 100 for which it was fit. Or, since our own
model ultimately relies on its unusual fidelity to OEP data
for 1 < Z < 120, the opposite might be true – the true
asymptotic behavior for beyond LDA OEP might not make
itself apparent until Z ≫ 100 and the behavior relevant
for real electronic structure might involve a large number
of subdominant terms that would be quite hard to deter-
mine by any means. B88 or something near it could be
the asymptotically correct picture. Ultimately, we will need
a fully a priori determination of ∆BX to decide between
these two scenarios.

4.4. meta-GGAs

We finish our discussion of beyond-local results with a
short analysis of meta-GGAs. A meta-GGA relies on three
semilocal arguments: n(r), ∇n(r), and α(r). The last of
these introduces the noninteracting KE density τS:

α =
τS − τW

τTF
(28)

where τS = 1
2

∑N
i ∇ϕ(r)2 is the positive definite kinetic

energy density, and τW = 1
2 |∇

√
n|2, the von-Weizsäcker

kinetic energy density, is its form for a single orbital system.
Among recent metaGGAs, TPSS [36] and its derivatives and
SCAN[17] are designed to recover the fourth-order gradient
expansion for EX for the slowly varying gas, while others
such as r2SCAN[37] and MVS[38] do not. But in all cases,
as α modifies only the fourth-order gradient correction, it
does not modify ∆BX.
There is one thing we can take from this. For the bulk

of the atom core, α is closely approximated by its gradient
expansion [39, 40], and has the form [41, 42]

α ∼ 1− 45

27
s2 +

20

9
q. (29)

For the inner core, with scaled radius x = Z1/3r/a < 1, we
also have q = s2/3 so α ∼ 1 − 25

27s
2 and is a redundant

parameter. But given the constraint that τS > τW, [43] we
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4.4 meta-GGAs Investigations of the exchange energy of neutral atoms in the large-Z limit

require α > 0. This is broken for small x for the value of
s2 equal to a21/(Z

2/3x1) = 27/25. and suggests a value for
the short-range cutoff parameter x1 in Eq. 23:

x1 =
25

27
a21. (30)

With this, the leading order correction due to the divergence
of nTF and s2 in the inner core becomes

∆CGEA
4 ∼ 243

200π2
µ4 (31)

where

µ4 = µpp + µpq/3 + µqq/9 ∼ 0.06809 (32)

using canonical values,[23] resulting in a contribution of
about 8 mHA to ∆CX. This is about 20% of the overall
∆CX obtained by numerical analysis of atomic data. This
reinforces our finding that the GGA itself dominates the
beyond-LDA exchange energies, in that it whows that not
only ∆BX is unaffected, but also ∆CX is affected only to a
modest extent.

5. ASYMPTOTICS OF LDA

Surprisingly, the asymptotics of the LDA exchange en-
ergies are more difficult to capture than the beyond-LDA
corrections. This is because LDA exchange energies have
strong oscillations across the periodic table, presumably due
to the varying nature of open shells across a row. Because
of the KS construction, presumably LDA itself produces
extremely accurate densities, with only very insignificant
changes (for our purposes) when more sophisticated ap-
proximations are used.

5.1. Basics

Because of the complicated shell structure seen in Fig. 2
it is worthwhile to investigate the asymptotic expansion for
the KS LDA. Fig. 7 shows the difference between the LSDA
and asymptotic LDA energies per electron, ELBA

X /Z, for all
atoms up to Z = 120 and for those atoms with closed s, p,
d, f, g, h, i, or j valence shells up to Z = 978 The data covers
16 rows of the extended periodic table and the 17s2 alkali
earth. There is a clear (but complicated) oscillatory pattern,
superimposed upon a gradual upward drift in energy. The
oscillatory pattern has eight peaks indicating the period is
every two rows of the periodic table, and the amplitude
grows with Z. Note that the changes within one oscillation
dwarf those of the beyond LDA term ∆EX discussed in the
previous section.

Since we are considering the error in energy for a fixed
functional form, Dirac exchange of Eq. 10, any difference
from the Thomas-Fermi asymptotic limit is due to density
differences. This figure demonstrates the effect caused by
introducing shell structure into the density, as compared to
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FIG. 7. The LSDA exchange for neutral atoms up to Z = 120
and closed-shell neutral atoms up to Z = 978, as described in
the text, versus Z1/3
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FIG. 8. Plots of the beyond-asymptotic LDA exchange for
atoms up to Z = 120 and all closed-shell atoms up to Z = 978.
Overlaid are energies sorted by column of the periodic table.
s indicates column 2 with closed s valence shell (alkali earths),
p, noble gases, d, group 12 closed d shell atoms, etc. g through
j refer to total angular momenta l from 4 to 7, possible in the
extended periodic table.

the smooth TF scaling form responsible for the leading order
term in exchange.
In Fig. 8 we recast the LDA data to bring out some of

the hidden structure underlying the complex oscillatory pat-
terns exhibited by the full data set. We do so by highlighting
atoms that belong to columns of the periodic table corre-
sponding to closed-shell systems. These include He plus
the alkali earths (with an outermost closed s shell), noble
gases (closed p shells), group 12 metals (closed d shells),
and continuing up to closed j valence-shell atoms. (The j
shell corresponds to total angular momentum l = 7 and, ac-
cording to Madelung’s rule, is first occupied in the 15th row
of the extended periodic table.) Each column is highlighted
by a line joining atoms of that column.
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5.1 Basics Investigations of the exchange energy of neutral atoms in the large-Z limit

Each column thus displayed forms a stair case pattern
that differentiates even and odd rows of the periodic table,
falling into a fairly predictable amplitude oscillation after
first one or two rows of each column. The g and h closed-
shell series of the extended periodic table appear to break
this pattern, but because the numerical calculation of the
first occurence of these columns (i.e., the 5g and 6h valence
shells) failed to converge. The pattern resets each time a
new angular momemtum is added to the atomic configura-
tion.

