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ABSTRACT: The role of the exchange–correlation potential and the
exchange–correlation kernel in the calculation of excitation energies from time-dependent
density functional theory is studied. Excitation energies of the helium and beryllium
atoms are calculated, both from the exact Kohn–Sham ground-state potential and from
two orbital-dependent approximations. These are exact exchange and self-interaction
corrected local density approximation (SIC-LDA), both calculated using Krieger–Li–Iafrate
approximation. For the exchange–correlation kernels, three adiabatic approximations were
tested: the local density approximation, exact exchange, and SIC-LDA. The choice of the
ground-state exchange–correlation potential has the largest impact on the absolute
position of most excitation energies. In particular, orbital-dependent approximate
potentials result in a uniform shift of the transition energies to the Rydberg states.
c© 2000 John Wiley & Sons, Inc. Int J Quantum Chem 80: 534–554, 2000
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Introduction

T he Hohenberg–Kohn theorem [1] of ground-
state density functional theory (DFT) guaran-

tees that every observable of a stationary physical
system can be expressed in terms of its ground-
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state density. In principle, this is also true for the
set of excited-state energies, and several extensions
of ground-state DFT have been proposed [2 – 13].
Accurate calculations of excitation energies, how-
ever, remain a difficult subject. Recently, some of
us proposed a different approach to the calculation
of excitation energies [14], within the framework
of time-dependent DFT (TDDFT) [15]. The central
idea is to use the fact that the linear density re-
sponse has poles at the physical excitation energies
and can be calculated from the response function
of a noninteracting Kohn–Sham (KS) system and a
frequency-dependent KS kernel. In this way, we ob-
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tain the shifts of the KS orbital differences (which
are the poles of the KS response function) toward
the true excitation energies. Recent applications
[16 – 25] suggest that this method may become a
standard tool in quantum chemistry.

The success of any density functional method,
however, depends on the quality of the functionals
employed. In this article, we investigate the rela-
tive importance of the approximations inherent in
the TDDFT formalism for the calculation of discrete
excitation energies of finite systems. This mainly
concerns the role of the ground-state exchange–
correlation (XC) potential, vXC(r) compared to the
dynamical XC kernel, fXC(r, r′;ω). For the helium
and beryllium atoms, we compare the results ob-
tained from using the exact XC potentials and
two orbital-dependent potentials, one based on the
exact exchange expression and the other on the
self-interaction corrected local density approxima-
tion [26], evaluated with the method of Krieger, Li,
and Iafrate (KLI) [27 – 31] in combination with three
distinct approximations for the XC kernels, which
are given below.

Formalism

KOHN–SHAM EQUATIONS FOR THE
FREQUENCY-DEPENDENT LINEAR
DENSITY RESPONSE

The frequency-dependent linear density re-
sponse n1σ (r,ω) of electrons with spin σ , reacting
to a perturbation v1σ ′ of frequency ω can be written
in terms of the interacting density–density response
function χσσ ′ by [32]:

n1 σ (r,ω) =
∑
σ ′

∫
d3r′ χσσ ′(r, r′;ω)v1σ ′(r′,ω). (1)

In the spin-dependent version [33] of time-depend-
ent DFT [15], the density response n1σ can be ex-
pressed in terms of the response function χsσσ ′ of the
noninteracting KS system [14, 34]:

n1 σ (r,ω) =
∑
σ ′

∫
d3r′ χsσσ ′(r, r′;ω)vs,1σ ′(r′,ω). (2)

The KS response function

χsσσ ′(r, r′;ω) = δσσ ′
∑

j,k

( fkσ − fjσ )

×
ϕjσ (r)ϕ∗kσ (r)ϕ∗jσ (r′)ϕkσ (r′)

ω − (εjσ − εkσ )+ iη
(3)

is readily expressed in terms of the unperturbed sta-
tic KS orbitals ϕkσ (with occupation numbers fjσ ).
Relation (2) contains the linearized KS potential:

vs,1σ (r,ω) = v1σ (r,ω)+
∑
σ ′

∫
d3r′

n1σ ′ (r′,ω)
|r− r′|

+
∑
σ ′

∫
d3r′ fXC,σσ ′(r, r′;ω)n1σ ′(r′,ω), (4)

in which the spin-dependent XC kernel fXC is de-
fined as the Fourier transform of

fXC,σσ ′[n0↑, n0↓](r, t, r′, t′)

:= δvXC,σ [n↑, n↓](r, t)
δnσ ′(r′, t′)

∣∣∣∣
n0↑,n0↓

. (5)

Given an approximation to fXC, Eqs. (2) and (4) can
be solved self-consistently for every frequency ω.

APPROXIMATIONS FOR THE
EXCHANGE–CORRELATION KERNEL

For spin-unpolarized ground states, there are
only two independent combinations of the spin
components of the XC kernel, since fXC↑↑ = fXC↓↓
and fXC↑↓ = fXC↓↑:

fXC = 1
4

∑
σσ ′

fXC,σσ ′ = 1
2

( fXC↑↑ + fXC↑↓),

GXC = 1
4

∑
σσ ′

σσ ′fXC,σσ ′ = 1
2

( fXC↑↑ − fXC↑↓)
(6)

(contrary to common usage, we have not separated
the Bohr magneton in the definition of GXC). Note
that fx = Gx, as exchange contains only parallel spin
contributions.

