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The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is
generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn
relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This
produces a natural method for generating new thermal exchange-correlation approximations.
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Kohn-Sham density functional theory (KS DFT) is a
popular and well-established approach to electronic struc-
ture problems in many areas, especially materials science
and chemistry [1]. The Kohn-Sham method imagines a
fictitious system of noninteracting fermions with the same
density as the real system [2] and from which the ground-
state energy can be extracted. Only a small fraction of the
total energy, called the exchange-correlation (XC) energy,
need be approximated to solve any ground-state electronic
problem [1], and modern approximations usually produce
sufficient accuracy to be useful [3]. The advent of time-
dependent density functional theory (TDDFT) generalized
this method to time-dependent problems [4]. Limiting
TDDFT to linear response yields a method for extracting
electronic excitations [5,6], once another functional, the
XC kernel, is also approximated.
But there is growing interest in systems in which the

electrons are not close to zero temperature. Warm dense
matter (WDM) is partially ionized, solid-density matter
having a temperature near the Fermi energy. It has wide-
ranging applications including the astrophysics of giant
planets and white dwarf atmospheres [7–14], cheap and
ultracompact particle accelerators and radiation sources
[15–17], and the eventual production of clean, abundant
energy via inertial confinement fusion [18,19]. One of the
most successful methods for simulating equilibrium warm
dense matter combines DFT [2,20] and molecular dynam-
ics [21] to capture the quantummechanical effects of WDM
electrons and the classical behavior of ions [7–14,22–24].
Such simulations use the Mermin theorem [25] to generate
a KS scheme at finite temperature, defined to generate the
equilibrium density and free energy. In practice, the XC
free energy is almost always approximated with a ground-
state approximation, but formulas for thermal corrections
are being developed [26–30].
Many processes of interest involve perturbing an

equilibrium system with some time-dependent (TD)

perturbation, such as a laser field [31] or a rapidly moving
nucleus, as in stopping power [32–34]. Of great interest
within the WDM community are calculations of spectra,
dynamic structure factors, and the flow of energy between
electrons and ions [35–38]. Spectra expose a material’s
response to excitation by electromagnetic radiation, which
would facilitate experimental design and analysis. Dynamic
structure factors can be related to the x-ray scattering
response, which is being developed as a temperature and
structural diagnostic tool for WDM [39]. Thus, it would
appear that a TD version of the Mermin formalism is
required. A theorem is proven in Li et al. [40,41], but the
formalism assumes the temperature is fixed throughout the
process, and so cannot describe, e.g., equilibration between
electrons and ions. Moreover, the proof requires the Taylor
expansion of the perturbing potential as a function of time,
just as in the Runge-Gross (RG) theorem [4]. This can be
problematic for initial states with cusps [42], such as at the
nuclear centers. (Recent efforts [43,44] have focused on
avoiding these complications at zero temperature.) Finally,
the RG proof requires invocation of a boundary condition
to complete the one-to-one correspondence between den-
sity and potential [45], which create subtleties when
applied to extended systems [46].
In the present work, we prove the RG theorem at finite

temperature within linear response by generalizing the
elegant linear response proof of van Leeuwen [43] to
thermal ensembles. Our proof avoids several of the draw-
backs mentioned above, while still providing a solid
grounding to much of WDM theoretical work. We then
define the exchange-correlation kernel at finite temperature
and generalize the Gross-Kohn equation. Finally, we extend
the fluctuation-dissipation theorem of ground-state DFT to
finite temperatures, and show how this provides a route to
equilibrium free energy XC approximations.
Consider a system of electrons in thermal and particle

equilibrium with a bath at some temperature τ and with

PRL 116, 233001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
10 JUNE 2016

0031-9007=16=116(23)=233001(7) 233001-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.233001
http://dx.doi.org/10.1103/PhysRevLett.116.233001
http://dx.doi.org/10.1103/PhysRevLett.116.233001
http://dx.doi.org/10.1103/PhysRevLett.116.233001


static equilibrium density nτðrÞ. The system extends
throughout space with a finite average density; i.e., the
thermodynamic limit has been taken. The limit of isolated
atoms or molecules is achieved by then taking the sepa-
ration between certain nuclei to infinity. In this sense, no
surface boundary condition need be invoked [45], as the
density never quite vanishes, while the average particle
number per atom or molecule molecule is finite. These
electrons are perturbed at t ¼ 0 by a potential δvðr; tÞ that
is Laplace transformable. To avoid complex questions of
equilibration, we consider only the linear response of the
system, so that the perturbation does not affect the temper-
ature of the system as, e.g., Joule heating is a higher order
effect [47]. The Kubo response formula for the density
change in response to δv is