The alkali-earth staircase seems to determine approxi-
mately the higher energy edge of the oscillatory pattern of
the atomic exchange energy (Fig. 7, and the background in
gray in Fig. 8). This is true both for even rows and odd,
with the even rows forming the upper limit of the overall
pattern. The low-energy edge of Fig. 7 is shown in Fig. 8 to
be due to successive low-Z rows of each closed shell column,
the first, an atom (He) with s frontier orbitals, then p (Ne),
then two with d-shell valence (3d and 4d) and thereafter,
a new value of lHO for each minimum. It also seems that
each column of closed-shell atoms are slowly converging to
the alkali earth case, migrating slowly from the low-energy
edge of the exchange energy oscillations to the high-energy.

This last feature can be brought ought more plainly
by considering trends versus quantum number rather than
Z1/3. We first note that closed-shell columns with the same
value of the combination nHO + lHO, involving the principle
quantum number and total angular momentum quantum
number of the highest occupied atomic orbital, are located
at a fixed distance from each other in the periodic table.
Thus, the nHO-s closed-shell atom is two columns from the
closed-shell (nHO −1)-p atom, which is six columns from
(nHO−2)d, etc. As nHO and Z → ∞, the length of each
row of the periodic table also diverges to infinity, and so
these fixed differences become negigibly small fractions of
an oscillation in Fig. 7. Thus nHO + lHO yields a proxy for
Z1/3, one that is easier to construct a model for, and which
allows a direct comparison between atoms in different col-
unns.

As we can directly compare atoms across different
columns of the periodic table which have the same value of
nHO + lHO, it is instructive to plot the exchange energy-per-
electron for each closed-shell column in our data set relative
to that of the alkali earths, as shown in Fig. 9. This shows
clear and reasonably smooth convergence of the p and d se-
ries to the alkali earths, while the higher lHO columns seem
to swerve away for a few cycles before falling into line. It
seems likely that all the columns will share the same asymp-
totic slope (i.e., leading order trend) in Fig. 8 as the alkali
earths, but possibly have somewhat different asymptotes.
The oscillatory part of each column seems also to converge
onto the alkali earth pattern, more slowly for the higher lHO

columns.
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FIG. 9. LDA exchange energy per electron for several closed-
shell columns of the extended periodic table, measured rela-
tive to that of the nearest alkali earth atom. Difference be-
tween LDA exchange energy per atom and that of He and
the alkali earth with the same nHO + lHO, where nHO is the
principle quantum number and lHO is the angular momentum
quantum number. p stands for closed p-shell atoms (noble
gases), etc.

5.2. Model for the large-Z expansion of the alkali
earth series

The previous figures suggest a protocol for extracting
the leading order coefficient for the beyond-asymptotic ex-
change of the LDA. As Z → ∞ or equivalently, nHO → ∞
for any closed-shell column of the periodic table (fixed lHO),
we hypothesize the staircase trend should gradually merge
with that of the alkali earths and thus the leading order
for a given column should be given by that of the alkali
earths. It is quite possible that lower-order terms should
still be l-dependent. From the visual analysis of the alkali
earths, it seems apparent that the leading order term for
beyond-TF LDA for this column should be of order Z1/3

or equivalently, nHO + lHO – the straight-line behavior not
seen in Fig. 3. In addition, as the oscillations between even
and odd filled-shell atoms are exactly periodic vs principle
quantum number nHO, we can model then with a simple
oscillatory term. As there is little evidence that the oscil-
lation amplitude grows with nHO we posit the following ex-
tension of the large-Z expansion, written parametrically in
terms of highest-occupied shell quantum numbers nHO(Z)
and lHO(Z):

ELBA
fit /Z →Aξ + Bln(ξ) +

[
C + δC(−1)ξ

]
+D/ξ + E lnξ/ξ + · · ·

(33)

where ξ = nHO + lHO, so that ξ = nHO for Helium and the
alkali earths. Given the existence of a lnZ term for beyond-
LDA exchange, we have added the possibility of a log term;
otherwise the expression is equivalent to an expansion in
powers of Z1/3. We can also consider higher order terms of
order (nHO + lHO)

−1, equivalent to Z−1/3.
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5.2 Model for the large-Z expansion of the alkali earth seriesInvestigations of the exchange energy of neutral atoms in the large-Z limit
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FIG. 10. Difference of the LDA vs nHO for He and alkali earth
atoms and various fits of the form Eq. 33, as described in the
text and in Table II.

To ascertain the most likely form of the asymptotic expan-
sion of LDA exchange for the alkali earth series, we compare
statistical fits to various models with terms down to O(1)
in ξ, an exercise similar to that carried out for beyond-local
exchange in Ref. 21. We first restrict our fits to values of
nHO ≥ 10, restricting our focus to higher Z while keeping a
reasonable number of data points. This should help maxi-
mize the footprint of the leading terms in the LDA asymp-
totic series, and allow us to truncate higher-order terms.

Since the trend in data for a given column is extremely
smooth, the quality of a fit is not easily tested by usual
statistical measures, so we judge by visual comparison, as
shown in Fig. 10. This shows the deviation of various least-
square fits of the LDA exchange energy per electron for
the AE series. These include a purely linear trend (la-
beled “line”), with logarithmic coefficient B set to zero in
Eq. (33), and one with both linear and log trends (“log”).
Fit coefficients for these fits are Fits with A = 0 were clearly
poorer and are not shown. (More details on statistical fits
and a complete list of models we considered are shown in
supplemental information.