The simplest possible approximation is the adi-
abatic local (spin-) density approximation [35]
(ALDA). For spin-unpolarized ground states, this
leads to

f ALDA
XC [n](r, r′) = δ(r− r′)

d2ehom
XC

dρ2

∣∣∣∣
ρ = n(r), ζ = 0

,

GALDA
XC [n](r, r′) = δ(r− r′)

αXC(n(r))
n(r)

,

(7)

where ehom
XC is the exchange–correlation energy per

unit volume of the homogeneous electron gas, ζ is
the relative spin polarization, (n↑ − n↓)/n, and the
spin-stiffness αXC = δ2/δζ 2(ehom

XC (ρ, ζ )/ρ)|ζ = 0.
Approximate XC functionals derived from the

homogeneous electron gas suffer from several short-
comings, such as spurious self-interaction contribu-
tions. These are very significant for calculations of
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orbital eigenvalues, as they affect the asymptotic de-
cay of the ground-state potential. For example, the
XC potential in the local density approximation de-
cays exponentially, so rapidly that only one virtual
state is bound. An alternative approach toward the
construction of improved functionals is to use per-
turbation theory in the electron–electron coupling
constant [36]. This leads to orbital-dependent func-
tionals, which can be solved self-consistently us-
ing the optimized effective potential (OEP) method
[37 – 39]. In the time-dependent case, this method
takes as a starting point a given (approximate) ex-
pression for the quantum mechanical action integral
as a functional of a set of orbitals [40]. Variation with
respect to a local effective potential then leads to an
integral equation for the exchange–correlation po-
tential. Given an exchange–correlation potential of
that kind, the corresponding exchange–correlation
kernel can be constructed in the same spirit [14, 41].
The essential steps are formally identical to the OEP
construction of the exchange–correlation potential
for the ground state [42].

In the time-dependent x-only approximation,
AXC is replaced by∗

Ax-only = −1
2

∑
σ

Nσ∑
i,j

∫ t1

−∞
dt
∫

d3r
∫

d3r′

×
φ∗iσ (r′t)φjσ (r′t)φiσ (rt)φ∗jσ (rt)

|r− r′| . (8)

The orbital-dependent exchange kernel in the time-
dependent KLI approximation is [14, 41]

f TDOEP
x-only σσ ′(r, r′) = −δσσ ′ 1

|r− r′|

× |
∑

k fkσ ϕkσ (r)ϕ∗kσ (r′)|2
nσ (r)nσ (r′)

. (9)

In general, the exact x-only kernel carries a fre-
quency dependence. This is not accounted for in the
present approximation (9). However, for one- and
spin-unpolarized two-electron systems, Eq. (9) is the
exact solution of the respective integral equations
in the limit of a time-dependent x-only theory. This

∗In general, a Keldysh contour integral in complex time is
needed [40] to avoid causality difficulties [43], except when the
action, as an orbital functional, is local in time, as is the case with
all approximations tested here.

yields

fx = Gx = −2|∑k fkϕk(r)ϕ∗k (r′)|2
n(r)|r− r′|n(r′)

=
(
− 1

2|r− r′| for 2 elec
)

. (10)

Inherent to any x-only theory, the resulting ker-
nels are lacking off-diagonal elements in spin space.
To improve upon the x-only treatment, we use the
self-interaction corrected (SIC) LDA [26] for AXC:

ASIC
XC =

∫ t1

−∞
dt
(

ELDA
XC

[
n↑(t), n↓(t)

]
−
∑

iσ

ELDA
XC

[
niσ (t), 0

]
− 1

2

∑
iσ

∫
d3r

∫
d3r′

niσ (r, t)niσ (r′, t)
|r− r′|

)
, (11)

which is an orbital-dependent functional due to the
explicit dependence on the orbital densities

niσ (r, t) = ∣∣φiσ (r, t)
∣∣2, (i = 1, 2, . . . , N/2). (12)

An improvement over both ALDA and exact ex-
change might be provided by correcting ALDA for
self-interaction error [26]. Within the adiabatic SIC-
LDA, the exchange–correlation kernel reads

f TDOEP-SIC
XC,σσ ′ (r, r′,ω)

= f ALDA
XC,σσ ′(r, r′,ω)− δσσ ′

n0σ (r)n0σ (r′)

×
∑

k

fkσ
∣∣ϕkσ (r)

∣∣2 ∣∣ϕkσ (r′)
∣∣2

×
(
δvLDA

XC,σ (nkσ (r), 0)

δnkσ (r′)
+ 1
|r− r′|

)
. (13)

This expression reduces to the exact result [Eq. (9)]
for one electron. For more than one electron, spu-
rious self-interaction parallel-spin contributions in
ALDA are corrected, for both exchange and correla-
tion. The correction has no effect on antiparallel spin
contributions, leaving simply the ALDA result. We
find simply

f SIC
XC = f ALDA

XC +1f SIC
XC ,

GSIC
XC = GALDA

XC +1f SIC
XC ,

(14)

where

1f SIC
XC = −

2
∑

k fknk(r)nk(r′)
n(r)n(r′)

×
{
δ(r− r′)

∂vhom
XC,↑(nk, 0)

∂nk(r)
+ 1
|r− r′|

}
. (15)
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Calculation of Excitation Energies

