
Exact Conditions in Finite-Temperature Density-Functional Theory

S. Pittalis,1,2,3,* C. R. Proetto,2,3,4,† A. Floris,2,3,‡ A. Sanna,3,4 C. Bersier,3,4 K. Burke,5 and E.K.U. Gross3,4

1Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, Missouri 65211, USA
2Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

3European Theoretical Spectroscopy Facility (ETSF)
4Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
5Department of Chemistry, University of California, Irvine, California 92697, USA

(Received 9 March 2011; published 12 October 2011)

Density-functional theory (DFT) for electrons at finite temperature is increasingly important in

condensed matter and chemistry. The exact conditions that have proven crucial in constraining and

constructing accurate approximations for ground-state DFT are generalized to finite temperature, includ-

ing the adiabatic connection formula. We discuss consequences for functional construction.
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Because of the small mass ratio between electrons and
nuclei, standard electronic structure calculations treat the
former as being in their ground state, but routinely account
for the finite temperature of the latter, as in ab initio
molecular dynamics [1]. But as electronic structure meth-
ods are applied in ever more esoteric areas, the need to
account for the finite temperature of electrons increases.
Phenomena where such effects play a role include rapid
heating of solids via strong laser fields [2], dynamo effects
in giant planets [3], magnetic [4,5] and superconducting
phase transitions [6,7], shock waves [8,9], warm dense
matter [10], and hot plasmas [11–13].

Within density-functional theory (DFT), the natural
framework for treating such effects was created by
Mermin [14,15]. The application of that work to the
Kohn-Sham (KS) scheme at finite temperature also yields
a natural approximation: treat KS electrons at finite tem-
perature but use ground-state exchange-correlation (XC)
functionals. This works well in recent calculations [8,10],
where inclusion of such effects is crucial for accurate
prediction. This assumes that finite-temperature effects
on exchange correlation are negligible relative to the KS
contributions, which may not always be true.

The uniform electron gas at finite temperature (also
called the one-component plasma) has been well studied,
and has in the past provided the natural starting point for
DFT studies of such finite-temperature XC effects, such as
input into the local density approximation (LDA) at finite
temperature [16]. However, the LDA is too inaccurate for
most modern applications of DFT, and almost all recent
calculations use a generalized gradient approximation
(GGA) or hybrid with exchange [17]. The errors of LDA
would typically be enormous relative to the temperature
corrections we seek, especially for correlation, and so could
lead to quite misleading results. Accurate calculation of
finite-temperature contributions requires accurate approxi-
mate functionals. Magnetic phase transitions bear an addi-
tional difficulty: The low-lying excitations are collective,
i.e., magnons whose description requires a noncollinear

version of spin DFT. Hence, a finite-temperature version
of spin DFT involving only spin-up and spin-down den-
sities and thus only spin-flip excitations is bound to fail in
predicting, e.g., the critical temperature [4].
The most fundamental steps toward both understanding

a functional and creating accurate approximations are de-
riving its inequalities from the variational definition of the
functional. These yield both the signs of energy contribu-
tions and, via uniform scaling of the spatial coordinates,
basic equalities and inequalities that nonempirical func-
tionals should satisfy by construction. The adiabatic con-
nection formula [18] is intimately related. Here, we
(i) establish components of the fundamental functional
needed for treating finite temperature, (ii) prove the most
basic properties (signs of the energy contributions),
(iii) show that the temperature must be scaled simulta-
neously with the spatial coordinate, (iv) derive the inequal-
ities under such scaling, and (v) give the adiabatic
connection formula for finite temperature. These results
establish the basic rules for all finite-temperature KS
treatments.
Central to the thermodynamic description of many-

electron systems is the grand-canonical potential, defined
as the statistical average of the grand-canonical operator

�̂ ¼ Ĥ� �Ŝ��N̂; (1)

where Ĥ, Ŝ, N̂, �, and � are the Hamiltonian, entropy, and
particle-number operators, temperature, and chemical po-

tential, respectively. In detail, Ĥ ¼ T̂ þ V̂ee þ V̂, where T̂

and V̂ee are the kinetic energy and the Coulomb electron-

electron interaction operators, and V̂ represents an external
scalar potential vðrÞ. The entropy operator is given by

Ŝ ¼ �k ln�̂, where k is the Boltzmann constant and �̂ ¼P
N;iwN;ij�N;iih�N;ij is a statistical operator, with j�N;ii

and wN;i being orthonormalN-particle states and statistical

weights, respectively, with the latter satisfying the
(normalization) condition

P
N;iwN;i ¼ 1. The statistical av-

erage of an operator Â is obtained as
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A½�̂� ¼ Trf�̂ Âg ¼ X
N