Note that the error of the purely linear fit has noticeable
curvature and thus the reported coefficient A = 0.009 or
9 mHA must be an underestimate of the slope. Adding
the logarithmic term greatly improves the fit to the data,
basically reproducing the trend within numerical error for
nHO ≥ 10, and suggesting a value for the leading order
coefficient of A = 14 mHa.
Table II shows coefficients of fits for several columns of

the periodic table in addition to the alkali earths – corre-
sponding to filled p, d and f valence shells. While the coeffi-
cient A is somewhat sensitive to the form of the asymptotic
expansion taken, it is roughly independent of column. Other
coefficients are understandably less reliable, except for the
amplitude of the even-row to odd-row oscillation. This is
quite stable for all columns of the table, all fit ranges and
model forms.

Next, as a verification of the robustness of the fit param-

eters we find, we repeat our calculation over a greater range
of data, including all points with nHO ≥ 2. Fit 6 of Table II
(“log, n ≥ 2” in Fig. 10) is the same functional form as fit
2 in the table, but now it is seen to be unable to capture the
observed trend at large Z. To do so, we need to add two
additional sub-dominant terms in the series: D/ξ+E lnξ/ξ.
These results are shown as fit 7 in Table II and labeled as
“full” in Fig. 10, which shows that the resulting error is
very nearly reduced to small fluctuations for all rows ex-
cept nHO = 1. The penalty is that now, the leading order
coefficient has changed yet again, to A = 20 mHa.
This result raises an essential problem limiting further

progress – the LDA exchange is inherently much more com-
plicated than the beyond-LDA series. In addition to the
many terms needed, the presence of both logarithmic and
power law terms means that an accurate asymptotic trend
will be hard to determine even with the extended range of
data we have for the LDA, and overfitting is a clear danger.
Thus unfortunately, we do not expect our exercise to yield
an unambiguous value for A, and even less for B or other
subleading terms.
Nevertheless, we should like our results for the alkali

earths to be expressed as an expansion in nHO converted
into a conventional function of Z. The Z value for alkali
earths for even rows of the periodic table (valence shell con-
figurations of 2s2, 4s2, 6s2, etc.) is given exactly by

ZAE(j) =

j∑
k=1

(2k)2 =
2

3
j(j + 1)(2j + 1) (34)

where the principle quantum number of the highest-
occupied shell is nHO = 2j, and j is an integer. For any of
the other series, take j = (nHO + lHO)/2(= ξ/2). Then

Zl(j) = ZAE(j)− 2l2HO. (35)

We then consider j as a continuous variable and invert
ZAE(j) to find, exactly for even-row alkali earths:

j(ZAE) +
1

2
=

+

{(
3ZAE

8

)
+

[(
3ZAE

8

)2

−
(

1

12

)3
]1/2 }1/3

+

{(
3ZAE

8

)
−

[(
3ZAE

8

)2

−
(

1

12

)3
]1/2 }1/3

(36)

Now this expression yields an asymptotic expansion for j
in Z. In fact, Eq. 34 matches that for the summation of
the total kinetic energy of a hydrogenic or Bohr atom (one
with noninteracting particles feeling a central Coulomb po-
tential.) From this, one can derive [12] the following expan-
sion:

jevenAE (Z) = z − 1

2
+

1

12z
+ ... (37)

where z = (3Z/4)
1/3. For even-row atoms, ELBA

fit /Z then
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5.2 Model for the large-Z expansion of the alkali earth seriesInvestigations of the exchange energy of neutral atoms in the large-Z limit

TABLE II. Table of fit parameters to the beyond-asymptotic contribution to the LDA exchange energy ELBA
X for closed-shell

atoms segregated by valence angular momentum lHO. First column gives the angular momentum for highest occupied orbital
Second column gives the minimum value of ξ = nHO + lHO used in the fit. Missing coefficients indicate the coefficient has been
fixed at zero. Fits are done by Levenberg-Marquardt method, with error in statistical fit given in parentheses.

lHO nHO A B C δC D E
0 ≥ 10 0.00925(18) -0.0709(24) 0.0218(4)
0 ≥ 10 0.01433(31) -0.068(4) 0.035(6) 0.02180(5)
1 ≥ 10 0.0134(5) -0.048(7) -0.010(11) 0.02147(9)
2 ≥ 10 0.0124(15) -0.021(20) -0.082(32) 0.02049(27)
3 ≥ 12 0.013(4) -0.016(6) -0.12(10) 0.0195(4)
0 ≥ 2 0.00944(32) -0.0087(24) -0.0507(23) 0.0221(4)
0 ≥ 2 0.0203(11) -0.282(30) 0.70(8) 0.02220(14) -0.68(7) -0.71(8)

becomes

ELBA
fit /Z → 2Az + Bln(2(z − 1/2 + (12z)−1))

(C + δC − A) + 2A(12z)−1
(38)

Expanding the log term to order z−1 and converting z to Z
produces the expression

ELBA
fit /Z ≈ ALDA

X Z1/3+BLDA
X ln(Z)+CLDA

X +DLDA
X Z−1/3

(39)
where ALDA

X = 61/3A. For the two best fits to the alkali
earths discussed in the text – fit 2 and fit 7 of Table II we
end up ALDA

X = 25 and 36 mHa respectively. For odd-row
alkali earths, the appropriate asymptotic expansion is that
with δC replaced by −δC in Eq. 38. But in addition, one
has to alter the asymptotic map from Z to j to

joddAE (Z) = z − 1

2
− 1

6z
+ ... (40)

Inspection shows that if we use this expression to deter-
mine the odd rows, the leading order terms in Eq. (39) are
unchanged, but terms starting with DLDA

X will change dra-
matically. This is a small discrepancy but will complicate
the formulation of the column-dependent correction to our
fit.