δnτðr; sÞ ¼
Z

d3r0χτðr; r0; sÞδvðr0; sÞ; ð1Þ

where the Laplace transform

δvðr; sÞ ¼
Z

∞

0

dte−stδvðr; tÞ ð2Þ

is assumed to exist for all s > 0. Within the grand canonical
ensemble [48,49], the equilibrium density-density response
function is [50]

χτðr; r0; sÞ ¼ i
X
ij

wi

Δnτ�ij ðrÞΔnτijðr0Þ
s − iωji

þ c:c:; ð3Þ

where

ΔnτijðrÞ ¼ hijn̂ðrÞjji − δijnτðrÞ ð4Þ

are matrix elements of the density fluctuation operator. The
energy-ordered indices i, j run over all many-body states
(both bound and continuum [51]) with all particle numbers,
but Δnτij vanishes unless Ni ¼ Nj. The transition frequen-
cies ωji ¼ Ej − Ei, and the statistical weights wi are
thermal occupations for the equilibrium statistical operator
Γ̂τ ¼ P

iwijΨiihΨij and obey wi < wj if Ei > Ej and
Ni ¼ Nj. This condition is satisfied by the grand cano-
nical ensemble of common interest with wi ¼
exp½−ðEi − μNiÞ=τ�=

P
i exp½−ðEi − μNiÞ=τ�.

We also need the (Laplace-transformed) one-body poten-
tial operator:

δV̂ðsÞ ¼
Z

d3rn̂ðrÞδvðr; sÞ; ð5Þ

and its matrix elements

δVijðsÞ ¼ hijδV̂ðsÞjji: ð6Þ

Its expectation value is

δVτðsÞ ¼
X
i

wiViiðsÞ ¼
Z

d3rnτðrÞδvðr; sÞ; ð7Þ

so that matrix elements of its fluctuations are

ΔVτ
ijðsÞ ¼ δVijðsÞ − δijδVτðsÞ: ð8Þ

Then consider the expectation value

mτðsÞ ¼
Z

d3rδnτðr; sÞδvðr; sÞ: ð9Þ

Inserting Eq. (1) and using the definitions, we find

mτðsÞ ¼ −
X
ij

wijΔVτ
ijðsÞj2

2ωji

s2 þ ω2
ji
: ð10Þ

This is rearranged as

mτðsÞ ¼ −2
X∞
i¼0

X∞
j¼iþ1

ðwi −wjÞωji

s2 þ ω2
ji

jΔVτ
ijðsÞj2: ð11Þ

We have ordered all states by energy regardless of particle
number here for simplicity, though this is not strictly
necessary since different particle number subsystems do
not interact. For now, we assume no degeneracies.
Then the above expression mτðsÞ vanishes only if every
ΔVτ

ijðsÞ does for i ≠ j because of our assumption that
ðwi−wjÞωji>0 if i ≠ j.
The usual statement of the RG theorem is that no two

potentials that differ by more than an inconsequential
function of time alone can give rise to the same density
(for fixed statistics, interparticle interaction, and initial state
[4]). Imagine two such perturbations exist, yielding the
same density response. Since, in linear response, the
density response is proportional to the perturbation, we
can subtract one from the other, and the statement to be
proved is that there is no nontrivial perturbation with zero
density response. If it did exist, then mτðsÞ would vanish
and our algebra shows that every ΔVτ

ijðsÞ with i ≠ j would
also. Finally,

XNi

k¼1

δvðrk; sÞΨjðr1;…; rNi
Þ ¼

X
i

δVijðsÞΨiðr1;…; rNi
Þ;

ð12Þ

which can be proven by integrating over all coordinates
with Ψ�

k. Then, as ΔVτ
ijðsÞ ¼ δVijðsÞ for i ≠ j, and must

vanish if there is no density response, the sum on the right
of Eq. (12) collapses to just the jth term, showing that
δvðr; sÞ must be spatially independent.
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We can also include a finite number (M) of degenerate
excited eigenstates. (For the complications involved when
the ground state is degenerate; see Ref. [52]). For such
states, ωij ¼ 0 and the argument above no longer implies
δVijðsÞ vanishes, as the perturbation couples degenerate
states within the same subspace. But simply choose at least
M points in the 3N-dimensional coordinate space that are
not on any nodal hypersurface of the degenerate subspace.
Then the only solution to Eq. (12) is again that δvðr; sÞ
must be independent of r.
Thus, we have generalized the van Leeuwen proof to

thermal ensembles, even with finite degeneracies among
excited states. Our proof applies to any ensemble with
weights that monotonically decrease with increasing energy
for each particle number [53,54]. This avoids complications
caused by cusps in initial wave functions [42,55].
Extension to spatially periodic potentials is straightforward,
as no boundary condition [45] was invoked [46].
In order for the above result to be of practical use, we