X
i

wN;ih�N;ijÂj�N;ii: (2)

The thermodynamical equilibrium properties of
many-electron systems are obtained from the knowledge

of the grand-canonical statistical operator �̂0 ¼P
N;iw

0
N;ij�0

N;iih�0
N;ij, where j�0

N;ii are the N-particle

eigenstates of Ĥ with energies E0
N;i, and the equilibrium

statistical weights are given by w0
N;i ¼

exp½��ðE0
N;i ��NÞ�=PN;i exp½��ðE0

N;i ��NÞ�, where

� ¼ 1
k� [19]. The Gibbs principle ensures that �̂0 mini-

mizes the statistical average of the grand-potential opera-

tor. We emphasize that �̂0 is unique [14] and that in the
limit of zero temperature, for systems with degenerate
ground states, it leads to ensembles with equal statistical
weights.

To create a DFT at finite temperature, Mermin [14]
rewrites this as (in modern parlance)

��
v�� ¼ min

n

�
F�½n� þ

Z
d3r nðrÞðvðrÞ ��Þ

�
; (3)

where the minimizing nðrÞ is the equilibrium density n0ðrÞ,
and

F�½n� :¼ min
�̂!n

F�½�̂� ¼ min
�̂!n

fT½�̂� þ Vee½�̂� � �S½�̂�g (4)

is the finite-temperature analog of the universal
Hohenberg-Kohn functional, defined through a constrained
search [19,20]. This depends only on � and not on �.

We denote �̂�½n� as the minimizing statistical operator in
Eq. (4), and define the density functionals:

T�½n� :¼ T½�̂�½n��; V�
ee½n� :¼ Vee½�̂�½n��;

S�½n� :¼ S½�̂�½n��;
(5)

i.e., each density functional is the trace of its operator over

the minimizing �̂ for the given � and density.
Next consider a system of noninteracting electrons at the

same temperature �, and denote its one-body potential as
vSðrÞ. All the previous arguments apply, and we choose
vSðrÞ to make its density match that of the interacting
problem. This defines the KS system at finite temperature.
Because it arises so often in this work, we define the
kentropy as

K�½�̂� :¼ T½�̂� � �S½�̂�; (6)

and we show it plays an analogous role to the kinetic
energy in ground-state DFT, to which it reduces as �!0.
The noninteracting functional is just

F�
S½n� :¼ min

�̂!n
K�½�̂� ¼ K�½�̂�

S½n�� (7)

from Eq. (4) applied without Vee, and we define

T�
S½n� :¼ T½�̂�

S½n��; S�S½n� :¼ S½�̂�
S½n��: (8)

Next we define the difference functionals that are crucial to
the KS method. We write

V�
ee;s½n� :¼ Vee½�̂�

S½n�� ¼ U�½n� þ��
X½n�; (9)

where U�½n� in terms of the density has the form of the
usual Hartree energy, and expressing��

X½n� in terms of the
module square of the one-body density matrix stemming

from �̂�
S½n� [21], we observe that ��

X½n� � 0.
The kinetic correlation is

T�
C½n� :¼ T½�̂�½n�� � T½�̂�

S½n��; (10)

and similarly define S�C½n� and K�
C½n�, while the potential

contribution is

U�
C½n� :¼ Vee½�̂�½n�� � Vee½�̂�

S½n��: (11)

The sum of the energy components is, as in ground-state
DFT, the correlation energy, E�

C½n� :¼ T�
C½n� þU�

C½n�,
while the grand-canonical correlation potential is

��
C½n� :¼ K�

C½n� þU�
C½n� ¼ E�

C½n� � �S�C½n�; (12)

and ��
XC½n� :¼ ��

X½n� þ��
C½n�.

We now prove the most basic theorems about the signs
of our quantities. To show that the correlation kentropy (or
kentropic correlation) is always positive, we begin by

noting K�½�̂�
S½n�� � K�½�̂�½n��, because �̂�

S½n� minimizes

K�½�̂�. By inserting the definition, Eq. (6), we find
K�

C½n� � 0, with equality only when the interaction is

zero. It is the kentropic correlation that is guaranteed to
be positive, not the kinetic correlation alone, contrary to
the pure ground-state case [22]. Similarly, since

F�½�̂�½n�� � F�½�̂�
S½n��, we find ��

C½n� � 0. Combining

these results with Eq. (12) implies U�
C½n� � 0. Thus,

��
X½n� � 0; ��

C½n� � 0; U�
C½n� � 0; K�

C½n� � 0;