Figure 11 is a reprise of Fig. 7 showing various fits to
the even nHO filled s-shell series of the form of Eq. 38. The
basic linear fit, fit 1 of Table II, already captures the rough
trend of the data; the remaining error is reasonably small.
The second fit of table II which includes a logarithmic term
(non-zero B), seems to capture the large Z asymptotics par-
ticularly well, given both figures 10 and 11, but diverges for
small Z. When including lower shell data in fits, complicated
transient features become apparent, for example the region
in between 2 ≥ Z1/3 ≤ 6. These are fit well by fit 7 of Ta-
ble II, (“full, n ≥ 2” in Fig. 7), with six fitting parameters.
These, however, may be the result of higher order oscillatory
terms not captured well by the single oscillatory term δC.
We also note that this fit is not nearly as good as fit 2 for
large Z. This suggests that fit 2 gives the best predictions
of A and B for the large Z asymptotic expansion.

-0.05

 0

 0.05

 0.1

 0  2  4  6  8  10

E
L

B
A

/Z

Z
1/3

LSDA

s

line, n ≥ 10

log, n ≥ 10

full, n ≥ 2

log, osc

FIG. 11. The beyond asymptotic component of the LSDA
(ELBA) plotted vs Z1/3 (red) with He and the alkali earths
highlighted (blue); along with various fits parametrized in
Table II discussed in the text. The LSDA data for filled s-
shell atoms is highlighted in blue. Fits shown are fit 1 of
Table II (“line, n ≥ 10”), fit 2 (“log, n ≥ 10”), and fit 7
(“full, n ≥ 2”). Light blue shows the oscillatory extension of
fit 2 discussed in Sec. 5.3.

5.3. Oscillatory terms

We finish with a short discussion of what issues are in-
volved with characterizing the full oscillatory pattern in the
beyond-asymptotic LDA. From Fig. 7 and 8, we have a pe-
riod that takes up two rows of the periodic table, broken
up into an even-row and odd-row sub-pattern. To charac-
terize this pattern, we construct a variable ν(Z) describing
the partial occupation over a two-row period which varies
uniformly between zero and one between two even-row al-
kali earths, taking the value 1/2 at the odd-row alkali earth.
Similarly, one may need a variable λ(Z) that does the same
on a per-row basis. The function jevenAE (Z) that we used to
convert our smooth fit in nHO to the alkali earths may be
converted to a function of Z usable over the entire periodic
table using an asymptotic expansion that depends on both
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Z and ν:[1, 12]

j(Z, ν) = z − 1

2
+

1− 12ν(1− ν)

12z
(41)

With this formula, we can construct a single model for all
the alkali earths, including oscillatory effects, as

ELBA/Z → A2j(Z, ν)+Bln[2j(Z, ν)]+C+δC[1−8ν(1−ν)].
(42)

In the last term, we include an ν-dependence similar to that
of Eq. (41). This is shown in Fig. 11 in light blue, using
fit 2 of Table II, for rows with nHO greater than 10. The
agreement for all alkali earths is quite good.

A full model of the entire periodic table will require a
good model for the low-energy edge of the oscillatory pat-
tern. This lower edge has limited data for which our cal-
culations prove to be less numerically reliable. Preliminary
work suggests that this could be fit by a logarithmic term
shifted by a constant – that is, with no Z1/3 term.

6. DISCUSSION

This paper follows up on a report [21] and analysis of the
conjectured ZlnZ term in the large-Z asymptotic expan-
sion of the beyond-LDA contribution to exchange energies
of neutral atoms. A simple model for this contribution on a
per-electron basis is thus ∆EX/Z ∼ ∆BXlnZ+∆CX where
∆BX is taken to be 3/4 that derived from the Bohr atom
and ∆CX is the beyond-LDA exchange energy of the hy-
drogen atom. This paper analyzes to what extent these
beyond-LDA results are amenable to analysis by popular
forms of density functional theory such as GGAs and meta-
GGAs and also describes the LDA exchange energies them-
selves, particularly determining a Z4/3 behavior for the lead-
ing correction to the local limit. These studies demonstrate
significant complications beyond what can be predicted by
tools such as dimensional analysis and models such as the
gradient expansion.

Some perspective on these results may be obtained by re-
considering the Lieb-Simon scaling that we began our story
with. This process is a scaling of the potential, but there
also exists dual procedure of density scaling:

nζ(r) = ζ2 n(ζ1/3r). (43)

which differs from the usual coordinate scaling in DFT, as
the number of particles changes. Within TF theory, the
scaled density is the ground-state of the scaled potential,
but this is not true more generally.

Early work analyzing the asymptotic form of exchange[10,
19] took the approach of density scaling, and the exact den-
sity weakly approaches the TF density in the limit of large Z.
(Weakly here means sufficiently smooth integrals over the
exact density approach zero relative error when evaluated
with the TF density.) Moreover, the relative error in the TF
total energy also vanishes. Assuming (incorrectly) that dif-
ferences between the exact and approximate densities would

contribute mainly to higher orders and to oscillations in the
exchange energy characteristic of the LDA, suggests

EX → −d0Z
5/3 −∆CXZ + · · · (44)

for exchange. In fact, the beyond-LDA data was tested to
include a Z4/3 term, but its coefficient was found to be
numerically indistinguishable from zero[10].
The LS theorem guarantees weak convergence to the TF

limit for the total energy and the results of Schwinger[8]
and Conlon[9] imply a similar principle for the leading con-
tribution to the exchange energy. However, beyond such
dominant terms, whether or not the gradient expansion can
yield the next subdominant correction is a delicate question.
The gradient expansion for the (non-interacting) kinetic en-
ergy does yield the exact contribution to the Z5/3 in the
total energy, without modification. Table I shows that the
true gradient expansion limit, implemented by PBEsol gets
∆CX closer than any other density functional, (off by 20%
at most). Our estimate for the fourth-order gradient ex-
pansion contribution to this quantity, about 8 mHa, almost
exactly makes up this deficit. What the gradient expansion
does not predict properly, either for kinetic energy or for
exchange is an additional anomalous term not predictable
from density scaling – the Scott term of order Z2 for the
former and the ZlnZ term for exchange.
A contrast could be made to the situation with quantum

dots[11], whose asymptotic series for the total energy and
for exchange each have the same form as that generated by
density scaling. It remains an open question what should be
the necessary conditions in a scaled potential for anomalous
powers to appear in the associated asymptotic series.