The linear density response has poles at the ex-
act excitation energies of the interacting system (see,
e.g., [32]). The key idea is to start from a particu-
lar KS orbital energy difference εjσ − εkσ [at which
the KS response function (3) has a pole] and to use
the formally exact representation (2) of the linear
density response to calculate the shifts of the KS
excitation energies toward the true excitation en-
ergies �. To extract these shifts from the density
response, we cast Eq. (2) together with (4) into the
form of an integral equation for n1σ :∑

ν′

∫
d3y′

[
δσν′δ(r− y′)−

∑
ν

∫
d3yχsσν(r, y;ω)

×
(

1
|y− y′| + fXC,νν′ (y, y′;ω)

)]
n1ν′ (y′,ω)

=
∑
ν

∫
d3yχsσν(r, y;ω)v1ν(y,ω). (16)

In general, the true excitation energies � are not
identical with the KS excitation energies εjσ − εkσ ,
and the right-hand side of Eq. (16) remains finite for
ω→ �. The exact spin-density response n1σ , on the
other hand, exhibits poles at the true excitation ener-
gies�. Hence, the integral operator acting on n1σ on
the left-hand side of Eq. (16) cannot be invertible for
ω→ �. This means that the integral operator acting
on the spin-density vector in Eq. (16) is noninvert-
ible (i.e., has vanishing eigenvalues) at the physical
excitation energies. Rigorously, the true excitation
energies � are those frequencies where the eigen-
values λ(ω) of∑
ν′

∫
d3y′

∑
ν

∫
d3yχsσν(r, y;ω)

(
1

|y− y′|

+ fXC,νν′ (y, y′;ω)
)
γν′ (y′,ω) = λ(ω)γσ (r,ω) (17)

satisfy

λ(�) = 1. (18)

For notational brevity, we use double indices q ≡
( j, k) to characterize an excitation energy; ωqσ ≡
εjσ − εkσ denotes the excitation energy of the single-
particle transition (kσ → jσ ). Consequently, we set
αqσ := fkσ − fjσ and

8qσ (r) := ϕ∗kσ (r)ϕjσ (r) (19)

as well as

ξqσ (ω) :=
∑
ν′

∫
d3y′

∫
d3y8qσ (y)∗

(
1

|y− y′|

+ fXC,σν′ (y, y′;ω)
)
γν′ (y′,ω). (20)

Without any approximation, Eq. (17) can be cast [16]
into matrix form:∑

σ ′

∑
q′

Mqσq′σ ′(ω)
ω − ωq′σ ′ + iη

ξq′σ ′ (ω) = λ(ω)ξqσ (ω), (21)

with the matrix elements

Mqσq′σ ′(ω) = αq′σ ′
∫

d3r
∫

d3r′8∗qσ (r)
(

1
|r− r′|

+ fXC,σσ ′(r, r′;ω)
)
8q′σ ′(r′). (22)

At the frequencies ω = �, Eq. (21) can be written as:∑
q′σ ′

(
Mqσq′σ ′(�)+ δqσq′σ ′ωqσ

)
βq′σ ′(�) = �βqσ (�), (23)

where we have defined

βqσ (�) := ξqσ (�)/(�− ωqσ ). (24)

The solutions � of the nonlinear matrix equation
(23) are the physical excitation energies. The in-
evitable truncation of the infinite-dimensional ma-
trix in Eq. (23) amounts to the approximation of χ (0)

by a finite sum:

χ (0)(r, r′,ω) ≈
∑
σ = ↑↓

Q∑
q

αq
8q(r)8q(r′)
ω − ωqσ

. (25)

This truncation explicitly takes into account numer-
ous poles of the noninteracting response function.
In any adiabatic approximation to the XC kernel,
the matrix elements Mqσq′σ ′ are real and frequency
independent. In this case the excitation energies �
are simply the eigenvalues of the (Q × Q) matrix
Mqσq′σ ′(� = 0) + δqσ ,q′σ ′ωqσ . For bound states of fi-
nite systems we encounter well-separated poles in
the linear density response. In our calculations, we
include many such poles, but only those of bound
states, ignoring continuum contributions. The na-
ture and size of the error this introduces has been
studied by van Gisbergen et al. [21] and does not af-
fect the qualitative conclusions found in this work.

A simple and extremely instructive case is when
we expand about a single KS orbital energy differ-
ence ωpτ [14, 16]. The physical excitation energies �
are then given by the solution of

λ(�) = A(ωpτ )
�− ωpτ

+ B(ωpτ )+ · · · = 1. (26)
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For nondegenerate single-particle poles ωpτ , the co-
efficients in Eq. (26) are given by:

A(ωpτ ) =Mpτpτ (ωpτ ) (27)

and

B(ωpτ ) = dMpτpτ

dω

∣∣∣∣
ωpτ

+ 1
Mpτpτ (ωpτ )

×
∑

q′σ ′ 6= pτ

Mpτq′σ ′(ωpτ )Mq′σ ′pτ (ωpτ )
ωpτ − ωq′σ ′ + iη

. (28)