consider the KS scheme for finite-temperature, time-
dependent systems and provide a method for generating
XC approximations. We assume the equilibrium Mermin-
Kohn-Sham (MKS) [2,25] potential exists. At this point,
we switch to using the more familiar Fourier-transform
notation, but in fact all results and definitions apply only to
Laplace-transformable perturbations. (In practice, this dis-
tinction rarely matters, but occasional formal difficulties
arise if this restriction is not made; see Ref. [56] and
Sec. 3.2 of Ref. [43].) First, we generalize the Gross-Kohn
response formula [57] to thermal ensembles. Define

χτðr;r0;ωÞ

¼
X
jk

wj

�hjjn̂ðrÞjkihkjn̂ðr0Þjji
ω−ωkjþ iη

−
hjjn̂ðr0Þjkihkjn̂ðrÞjji

ωþωkjþ iη

�
;

ð13Þ

where η → 0þ [58].
Because of our proof of one-to-one correspondence, we

can invert the response function (excluding a constant), and
write

ðχτÞ−1ð12Þ ¼ δvð1Þ
δnð2Þ ; ð14Þ

where 1 denotes the coordinates r, t, and 2 another pair
[59]. The standard definition of XC is

vSð1Þ ¼ vð1Þ þ vHð1Þ þ vXCð1Þ; ð15Þ

where vS is the one-body potential of the noninteracting KS
system and vH is the Hartree potential [60]. Differentiating
with respect to nð2Þ, this yields

ðχτSÞ−1ð12Þ ¼ ðχτÞ−1ð12Þ þ fHð12Þ þ fτXCð12Þ; ð16Þ

which defines the XC kernel at finite temperature, where χτS
is the KS response function [58] and the traditionally
defined Hartree contribution is simply

fHð12Þ ¼
δðt1 − t2Þ
jr1 − r2j

: ð17Þ

This follows the definition within the Mermin formalism
[25] (but see Refs. [48] and [53] for alternative choices
and their consequences). Inverting yields the thermal
Gross-Kohn equation [57]:

χτð12Þ ¼ χτSð12Þ þ
Z

d3d4χτSð13ÞfτHXCð34Þχτð42Þ: ð18Þ

A simple approximation is then the thermal adiabatic local
density approximation (thALDA), in which the thermal XC
kernel is approximated using the XC free energy density
per particle for a finite-temperature uniform gas, aτ;unifXC :

fτ;thALDAXC ½n�ðr; r0;ωÞ ¼ d2aτ;unifXC ðnÞ
d2n

����
nðrÞ

δðr − r0Þ; ð19Þ

which ignores its nonlocality in space and time, and could
be used to generalize ALDA calculations of excitations in
metals and their surfaces [61].
We next deduce the fluctuation-dissipation theorem for

MKS thermal DFT calculations. This allows us to connect
the response function and the Coulomb interaction through
the dynamical structure factor [62]. In the MKS scheme,
the XC contributions to the free energy are defined via

Aτ½n� ¼ T½n� þ Vee½n� þ V½n� − τS½n� ð20Þ

¼ TS½n� þ U½n� þ V½n� − τSS½n� þ Aτ
XC½n�: ð21Þ

By subtraction,

Aτ
XC½n� ¼ Tτ

XC½n� þUτ
XC½n� − τSτXC½n�; ð22Þ

where T denotes kinetic, U denotes potential, and S
entropic components. Using many-body theory, the
density-density response function determines the potential
contribution to correlation [63,64], just as in the ground
state [65]:

Uτ
C ¼ Vee½Γ̂τ½n�� − Vee½Γ̂τ

S½n�� ð23Þ

¼ −
Z

dr
Z

dr0
Z

∞

0

dω
2π

coth

�
ω

2τ

�
ImΔχτðr; r0;ωÞ

jr − r0j ;

ð24Þ

where Δχτ ¼ χτ − χτS. By introducing a coupling-constant
λ while keeping the density fixed, the thermal connection
formula [66] yields
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Aτ
C½n� ¼ lim

τ00→∞

τ

2

Z
τ00

τ

dτ0

τ02

Z
dr

Z
dr0

Z
dω
2π

coth

�
ω

2τ

�

×
ImΔχτ0 ½nγ�ðr; r0;ωÞ

jr − r0j ; ð25Þ

where the scaled density is nγðrÞ ¼ γ3nðγrÞ and
γ ¼ ffiffiffiffiffiffiffiffi

τ0=τ
p

. This is exact, but only if the exact thermal
XC kernel is used, as defined by Eq. (16). If the kernel is
omitted, the result is the thermal random-phase approxi-
mation [67].
Next, we discuss the many applications of Eq. (25).