6.1. Semilocal approximations

The analysis of semilocal density functionals adds nuance
to our prior conclusions. First, the logarithmic term for the
exchange energy-per-particle in such a model is uniquely de-
termined by its second-order gradient expansion in the limit
of a slowly varying density, and the coefficient, ∆BX, by
the coefficient µ of this correction. But also the second
coefficient ∆CX is roughly linear in µ as well. A GGA thus
has the task of attempting to fit two asymptotic coefficients
with one adjustable parameter. This task is made more dif-
ficult in that the value of µ, 1/3, needed to obtain the B
coefficient of our model, is significantly larger than any en-
countered in a successful GGA. What a successful GGA like
PBE or BLYP does is find a useful compromise between
obtaining an accurate value for ∆BX and one for ∆CX by
choosing a µ somewhere between the correct value and that
needed to match asympototics of the large-Z atom. In con-
trast, as discussed above, the implementation of the exact
gradient expansion limit matches ∆CX reasonably while in-
troducing large errors in ∆BX.
In contrast, metaGGAs have the flexibility to match both

∆BX and ∆CX because they incorporate explicit control
over the second-order and fourth-order gradient expansion
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corrections to the LDA. But doing so likely produces co-
efficients quite far from those optimal for a slowly-varying
periodic system. It is uncertain whether this would be a
profitable thing to do.

But all these conclusions are limited by the limited range
of our data and capacity of our theoretical methods to de-
termine the exact asymptotic behavior of atoms. We have
seen that one could generate an alternate model supposing
B88 exchange to be the correct picture, with behavior for
Z < 100 determined by a large number of subdominant
terms in an asymptotic expansion while the leading terms
only becoming dominant for Z ≫ 100. The need for such
subdominant terms to describe B88’s asymptotic behavior
is likely due to its complicated form as a function of s2. We
cannot prove that they are not there for exact exchange.
Rather, our conclusions stand on the surprising accuracy of
our simple two parameter fit, consistent with the expecta-
tion that asymptotic expansions are efficient.

6.2. Outcomes for LDA

A full picture of the asymptotic expansion of exchange
involves the description of LDA exchange beyond the TF
approximation. The result is a rich and complex oscillatory
pattern showing the full complexity of the periodic table and
which we only start to unravel.

Because of the need to consider logarithmic terms in our
modeling, we are unable to get a definitive fit, even for
a smooth average trend, in the fashion of the beyond-LDA
data. This awaits accurate accurate exchange data at much
larger values of Z. But we are able to make a number of
conclusions – primarily that the leading beyond-TF term in
exchange of neutral atoms is of order Z4/3. The value of
the coefficient depends on the fit strategy used but is likely
between 10 to 20 mHa. This estimate is made by fitting the
data for the alkali earth column and noting that the energy
series of any other closed-shell column approaches that of
the alkali earths at least to this order.

The overall trend of oscillations is quite complex. The
pattern (involving closed-shell atoms only) depends on the
fraction of filling of each row of the periodic table superim-
posed on a trend that takes two rows to repeat. At least for
closed-shell systems, the local maxima of this two-row pat-
tern seem to be the even-row and odd-row alkali earths. For
this and likely any column of the periodic table there is a dis-
tinct oscillation between even and odd rows of the periodic
table with an asymptotic form of ±δCZ, for δC = 22mHa.
The lower boundary is formed by a series of atoms with
near minimum nHO − lHO – those that nearly maximize the

angular momentum of the valence shell for a given value of
nHO + lHO. The amplitude of the complete oscillatory pat-
tern apparently grows roughly as Z4/3, similar to that seen
by Englert for the total energy.
The cause of these effects is the appearance of shell struc-

ture changing the charge density from the scale-invariant
Thomas-Fermi density. The very strong dependence of ex-
change on the angular momentum quantum number of the
frontier shell, as well as common sense consideration of ener-
getics, indicates that these changes should primarily involve
the outer shells of the atom. The most notable density
change is at large radial distqnces r from the nucleus: from
the asymptotic of 1/r6 for TF to an exponential decay at
finite radius. However, there can be a non-negligible contri-
bution from a large number of outer shells of the atom, as
has been seen in a somewhat different context in Ref. [40].
One argument why alkali earths should present the “roof”

for exchange energy comes from considering the exchange
contribution of the outermost shell. The exchange energy
can be expressed as the expectation of the interaction of
an electron with its exchange hole – the change in overall
electron density elsewhere given the particle is observed at
some particular point in space. If this electron is in a valence
s-shell, its exchange hole will be diffused over the entire
valence region, leading to a relatively weak exchange energy.
This could very well be positive relative to that predicted by
Thomas-Fermi-Dirac theory. For a frontier shell with a large
degree of degeneracy, greater localization of the exchange
hole is possible and thus a lower exchange energy.
Although they may not impact development of KS DFT,

these issues in the LDA and beyond-LDA energy for ex-
change illustrate the difficulty of achieving accurate orbital-
free models of the energy and its XC component, and point
to the large amount of work that still remains to understand
the large-Z limit of atoms.

SUPPLEMENTARY MATERIAL

See supplementary material for tables of LSDA and GGA
exchange energies, numerical stress tests, additional fit data
and additional plots of exchange energies. For OEP data,
see the supplementary material of Ref. 21. Additional data
is available on request.
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6.2 Outcomes for LDAInvestigations of the exchange energy of neutral atoms in the large-Z limit

Appendix A: Large Z stress test

As a check on the validity of large Z atomic structure
calculations, we have compared the energetics from two in-
dependent atomic density functional codes, FHI98PP [35]
and OPMKS [34]. The former is done using the default
integration grid with geometric growth factor γ = 0.0247,
and and a finer grid γ = 0.123 as described in the text.
Table III shows calculations for the energy eigenvalue of the
highest-occupied atomic orbital (HO) of helium and noble
gas atoms up to Z = 976. These prove to be an energy mea-
sure sensitive to numerical issues such as failure to converge
to a solution in FHI98PP. PW91 exchange and correlation
was used for these calculations.