If the pole ωpτ is ℘-fold degenerate, ωp1τ1 =
ωp2τ2 = · · · = ωp℘τ℘ ≡ ω0, the lowest-order coeffi-
cient A in Eq. (26) is determined by a ℘-dimensional
matrix equation:
℘∑

k= 1

Mpiτipkτk(ω0)ξ (n)
pkτk = An(ω0)ξ (n)

piτi , i = 1 . . . ℘,

(29)

with ℘ different solutions A1, · · · , A℘ . For excitation
energies � close to ω0, the lowest-order term of the
above Laurent expansion will dominate the series.
In this single-pole approximation (SPA), the excita-
tion energies � satisfy Eq. (26) and reduce to

λn(�) ≈ An(ω0)
�− ω0

= 1. (30)

Condition (18) and its complex conjugate, λ∗(�) = 1,
finally lead to a compact expression for the excita-
tion energies:

�n ≈ ω0 +<An(ω0). (31)

For closed-shell systems, every KS orbital eigen-
value is degenerate with respect to spin, i.e., the
spin multiplet structure is absent in the bare KS
eigenvalue spectrum. Within the SPA, the dominant
terms in the corrections to the KS eigenvalues to-
ward the true multiplet energies naturally emerge
from the solution of the (2× 2) eigenvalue problem∑

σ ′ = ↑,↓
Mpσpσ ′(ω0)ξpσ ′(ω0) = Aξpσ (ω0). (32)

Then, the resulting excitation energies are

�1,2 = ω0 +<{Mp↑p↑ ±Mp↑p↓}. (33)

Using the explicit form of the matrix elements (22),
one finds∗

�1 = ω0 + 2<
∫

d3r
∫

d3r′8∗p(r)

×
(

1
|r− r′| + fXC(r, r′;ω0)

)
8p(r′), (34)

∗Since we are dealing with spin-saturated systems, we have
dropped the spin-index of 8pσ .

�2 = ω0 + 2<
∫

d3r
∫

d3r′8∗p(r)

×GXC(r, r′;ω0)8p(r′). (35)

The kernel GXC embraces the exchange and correla-
tion effects in the KS equation for the linear response
of the frequency-dependent magnetization density
m(r,ω) [33]. For unpolarized systems, the weight
of the pole in the spin-summed susceptibility (both
for the KS and the physical systems) at �2 is ex-
actly zero, indicating that these are the optically
forbidden transitions to triplet states. The singlet
excitation energies are at �1. In this way, the SPA
already gives rise to a spin-multiplet structure in the
excitation spectrum. We use SPA to understand the
results of different approximations, since it simply
relates the calculated shifts from KS eigenvalues to
matrix elements of the XC kernel.

At this point we stress that the TDDFT formalism
for the calculation of excitation energies involves
three different types of approximations:

1. In the calculation of the KS orbitals ϕk(r) and
their eigenvalues εk, one employs some ap-
proximation of the static XC potential vXC.

2. Given the stationary KS orbitals and the
ground-state density, the functional form of
the XC kernel fXC,σσ ′ needs to be approximated
in order to calculate the matrix elements de-
fined in Eq. (22).

3. Once the matrix elements are obtained, the
infinite-dimensional eigenvalue problem (21)
[or, equivalently, (23)] must be truncated in
one way or another.

In the following, we are going to investigate the
relative importance of approximations 1 and 2. Fur-
thermore, truncation effects will be estimated by
comparing the results obtained in SPA [Eqs. (34)
and (35)] with the solution of the “full” prob-
lem (23), which is based on using up to 38 bound
virtual orbitals.

Results for the Helium Atom

In this section we report numerical results for ex-
citation energies of the He atom. The stationary KS
equations were solved numerically on a radial grid
(i.e., without basis set expansion) using a large num-
ber of semilogarithmically distributed grid points
[44] up to a maximum radius of several hundred
atomic units in order to achieve high accuracy for
the Rydberg states (n ≥ 10) as well.
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EXACT KOHN–SHAM POTENTIAL

To eliminate the error 1 associated with the ap-
proximation for the ground-state KS potential, we
employ the exact XC potential of the He atom to
generate the stationary KS orbitals ϕk(r) and their
eigenvalues εk. This isolates the effects that exclu-
sively arise due to approximations 2 and 3. The
potential data provided by Umrigar and Gonze [45]
were interpolated nonlinearly for r ≤ 10 atomic
units. Around r = 10 atomic units, the XC po-
tential is almost identical to −1/r. This behavior
was used as an extrapolation of the exact exchange–
correlation potential to larger distances.

Tables I and II show the excitation energies of
neutral helium calculated with the exact exchange–
correlation potential. The results are compared with
a highly accurate nonrelativistic variational calcula-
tion [46] of the eigenstates of helium. It is a remark-
able fact that the KS excitation energies ωjk = εj − εk

are already very close to the exact spectrum, and, at
the same time, are always in between the singlet and
the triplet energies [47, 48].