There has been tremendous progress in implementing and
testing the random phase approximation for calculating the
XC energy in ground-state calculations; and such calcu-
lations, while more expensive than standard DFT, are
becoming routine [68–70]. Our results provide a thermal
generalization that could likewise be used to generate new
thermal XC approximations for equilibrium WDM calcu-
lations. At finite temperature, the XC hole fails to satisfy
the simple sum rules [71] that have proven so powerful in
constructing ground-state approximations [72]. But our
formula uses instead the XC kernel. Inserting Eqs. (18),
(19) into Eq. (25) yields thALDA RPA, a new approxi-
mation to the equilibrium correlation energy, which can be
applied to any system. Another, simpler approximation is
ALDA, in which only the zero-temperature XC energy is
used in the kernel. Both can be relatively easily evaluated
for a uniform gas, and the resulting aτXCðrSÞ found from
Eq. (25) compared with an accurate parametrization [27].
Even in the uniform gas, thALDA is an approximation
because both the q and ω dependence of the true fτXC are
missing; thus, the efficacy of these approximations can be
tested on the uniform case.
Next we discuss which known exact conditions on the

zero-temperature kernel apply to the thermal kernel, and
which do not. Because the equilibrium solution is a
minimum of the thermal free-energy functional, the zero-
force theorem [64]

Z
d3r

Z
d3r0nτðrÞnτðr0ÞfτXCðr; r0;ωÞ ¼ 0 ð26Þ

should be satisfied and the kernel should be symmetric in
its spatial arguments. However, any simple formula for a
one-electron system [73] is not true at finite temperature, as
the particle number is only an average in the grand
canonical ensemble [49,71].
A last set of conditions is found by considering the

coupling-constant dependence in DFT. A parameter λ is
introduced that multiplies the electron-electron interaction,
while keeping the density constant. Because of simple
scaling relations, the λ dependence can be shown to be
determined entirely by coordinate scaling of the density as
in Eq. (25); i.e., determined by the functional itself,
evaluated at different densities. This is used in both

ground-state DFT [74] and in time-dependent DFT [75],
and has been generalized to the thermal case [66,76].
Although the thermal connection formula does not require
this relation for the response function, it is useful in many
contexts. From the Lehmann representation [50] of χτ [63],
we find the λ-dependent response function satisfies

χτ;λ½n�ðr; r0;ωÞ ¼ λ4χτ=λ
2 ½n1=λ�ðλr; λr0;ω=λ2Þ: ð27Þ

Insertion into the definition of fXC yields

fτ;λXC½n�ðr; r0;ωÞ ¼ λ2fτ=λ
2

XC ½n1=λ�ðλr; λr0;ω=λ2Þ; ð28Þ

and the potential perturbation scales as

δvτ;λXC½n�ðr;ωÞ ¼ λ2δvτ=λ
2

XC ½n1=λ�ðλr;ω=λ2Þ: ð29Þ

Insertion of the scaling relation for the kernel into the
thermal connection formula yields a more familiar analog
to the ground-state formula.
The exchange kernel must scale linearly with the

coupling constant, so Eq. (28) produces a rule for scaling
of the exchange kernel:

fτX½nγ�ðr; r0;ωÞ ¼ γfτ=γ
2

X ½n�ðγr; γr0;ω=γ2Þ: ð30Þ

Because the poles in fXC are λ dependent, we expect
pathologies similar to those in zero-temperature TDDFT if
the exact frequency-dependent fτX is used in Eq. (25) [77].
But adiabatic EXX (AEXX), not including frequency
dependence, produces a well-defined approximation to
the thermal free energy in which the kernel is nonlocal.
This and the other proposed approximations above could
prove useful in WDM simulations when thermal XC effects
are relevant (but see Ref. [78] for discussion of the
subtleties involved in thermal XC approximations).
In conclusion, we have generalized the proofs and

constructions of TDDFT within the linear response for-
malism to thermal ensembles, including those containing a
finite number of degeneracies. We have avoided ambigu-
ities about the relative perturbative and thermal equilibra-
tion time scales, allowed for degenerate excited states more
common in finite-temperature ensembles, avoided invoking
boundary conditions and the requirement of Taylor expand-
ability, and provided firm footing for finite-temperature,
time-dependent KS DFT in the linear response regime.
Definition of relevant KS quantities led to description of
their properties under scaling. Further, we have shown that
these quantities, in combination with the thermal connec-
tion formula, produce new routes to thermal DFT approx-
imations for use in equilibrium MKS calculations.
Implementation and tests of these approximations is
ongoing.
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