TABLE III. Comparison of the HO eigenvalue calculated on
a coarse and fine grid using FHI98PP and using OPMKS

Z HO fine grid HO coarse OPMKS
2 -0.57025586 -0.57025588 -0.57025583
10 -0.49784696 -0.49784690 -0.49784691
18 -0.38222044 -0.38222035 -0.38222041
36 -0.34625570 -0.34625554 -0.34625569
54 -0.30977911 -0.30977894 -0.30977910
86 -0.29313618 -0.29313608 -0.29313616
118 -0.27392048 -0.27392058 -0.27392045
168 -0.26363740 -0.26363782 -0.26363735
218 -0.25147948 -0.25148038 -0.25147939
290 -0.24426230 -0.24426386 -0.24426218
362 -0.23575844 -0.23576087 -0.23575826
460 -0.23032261 -0.23032611
558 -0.22397950 -0.22398436 -0.22397916
686 -0.21969293 -0.21969939
814 -0.21474382 -0.21475225
976 -0.21125111 -0.21126178

Appendix B: Energy Data

Tables IV,V,VI,VII give total exchange energies for LSDA
exchange calculated by OPMKS for atoms Z ≤ 120 as well
as the LDA for closed shell atoms Z > 120 (same as LSDA)
for and various GGAs calculated by FHI98PP. GGAs are not
spin polarized calculations. An entry of ”nan” indicates that
the calculation did not converge.

Appendix C: Additional plots

Fig. 12 plots exchange-energy per charge split into
columns of the periodic table, plotted vs the principle quan-
tum number of the HO (nHO)plus the angular momentum
of the HO (lHO).
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FIG. 12. Plots the difference between KS LSDA exchange
energies and TF LDA exchange vs principle quantum number
plus the angular momentum quantum number of the last filled
shell.

Appendix D: Statistical fits of beyond-asymptotic
LDA data

In Table VIII and IX we present statistical fits of a number
of models for the beyond-asymptotic component of LDA
exchange, defined by Eq. 6 in the main text. The fits are
to an expansion in nHO, the principal quantum number of
the highest-energy occupied orbital, given by Eq. 33 of the
main text, reprised, . Shown in the SI are a number of
fits using Levenberg-Marquardt nonlinear regression. If a
coefficient is missing, then it has been constrained to be
zero. Standard errors are shown in parentheses, along with
the χ2

red measure, which is the χ2 measure of the fit divided
by the number of independent data points in the fit. A
χ2
red less than 1e − 7 was needed to reduce the error to

numerical error rather than systematic error from a wrong
fitting function.
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TABLE IV. Exchange energies as calculated by FHI98PP in
non-relativistic mode using the exchange functional stated,
with the exception of the LSDA which was calculated by
OPMKS for atoms up to 120, and FHI98PP for higher Z
atoms.

Z PBEsol PBE BLYP LSDA
1 -0.285103 -0.301759 -0.305921 -0.256426
2 -0.952651 -1.005099 -1.018337 -0.861740
3 -1.665161 -1.751734 -1.771358 -1.514295
4 -2.507204 -2.633584 -2.657785 -2.290333
5 -3.527610 -3.695906 -3.726510 -3.246785
6 -4.776838 -4.988579 -5.027871 -4.430191
7 -6.272321 -6.529170 -6.578122 -5.857031
8 -7.790568 -8.100493 -8.154102 -7.300277
9 -9.564857 -9.928070 -9.989481 -8.999038
10 -11.610176 -12.027537 -12.099347 -10.966746
11 -13.451905 -13.924267 -14.006053 -12.729476
12 -15.366169 -15.896179 -15.986368 -14.563428
13 -17.368448 -17.953607 -18.053264 -16.485917
14 -19.507646 -20.148558 -20.259722 -18.544496
15 -21.788564 -22.486058 -22.609315 -20.743147
16 -24.076698 -24.832382 -24.966611 -22.949589
17 -26.515780 -27.330118 -27.475697 -25.305450
18 -29.107513 -29.981392 -30.139415 -27.812161
19 -31.540945 -32.475933 -32.646217 -30.162201
20 -34.021221 -35.018503 -35.200554 -32.559071
21 -36.780064 -37.837632 -38.033415 -35.236844
22 -39.706642 -40.824452 -41.034752 -38.080882
23 nan nan -44.438807 -41.332351
24 -46.317208 -47.549392 -47.796449 -44.530068
25 -49.449931 -50.749570 -51.005773 -47.571047
26 -52.794474 -54.158130 -54.429019 -50.832824
27 -56.468921 -57.893017 -58.177009 -54.423184
28 -60.172474 -61.659715 -61.959412 -58.040636
29 -64.040916 -65.591487 -65.907619 -61.822122
30 -67.795918 -69.413739 -69.750274 -65.492277
31 -71.561204 -73.242822 -73.596713 -69.168712
32 -75.407020 -77.151814 -77.524221 -72.925515
33 -79.340876 -81.149203 -81.539986 -76.769192
34 -83.245939 -85.119973 -85.529139 -80.587205
35 -87.256845 -89.195559 -89.622997 -84.509595
36 -91.373178 -93.376894 -93.822814 -88.535671
37 -95.330802 -97.402192 -97.866120 -92.403904
38 -99.315762 -101.455560 -101.937255 -96.299795
39 -103.476697 -105.682558 -106.182519 -100.371730
40 -107.763775 -110.036018 -110.554242 -104.567434
41 -112.378509 -114.712770 -115.251191 -109.089494
42 -116.931623 nan -119.890641 -113.548978
43 -121.317441 -123.792217 -124.365738 -117.839362
44 -126.040253 -128.580983 -129.170095 -122.470059
45 -130.769236 -133.378702 -133.985919 -127.105429
46 -135.773758 -138.450985 -139.073656 -132.012189
47 -140.574957 -143.322635 -143.967816 -136.721135
48 -145.380020 -148.199147 -148.867528 -141.436736
49 -150.190853 -153.078451 -153.768105 -146.155034
50 -155.069722 -158.024503 -158.736018 -150.941087