Based on these eigenvalue differences, we have
calculated the shifts toward the true excitation ener-
gies using several approximations for the exchange–

correlation kernels fXC:

The adiabatic local density approximation
(ALDA), with the inclusion of correlation con-
tributions in the parametrization of Vosko,
Wilk, and Nusair [49]
The approximate x-only time-dependent OEP
(TDOEP) kernel of Eq. (9), which is based on
the time-dependent Fock expression
The approximate TDOEP-SIC kernel from
Eq. (13) with the parametrization of Ref. [49]
for the correlation contributions

The columns in Tables I and II denoted by “full”
show the corresponding excitation energies �i,
which are obtained as eigenvalues obtained from
the (truncated) matrix equation (23). To investigate
the effects of the truncation of the matrix equa-
tion (23), we compare the difference between the
single-pole approximation (SPA) and the fully cou-
pled results. The matrix equation (23) was solved
using N = 34 unoccupied KS orbitals of s or p
symmetry. For each symmetry class the resulting di-
mension of the (fully coupled but truncated) matrix
in Eq. (23) is (4N × 4N) (due to the spin degener-
acy of the KS orbitals of helium and the fact that
the frequency-dependent KS response function is

TABLE I
Singlet excitation energies of neutral helium, calculated from the exact XC potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7460 0.7718 0.7678 0.7687 0.7659 0.7674 0.7649 0.7578
1s→ 3s 0.8392 0.8458 0.8461 0.8448 0.8450 0.8445 0.8448 0.8425
1s→ 4s 0.8688 0.8714 0.8719 0.8710 0.8713 0.8709 0.8712 0.8701
1s→ 5s 0.8819 0.8832 0.8835 0.8830 0.8832 0.8829 0.8832 0.8825
1s→ 6s 0.8888 0.8895 0.8898 0.8894 0.8896 0.8894 0.8895 0.8892

1s→ 2p 0.7772 0.7764 0.7764 0.7850 0.7844 0.7836 0.7833 0.7799
1s→ 3p 0.8476 0.8483 0.8483 0.8500 0.8501 0.8497 0.8498 0.8486
1s→ 4p 0.8722 0.8726 0.8726 0.8732 0.8733 0.8731 0.8732 0.8727
1s→ 5p 0.8836 0.8838 0.8838 0.8841 0.8842 0.8841 0.8841 0.8838
1s→ 6p 0.8898 0.8899 0.8899 0.8901 0.8901 0.8900 0.8901 0.8899

Mean abs. dev.c 0.0022 0.0023 0.0021 0.0022 0.0020 0.0019 0.0017
Mean rel. dev. 0.28% 0.30% 0.26% 0.28% 0.25% 0.24% 0.21%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.
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TABLE II
Triplet excitation energies of neutral helium, calculated from the exact XC potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7460 0.7357 0.7351 0.7232 0.7207 0.7313 0.7300 0.7285
1s→ 3s 0.8392 0.8366 0.8368 0.8337 0.8343 0.8353 0.8356 0.8350
1s→ 4s 0.8688 0.8678 0.8679 0.8667 0.8671 0.8673 0.8675 0.8672
1s→ 5s 0.8819 0.8814 0.8815 0.8808 0.8811 0.8811 0.8813 0.8811
1s→ 6s 0.8888 0.8885 0.8885 0.8882 0.8883 0.8884 0.8884 0.8883

1s→ 2p 0.7772 0.7702 0.7698 0.7693 0.7688 0.7774 0.7774 0.7706
1s→ 3p 0.8476 0.8456 0.8457 0.8453 0.8453 0.8471 0.8471 0.8456
1s→ 4p 0.8722 0.8714 0.8715 0.8712 0.8713 0.8720 0.8720 0.8714
1s→ 5p 0.8836 0.8832 0.8832 0.8831 0.8831 0.8834 0.8835 0.8832
1s→ 6p 0.8898 0.8895 0.8895 0.8895 0.8895 0.8897 0.8897 0.8895

Mean abs. dev.c 0.0035 0.0010 0.0011 0.0009 0.0011 0.0013 0.0012
Mean rel. dev. 0.45% 0.14% 0.14% 0.12% 0.15% 0.16% 0.15%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.

symmetric in the complex plane with respect to the
imaginary axis). Thereby, convergence of the results
to within 10−6 atomic units was reached within the
space of bound states. When comparing the results
from the SPA with the results from the fully coupled
matrix, we observe only a small change in the result-
ing excitation energies (from a few hundredth of a
percent to at most one-half percent), independent of
the functional form of the exchange–correlation ker-
nel. Thus we conclude that in helium the single-pole
approximation gives the dominant correction to the
KS excitation spectrum. Hence, starting from the KS
eigenvalue differences as zeroth-order approxima-
tion to the excitation energies, the SPA can be used
for the assignment of the excitation energies, which
are obtained as eigenvalues from Eq. (23). Recent
studies using basis set expansions [21] indicate that
further improvement of the fully coupled results
can be expected from the inclusion of continuum
states. The general trends of the results, however,
are not affected.

In Figure 1 we have plotted some typical excita-
tion energies taken from the column headed “full”
of Tables I and II. We can understand the trends in
this figure by analyzing the results in terms of the
single-pole approximation. For the single-particle
excitations in helium, the single-pole approximation
leads to two-dimensional matrix equations for the
excitation energies [cf. Eqs. (32)–(34)]. In the follow-

ing, the notation

〈Ô〉 :=
∫

d3r
∫

d3r′8∗p(r)Ô(r, r′)8p(r′) (36)

will be used for the matrix elements of the two-
particle operators Ô involved in the calculation.
Then, in the SPA,

�
singlet
p = ωp + 2〈W〉 + 2〈 fXC〉,
�

triplet
p = ωp + 2〈GXC〉, (37)

1�p = 2
(〈W〉 + 〈 fc〉 − 〈Gc〉

)
,

where1�p is the singlet-triplet splitting. Within the
various approximations to the kernel, these levels
become