(13)

and no approximation should violate these basic rules.
Some of the most important results in ground-state DFT

come from uniform scaling of the coordinates [22,23]. In the
following considerations, when we refer explicitly to wave
functions, we restrict ourselves to finite systems, i.e., to
square-integrable wave functions over the domain R3N . In
this Letter we do not carry out the thermodynamic limit; i.e.,
extended electronic systems and phase transitions are not
considered. Under norm-preserving homogeneous scaling
of the coordinate r ! �r, with � > 0, to the scaled wave
function [22]

��ðr1; . . . ; rNÞ :¼ �3=2N�ð�r1; . . . ; �rNÞ (14)

corresponds the scaled density n�ðrÞ ¼ �3nð�rÞ.
Writing ��ðr1; . . . ; rNÞ ¼ hr1; . . . ; rNj��i in terms of the
(representation-free) element j��i of the Hilbert space, the
scaled statistical operator is defined as

�̂ � :¼ X
N

X
i

wN;ij��
N;iih��

N;ij; (15)

PRL 107, 163001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

163001-2



where the statistical weights are held fixed; i.e., the scaling
only acts on the states.

With the above definition, the statistical average of an
operator whose pure-state expectation value scales
homogeneously [22], scales homogeneously as well. In

particular, we have T½�̂�� ¼ �2T½�̂�, Vee½�̂�� ¼ �Vee½�̂�,
N½�̂�� ¼ N½�̂�, and S½�̂�� ¼ S½�̂�. The scaling behavior of
the density functionals is, however, more subtle. First
consider the noninteracting functionals in some detail.

Because �̂�
S½n� minimizes K�, Eq. (7), and

K�½�̂�� ¼ �2

�
T½�̂� � �

�2
S½�̂�

�
¼ �2K�=�2½�̂�; (16)

then

�̂ �
S½n�� ¼ �̂�=�2

S;� ½n�; F�
S½n�� ¼ �2F�=�2

S ½n�: (17)

In particular, we notice that

S�s ½n�� ¼ S�=�
2

s ½n�: (18)

For noninteracting electrons, the statistical operator at a
given temperature that is the minimizer for a given scaled
density is simply the scaled statistical operator, but at a
scaled temperature, an effect that is obviously absent in the
ground-state theory.

There are further simple implications. First, if we invert
the sense of Eq. (17), we can write

F�0
S ½n� ¼

�0

�
F�
S½n ffiffiffiffiffiffiffi

�=�0
p �; (19)

i.e., knowledge of F�
S½n� at any one finite � generates its

entire temperature dependence, via scaling. Furthermore, it
must always collapse to the ground-state KS kinetic energy
under scaling to the high-density limit:

TS½n� ¼ lim
�!1F

�
S½n��=�2: (20)

Similarly, in the low-density limit

S1S ½n� ¼ �lim
�!0

F�
S½n��=�; (21)

where S1S ½n� is the noninteracting KS entropy in the high-

temperature limit.
Next, we consider the interacting case. The exchange

contribution is much simpler than correlation because it is
extracted from the one-particle density matrix. Because

Vee½�̂� andU½�̂� scale linearly with �, and using the simple

scaling relation for �̂S, Eq. (17),

��
X½n�� ¼ ���=�2

X ½n�: (22)

This scaling result is important in ground-state DFT, where
it restricts the dependence of the exchange-enhancement
factor to depending on just the reduced density gradient
[23]. But the more interesting case is correlation. From the
definition, Eq. (4),

F�½n�� � F�½�̂�0
� ½n��; (23)

since �̂�0
� ½n� has density n�, and �0 is any temperature.

Using the scaling properties and choosing �0 ¼ �=�2, the
fundamental inequality of scaling is

K�½n�� þ V�
ee½n�� � �2K�=�2½n� þ �V�=�2

ee ½n�: (24)

To find a condition on the kentropy alone, define n0ðrÞ ¼
n�ðrÞ, �0 ¼ 1=�, and �0 ¼ �=�2 in Eq. (24). Multiply the

result by �0, and combine with Eq. (24), to find

K�½n�� � �2K�=�2½n�; � � 1: (25)

This is the finite-temperature analog of the subquadratic
scaling of the kinetic energy in the real system [22].
Another combination isolates the repulsive contributions:

V�
ee½n�� � �V�=�2

ee ½n�; � � 1: (26)

These inequalities loosely constrain the behavior of these
large energies. It is much more important to subtract out
KS quantities that scale simply, to find for � � 1:

K�
C½n�� � �2K�=�2

C ½n�; U�
C½n�� � �U�=�2

C ½n�: (27)

One more application of Eq. (24) yields

��
C½n�� � ���=�2

C ½n�; � � 1; (28)

the fundamental scaling inequality for the correlation con-
tribution to the grand-canonical potential. The inequalities,
Eqs. (25)–(28), which are reversed if � < 1, provide tight
constraints on these functionals and are routinely used in
nonempirical functional construction in the ground state
[23]. For example, combining Eq. (22) with Eq. (28) in the
high-density limit yields

��
X½n� ¼ lim

�!1�
�2�
XC ½n��=�: (29)

This scaling procedure can usually be applied easily to any
approximate ��

XC½n� to extract its separate exchange and

correlation contributions.
Lastly, we consider the adiabatic coupling constant for

finite temperature, its relationship to scaling, and derive the
adiabatic connection formula. We define

F�;�½n� ¼ min
�̂!n

fT½�̂� þ �Vee½�̂� � �S½�̂�g; (30)

with �̂�;�½n� being the corresponding minimizing �̂. By
scaling, it is straightforward to show

�̂ �;�½n� ¼ �̂�=�2

� ½n1=��; F�;�½n� ¼ �2F�=�2½n1=��; (31)

where quantities with one superscript are evaluated at
� ¼ 1. Equation (31) is the interacting generalization
of Eq. (17) and shows that, even in the presence of
interactions, simple equalities are possible, but at the price
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of altering the coupling constant. In particular we notice
that

S�;�½n� ¼ S�=�
2½n1=��: (32)

Of course, noninteracting functionals are not affected by a
coupling constant modification. Equation (22) implies that
the exchange and Hartree density functionals have a linear
dependence on �. Employing the minimization property of
Eq. (30) and the Hellmann-Feynman theorem, we find

��
XC½n� ¼

Z 1

0
d�U�

XC½n�ð�Þ; (33)

where

U�
XC½n�ð�Þ ¼ Vee½�̂�;�½n�� �U�½n�: (34)

Equation (33) is the finite-temperature adiabatic connec-
tion formula, whose zero-temperature limit played a cen-
tral role in ground-state DFT. U�

XC½n�ð0Þ ¼ ��
X½n�< 0

[Eq. (13)], and the scaling inequalities can be combined,
analogously to Ref. [22], to show that U�

XC½n�ð�Þ is mono-

tonically decreasing in �.
So far, all results presented have been exact. To see

them in practice, consider the finite-temperature LDA to
��

XC½n�:

�LDA�
XC ½n� ¼

Z
d3r!unif�

XC ðnðrÞÞ; (35)

where !unif�
XC ðnÞ is the XC grand-canonical potential den-

sity of a uniform electron gas of density n. Because a
uniform electron gas is a quantum mechanical system, its
energies satisfy all our conditions, guaranteeing by con-
struction that LDA satisfies all the exact conditions listed
here. In the Jacob’s ladder of functional construction [17],
more sophisticated approximations should also satisfy
these conditions. To give one simple example, Eq. (22)
implies

!unif�
X ðnðrÞÞ ¼ eunifX ðnðrÞÞFXð~�ðrÞÞ; (36)

where eunifX ðnðrÞÞ ¼ �AXn
4=3ðrÞ, AX ¼ ð3=4�Þð3�2Þ1=3,

and ~�ðrÞ ¼ �=n2=3ðrÞ is a dimensionless measure of the
local temperature. Thus the largest fractional deviations
from ground-state results should occur (in LDA) in regions
of lowest density, but these contribute less in absolute
terms. For a generalized gradient approximation, Eq. (22)
implies

!GGA�
X ðnðrÞ; jrnjðrÞÞ ¼ eunifX ðnðrÞÞFXðsðrÞ; ~�ðrÞÞ; (37)

where the dimensionless gradient s is jrnj=ð2kFnÞ and

kF ¼ ð3�2nÞ1=3; i.e., the exchange-enhancement factor
FXðs; ~�Þ depends on the temperature only via ~�.

In summary, there is a present lack of approxi-
mate density functionals for finite temperature. We have
derived many basic relations needed to construct such

approximations, and expect future approximations to either
build these in or be tested against them. In principle, such
approximations should already be implemented in high-
temperature DFT calculations, at least at the LDA level, as
a check that XC corrections due to finite temperature do
not alter calculated results. If they do, more accurate
approximations than LDA will be needed to account for
them.
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