TABLE V. Continuation of table IV
Z PBEsol PBE BLYP LSDA
51 -160.018061 -163.040081 -163.772972 -155.795528
52 -164.934009 -168.025544 -168.779985 -160.621632
53 -169.931908 -173.091264 -173.867222 -165.528358
54 -175.009592 -178.236785 -179.034156 -170.513218
55 -179.942326 -183.240451 -184.058395 -175.353399
56 -184.894972 -188.264447 -189.103066 -180.213928
57 -190.004274 -193.443095 -194.302285 -185.230322
58 -195.966874 -199.472708 -200.354797 -191.103880
59 -201.704369 -205.278758 -206.182989 -196.749306
60 -207.567828 -211.210992 -212.137415 -202.520151
61 -213.555438 -217.267608 -218.216238 -208.414629
62 -219.666426 -223.447845 -224.418680 -214.431982
63 -225.900563 -229.751481 -230.744510 -220.571984
64 -231.775153 -235.696001 -236.712778 -226.355247
65 -238.252463 -242.241569 -243.281721 -232.742716
66 -244.609510 -248.667943 -249.731623 -239.008105
67 -251.088082 -255.216058 -256.303258 -245.394357
68 nan nan nan nan
69 -264.412667 -268.680483 -269.814727 -258.532392
70 -271.260166 -275.598322 -276.756100 -265.285690
71 -277.771794 -282.181033 -283.364169 -271.704359
72 -284.348360 -288.828294 -290.035553 -278.185500
73 -290.992645 -295.543525 -296.774193 -284.732719
74 -297.708352 -302.330639 -303.584266 -291.350064
75 -304.498753 -309.192979 -310.469278 -298.040989
76 -311.211928 -315.978919 -317.279032 -304.661333
77 -318.009788 -322.848525 -324.172348 -311.364319
78 -325.080531 -329.988547 -331.331978 -318.334025
79 -332.076152 -337.056848 -338.423389 -325.230195
80 -338.913998 -343.969612 -345.363313 -331.974258
81 -345.739757 -350.867933 -352.286930 -338.703239
82 -352.617522 -357.816687 -359.261580 -345.483911
83 -359.547982 -364.818090 -366.288284 -352.316191
84 -366.436336 -371.779877 -373.275519 -359.110651
85 -373.389574 -378.804549 -380.325715 -365.968805
86 -380.405332 -385.891604 -387.438058 -372.887890
87 -387.276708 -392.837681 -394.408340 -379.662436
88 -394.159238 -399.795193 -401.390311 -386.448625
89 -401.172455 -406.881313 -408.500740 -393.364763
90 -408.257414 -414.039285 -415.682685 -400.350505
91 -415.962771 -421.816489 -423.485682 -407.960738
92 -423.511974 -429.438950 -431.132767 -415.411065
93 -431.160424 -437.161234 -438.879571 -422.959664
94 -439.263323 -445.339853 -447.080632 -430.955907
95 -447.131841 -453.283617 -455.048726 -438.722078
96 -454.691592 -460.917180 -462.708893 -446.186310
97 -462.776870 -469.075474 -470.892098 -454.172626
98 -470.744149 -477.116833 -478.958906 -462.040969
99 -478.807734 -485.254994 -487.122420 -470.004641
100 -486.967635 -493.489973 -495.382716 -478.063747
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TABLE VI. Continuation of table IV
Z PBEsol PBE BLYP LSDA
101 -495.223960 -501.821863 -503.739936 -486.218473
102 -503.576887 -510.250829 -512.194273 -494.469059
103 -511.446178 -518.196149 -520.164373 -502.235361
104 -519.635752 -526.458925 -528.456391 -510.331367
105 -527.758822 -534.656210 -536.679833 -518.353806
106 -535.943574 -542.915471 -544.964778 -526.436787
107 -544.190875 -551.237690 -553.312318 -534.581323
108 -552.363052 -559.485586 -561.586814 -542.657967
109 -560.605775 -567.802772 -569.930538 -550.803254
110 -568.917955 -576.189296 -578.343265 -559.016307
111 -577.299204 -584.645196 -586.825075 -567.296985
112 -585.749514 -593.170631 -595.376208 -575.645463
113 -593.980585 -601.476876 -603.710328 -583.777322
114 -602.257346 -609.827158 -612.088912 -591.954413
115 -610.579172 -618.222415 -620.511799 -600.175466
116 -618.858735 -626.577875 -628.895045 -608.358631
117 -627.193577 -634.986538 -637.331588 -616.595915
118 -635.580919 -643.447490 -645.820102 -624.884164
119 -643.831869 -651.775518 -654.174451 -633.035711
120 -652.090902 -660.111784 -662.537449 -641.195821
152 nan nan nan -963.24472
162 -1083.90933 -1095.11339 -1098.72977 -1068.78028
168 -1147.97249 -1159.63834 -1163.43702 -1132.23151
170 -1169.18675 -1181.01236 -1184.86899 -1153.24075
188 -1384.59708 -1397.84818 -1402.22911 -1366.74978
202 -1557.45197 -1571.80514 -1576.61687 -1538.13741
212 -1682.21957 -1697.36592 -1702.48740 -1661.85723
218 -1757.04245 -1772.66219 -1777.97727 -1736.05551
220 -1781.83402 -1797.61724 -1802.99384 -1760.63772
260 -2376.19435 -2395.16288 -2401.80899 -2350.77803
274 -2589.51881 -2609.61454 -2616.71921 -2562.60478
284 -2742.42429 -2763.33352 -2770.76685 -2714.43811
290 -2833.92454 -2855.32006 -2862.95786 -2805.29803
292 -2864.25370 -2885.81704 -2893.51987 -2835.41239
314 -3240.26344 -3263.65782 -3272.07848 -3208.99340
332 -3552.85191 -3577.73436 -3586.75994 -3519.60902
346 -3797.70737 -3823.74208 -3833.25001 -3762.93835
356 -3972.78324 -3999.64774 -4009.50028 -3936.92316
362 -4077.50032 -4104.86074 -4114.92699 -4040.98896
364 -4112.23126 -4139.76261 -4149.89687 -4075.50139
390 nan nan nan -4605.39831
412 -5097.33491 -5128.86128 -5140.65967 -5055.32866
430 -5469.85244 -5502.89115 -5515.32025 -5425.84307
444 -5760.25369 -5794.46673 -5807.39807 -5714.69083
454 -5967.44325 -6002.50313 -6015.79310 -5920.76822
460 -6091.30751 -6126.87403 -6140.38596 -6043.96787
462 -6132.40804 -6168.14908 -6181.73168 -6084.84529
488 -6735.70871 -6773.70159 -6788.20765 -6685.16919
510 -7248.40529 -7288.29035 -7303.59062 -7195.36575
528 -7669.19259 -7710.61874 -7726.57631 -7614.11588