�
sing
p = ωp + 〈W〉, �

triplet
p = ωp − 〈W〉, (x-only), (38)

= ωp + 2〈W〉 = ωp

+ 2
〈

f ALDA
XC

〉
, + 2

〈
GALDA

XC

〉
, ALDA, (39)

= ωp + 〈W〉 = ωp − 〈W〉
+ 2

〈
f ALDA
c

〉
+ 2

〈
GALDA

c

〉
−
〈
f orb
c

〉
, −

〈
f orb
c

〉
, SIC. (40)

We begin our analysis with the splitting. In the
simplest case, the TDOEP x-only kernel, we see that
the singlet transitions are always overestimated,
while the triplets are always underestimated. Since
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FIGURE 1. Typical excitation energies of He, including the orbital eigenvalues of the exact Kohn–Sham (KS) potential
and the corrections from time-dependent density functional theory calculated within the adiabatic local density
approximation (ALDA), with orbital-dependent functionals in the x-only limit (TDOEP x-only) and the self-interaction
corrected version of the ALDA (TDOEP-SIC).

our TDOEP treatment is exact for exchange in this
case, this underscores the importance of correlation.
In particular, since 〈 fx〉 = 〈Gx〉 = −〈W〉/2, the split-
ting is just 2〈W〉. This matrix element is always pos-
itive, correctly putting the singlet above the triplet,
but the splitting is typically far too big. We demon-
strate the effect of this in Table III, in which we
compare splittings with and without correlation. To
see why inclusion of correlation always reduces the
splitting, we note the sign and magnitude of matrix
elements, within ALDA. Even though both 〈 f ALDA

XC 〉
and 〈GALDA

XC 〉 are negative, because they are domi-
nated by their exchange contributions, we find〈

f ALDA
c

〉
< −〈GALDA

c

〉
< 0 (41)

because in Eq. (6) antiparallel correlation dominates
over parallel correlation. Thus the ALDA correla-
tion contribution to the splitting is always negative
in SPA. Note that the SIC treatment of the splitting
is only marginally better than in ALDA because,
within SPA, the SIC splitting is identical to that of
ALDA.

To analyze the separate levels, we need the mag-
nitude of the SIC corrections:〈

f ALDA
c

〉
<
〈
f orb
c

〉
:=
〈
δvLDA

c [nkσ , 0]
δnkσ

〉
< 0, (42)

but the numerical values of both matrix elements
differ by less than 8%. Moreover,〈

GALDA
c

〉
>
∣∣〈 f orb

c

〉∣∣ > 0. (43)

Looking at the singlet excitation energies of Table I
we see that in ALDA, the s levels are too high (up
to 10 mH), whereas the p levels are too low (by up
to 0.4 mH). In x-only TDOEP, the s levels drop (by
up to 3 mH), approaching the exact values, but the
rise of the p states (by up to 8 mH) is too high. In-
corporating explicit correlation terms by using the
TDOEP-SIC kernel, the singlet lines correctly drop
further (in comparison to the x-only results by up to
1 mH) since 2〈 f ALDA

c 〉−〈 f orb
c 〉 ≈ 〈 f ALDA

c 〉 in Eq. (40) is
always a negative contribution. But still, the p states
are too high. Regarding the triplet excitation ener-
gies of Table II, the ALDA s states are too high by at
most 6 mH, but the p states are almost identical to
the exact values. In x-only TDOEP, the triplet states
experience a strong downshift from the KS excita-
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TABLE III
Singlet–triplet separations in helium obtained from
Eq. (23), using the lowest 34 unoccupied orbitals of s
and p symmetry of the exact XC potential and
employing various approximate XC kernels.a

ALDA TDOEP

State x-only XCb x-only SIC Exactc

2S 42.2 32.7 45.2 34.9 29.3
3S 11.1 9.4 10.8 9.2 7.4
4S 4.7 4.0 4.3 3.7 2.9
5S 2.4 2.1 2.2 1.9 1.4
6S 1.4 1.3 1.2 1.1 0.8

2P 16.7 6.6 15.6 5.8 9.3
3P 4.5 2.6 4.7 2.7 2.9
4P 1.8 1.1 2.0 1.2 1.3
5P 0.9 0.6 1.0 0.7 0.6
6P 0.5 0.3 0.6 0.4 0.4

Dev.d 3.0 1.1 3.1 1.3
Rel. dev. 55% 27% 56% 21%

a All values are in mhartrees.
b Including correlation contributions in the form of Vosko,
Wilk, and Nusair [49].
c Taken from Ref. [46].
d Mean absolute deviation from the exact values.

tion energies up to 25 mH, originating from the term
−〈W〉 [see Eq. (40)]. In TDOEP-SIC, this downshift is
partly screened by the positive correlation contribu-
tions 2〈GALDA

c 〉−〈 f orb
c 〉, as can be seen from Eqs. (40),

(42), and (43). This leads to an excellent agreement
with the exact values for the s states. However, these
correlation terms are too large for the p states. Since
〈GALDA

c 〉 > 〈 f ALDA
c 〉, the rise of the triplet is always

bigger than the dropping of the singlet.