TABLE VII. Continuation of table IV
Z PBEsol PBE BLYP LSDA
542 -7996.59712 -8039.21793 -8055.69704 -7939.94341
552 -8230.01525 -8273.49669 -8290.34771 -8172.23292
558 -8369.56749 -8413.56379 -8430.64452 -8311.11092
560 -8415.89591 -8460.06941 -8477.22332 -8357.21298
590 -9234.38168 -9281.12695 -9299.39917 -9172.31421
616 -9937.37621 -9986.38409 -10005.61560 -9872.32126
638 -10532.65533 -10583.57795 -10603.62717 -10465.07172
656 -11019.81029 -11072.29698 -11093.02306 -10950.16042
670 -11398.21910 -11451.92007 -11473.18306 -11326.96761
680 -11667.81044 -11722.38685 -11744.03273 -11595.41165
686 -11828.98898 -11884.08946 -11905.97160 -11755.90438
688 -11882.51809 -11937.79884 -11959.75631 -11809.20317
718 -12791.86384 -12849.83042 -12872.92584 -12715.00661
744 -13576.69738 -13636.97556 -13661.06586 -13496.79268
766 -14240.29550 -14302.52054 -14327.45705 -14157.82352
784 -14782.68823 -14846.50057 -14872.13589 -14698.12228
798 -15203.72967 -15268.77376 -15294.96212 -15117.54153
808 -15503.64709 -15569.57865 -15596.16114 -15416.29696
814 -15682.99103 -15749.45385 -15776.27923 -15594.94651
816 -15742.57501 -15809.22045 -15836.12330 -15654.29729
850 -16935.40359 -17005.05550 -17033.29559 -16843.17349
880 -17970.11068 -18042.45548 -18071.86437 -17874.33172
906 -18863.19591 -18937.87275 -18968.29738 -18764.34310
928 -19617.28734 -19693.93415 -19725.22376 -19515.83775
946 -20232.98309 -20311.23839 -20343.24266 -20129.41253
960 -20710.64290 -20790.14767 -20822.71743 -20605.42779
970 -21050.83029 -21131.23561 -21164.20853 -20944.43646
976 -21254.28367 -21335.22837 -21368.44955 -21147.18516
978 -21321.89884 -21403.02885 -21436.32926 -21214.56365
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A B C δC D E χ2
red × 10−6

0.00925(18) -0.0710(24) 0.02183(4) 1.2
0.122(7) -0.261(17) 0.0218(11) 9.9

0.01433(31) -0.067(4) 0.035(6) 0.02180(5) 0.023
0.01176(21) -0.138(6) 0.02179(7) 0.434(36) 0.042

0.309(12) -0.93(4) 0.02172(16) 2.42(16) 0.21
0.0209(14) -0.242(36) 0.48(9) 0.021844(23) -1.13(23) 0.003
0.050(12) -1.8(6) 6.0(2.2) 0.021842(14) -0.53(28) -10.(4) 0.001

TABLE VIII. Parameters for nonlinear fit beyond-TF LDA exchange data for alkali earths to Eq. eq:beyondTF. All rows n ≥ 10
are included in fitting set. Blank spaces indicate where a parameter is held at zero. χ2

red is reduced χ2 measure, defined as the
χ2 error of the fit divided by the number of independent degrees of freedom in the fit set.

A B C δC D E χ2
red × 10−6

0.00833(12) -0.0583(13) 0.0222(6) 5.1
0.060(6) -0.104(12) 0.0225(34) 180

0.00944(32) -0.0087(24) -0.0507(23) 0.0221(4) 2.6
0.00877(18) -0.0656(27) 0.0220(5) 0.021(7) 3.2

0.116(8) -0.271(23) 0.0213(15) 0.32(4) 34
0.0097(5) -0.096(14) 0.0224(5) 0.099(37) 3.5
0.0110(8) -0.031(11) -0.010(20) 0.02223(37) -0.061(29) 2.0

0.0203(11) -0.282(30) 0.70(8) 0.02220(14) -0.68(7) -0.71(8) 0.3

TABLE IX. Parameters for nonlinear fit beyond-TF LDA exchange data for alkali earths to Eq. eq:beyondTF. All rows n ≥ 2
are included in fitting set. Blank spaces indicate where a parameter is held at zero. χ2

red is reduced χ2 measure, defined as the
χ2 error of the fit divided by the number of independent degrees of freedom in the fit set.
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