APPROXIMATE KOHN–SHAM POTENTIALS

Next we explore the effect of approximate
exchange–correlation potentials vXC on the calcu-
lated excitation spectrum of the He atom. We do
not even report results within LDA and generalized
gradient approximations (GGA) [50], since these po-
tentials only support a few virtual states, so that
many of the transitions reported here do not even
exist in such calculations. (This problem is worst in
small atoms, is less pronounced in molecules, and
irrelevant in solids.)

To produce a correct Rydberg series, the XC po-
tential must decay as−1/r, an exact exchange effect.
Hence we examine the OEP x-only potential (which,

for two-electron systems is identical to the Hartree–
Fock potential) and the OEP-SIC [31] potential. Both
potentials show the correct behavior for large dis-
tances from the nucleus, and support of all the
Rydberg states is guaranteed.

Tables IV and V show the approximate KS ex-
citation energies and the corresponding corrected
excitation energies calculated from the approximate
KS eigenvalues and orbitals of the x-only potential;
Tables VI and VII are their analogs from the OEP-
SIC calculation. The KS orbital energy differences
are almost uniformly shifted to larger values com-
pared to the orbital energy differences of the exact
KS potential. The shift ranges from 13.6 mH for the
lowest excitation energy to 14.2 mH for excitation
energies �n with n ≥ 4 for the x-only potential. The
latter shift is exactly the difference between the ex-
act 1s eigenvalue (εexact

1s = −0.90372 a.u.) and the
more strongly bound 1s eigenvalue of the x-only
potential (εx-only

1s = −0.91796 a.u.). Similarly, the
KS eigenvalue differences calculated in OEP-SIC are
shifted by up to 44.5 mH, which again is equal to
the difference between the 1s eigenvalues of the ex-
act KS potential and the KS potential in OEP-SIC.
In OEP-SIC, the correlation potential is attractive at
all points in space. Hence, including SIC-correlation
contributions into the OEP worsens the occupied
orbital eigenvalue. To summarize, the inclusion of
correlation contributions to the ground-state po-
tential mostly affects only the occupied state; the
virtual states are almost exact, i.e., they are almost
independent of the choice of the correlation po-
tential. The He KS orbitals exhibit a Rydberg-like
behavior already for relatively low quantum num-
bers n [41]: Already the lower virtual states are
mostly determined by the large-r behavior of the KS
potential, which is governed by the exchange con-
tribution.

As a consequence, the corrections to the KS or-
bital energy differences, calculated on the approx-
imate orbitals, are very close to the corrections
calculated from the exact KS orbitals. This is most
apparent from the singlet–triplet splittings given
in Tables III and VIII: The splittings depend more
strongly on the choice of the XC kernel than on
the choice of the potential. However, for the exci-
tation energies, the differences among the various
approximations of the exchange–correlation kernel
are smaller than the differences in the KS excitation
energies coming from different potentials. This re-
flects the fact that the resulting orbitals are rather
insensitive to different approximations of the poten-
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TABLE IV
Singlet excitation energies of neutral helium, calculated from the x-only potential and by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only)

Transition ωjk SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7596 0.7852 0.7812 0.7822 0.7794 0.7578
1s→ 3s 0.8533 0.8598 0.8601 0.8588 0.8591 0.8425
1s→ 4s 0.8830 0.8856 0.8860 0.8851 0.8855 0.8701
1s→ 5s 0.8961 0.8973 0.8977 0.8971 0.8974 0.8825
1s→ 6s 0.9030 0.9037 0.9040 0.9036 0.9038 0.8892

1s→ 2p 0.7905 0.7900 0.7900 0.7986 0.7981 0.7799
1s→ 3p 0.8616 0.8623 0.8623 0.8640 0.8641 0.8486
1s→ 4p 0.8864 0.8867 0.8867 0.8874 0.8875 0.8727
1s→ 5p 0.8978 0.8980 0.8980 0.8983 0.8984 0.8838
1s→ 6p 0.9040 0.9041 0.9041 0.9043 0.9043 0.8899

Mean abs. dev.c 0.0118 0.0156 0.0153 0.0162 0.0161
Mean percentage error 1.37% 1.85% 1.81% 1.93% 1.90%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.

tial. Hence, the corrections themselves, calculated
with approximate XC kernels, will not cancel the
shortcomings of an approximate exchange potential.
Tables IV–VII show that the corrections go in the

right direction only for the singlet states, which are
always lower than the corresponding KS orbital en-
ergy differences. In other approximations, like the
LDA and in the popular GGAs, for instance, this

TABLE V
Triplet excitation energies of neutral helium, calculated from the x-only potential and by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only)

Transition ωjk SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7596 0.7493 0.7488 0.7370 0.7345 0.7285
1s→ 3s 0.8533 0.8507 0.8508 0.8478 0.8484 0.8350
1s→ 4s 0.8830 0.8820 0.8821 0.8809 0.8812 0.8672
1s→ 5s 0.8961 0.8956 0.8957 0.8950 0.8953 0.8811
1s→ 6s 0.9030 0.9027 0.9028 0.9024 0.9026 0.8883

1s→ 2p 0.7905 0.7833 0.7830 0.7824 0.7819 0.7706
1s→ 3p 0.8616 0.8595 0.8596 0.8591 0.8592 0.8456
1s→ 4p 0.8864 0.8855 0.8856 0.8853 0.8854 0.8714
1s→ 5p 0.8978 0.8973 0.8974 0.8972 0.8973 0.8832
1s→ 6p 0.9040 0.9037 0.9037 0.9037 0.9037 0.8895

Mean abs. dev.c 0.0175 0.0149 0.0149 0.0130 0.0129
Mean percentage error 2.11% 1.78% 1.78% 1.53% 1.51%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 543



PETERSILKA, GROSS, AND BURKE

TABLE VI
Singlet excitation energies of neutral helium, calculated from the SIC-LDA potential and by using approximate
XC kernels (in atomic units).

ALDA (XC) TDOEP (SIC)

Transition ωjk SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7838 0.8111 0.8070 0.8065 0.8039 0.7578
1s→ 3s 0.8825 0.8891 0.8895 0.8878 0.8881 0.8425
1s→ 4s 0.9130 0.9156 0.9161 0.9150 0.9154 0.8701
1s→ 5s 0.9263 0.9276 0.9280 0.9273 0.9276 0.8825
1s→ 6s 0.9333 0.9340 0.9343 0.9339 0.9341 0.8892

1s→ 2p 0.8144 0.8145 0.8144 0.8222 0.8217 0.7799
1s→ 3p 0.8906 0.8915 0.8915 0.8929 0.8930 0.8486
1s→ 4p 0.9163 0.9167 0.9167 0.9172 0.9173 0.8727
1s→ 5p 0.9280 0.9282 0.9282 0.9285 0.9285 0.8838
1s→ 6p 0.9343 0.9344 0.9344 0.9346 0.9346 0.8899

Mean abs. dev.c 0.0406 0.0446 0.0443 0.0449 0.0447
Mean percentage error 4.74% 5.25% 5.21% 5.29% 5.26%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.

will be even more severe: There the highest occu-
pied orbital eigenvalue is in error by about a factor
of 2, due to spurious self-interaction. There may be
error cancellations for the lower KS eigenvalue dif-

ferences, but in general one should not expect to
get a reliable (Kohn–Sham) spectrum in LDA and
GGAs, because the respective potentials have the
wrong behavior for large r. In addition, this causes

TABLE VII
Triplet excitation energies of neutral helium, calculated from the SIC-LDA potential and by using approximate
XC kernels (in atomic units).

ALDA (XC) TDOEP (SIC)

Transition ωjk SPA Fulla SPA Fulla Exactb

1s→ 2s 0.7838 0.7727 0.7722 0.7681 0.7668 0.7285
1s→ 3s 0.8825 0.8799 0.8800 0.8786 0.8789 0.8350
1s→ 4s 0.9130 0.9120 0.9121 0.9115 0.9117 0.8672
1s→ 5s 0.9263 0.9258 0.9259 0.9256 0.9257 0.8811
1s→ 6s 0.9333 0.9331 0.9331 0.9329 0.9330 0.8883

1s→ 2p 0.8144 0.8062 0.8058 0.8140 0.8139 0.7706
1s→ 3p 0.8906 0.8885 0.8885 0.8899 0.8899 0.8456
1s→ 4p 0.9163 0.9154 0.9154 0.9159 0.9159 0.8714
1s→ 5p 0.9280 0.9275 0.9276 0.9278 0.9278 0.8832
1s→ 6p 0.9343 0.9340 0.9340 0.9342 0.9342 0.8895

Mean abs. dev.c 0.0462 0.0435 0.0434 0.0438 0.0437
Mean percentage error 5.50% 5.15% 5.14% 5.19% 5.18%

a Using the lowest 34 unoccupied orbitals of s and p symmetry, respectively.
b Nonrelativistic variational calculation [46].
c Mean value of the absolute deviations from the exact values.
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TABLE VIII
Singlet–triplet separations in neutral helium calculated from the x-only potential and the SIC potential and by
using various approximateb XC kernels.a

x-only SIC

State fALDA
XC fTDOEP

x fALDA
XC fTDOEP-SIC

XC Exactb

2S 32.5 44.9 34.9 37.1 29.3
3S 9.3 10.7 9.5 9.3 7.4
4S 4.0 4.2 4.0 3.7 2.9
5S 2.1 2.1 2.1 1.9 1.4
6S 1.2 1.2 1.2 1.1 0.8

2P 7.1 16.2 8.6 7.8 9.3
3P 2.7 4.9 3.0 3.1 2.9
4P 1.2 2.1 1.3 1.4 1.3
5P 0.6 1.1 0.6 0.7 0.6
6P 0.3 0.6 0.4 0.4 0.4

Dev.d 1.46 4.26 1.98 2.26
Rel. dev. 35% 49% 37% 31%

a Calculated from Eq. (23), using the lowest 34 unoccupied orbitals of s and p symmetry. All values are in mhartrees.
b LDA correlation contributions in the form of Vosko, Wilk, and Nusair [49].
c Taken from Ref. [46].
d Mean absolute deviation from the exact values.

the number of (unoccupied) bound KS states to be
finite.

In total, the inaccuracies introduced by approxi-
mate ground-state KS potentials are substantial, but
mostly reside in the occupied eigenvalue for He. It is
very unlikely that these defects will be cured by bet-
ter approximations of fXC alone, since the terms con-
taining fXC only give corrections to the underlying
KS eigenvalue spectrum. Hence, the quantitative
calculation of excitation energies heavily depends
on the accuracy of the ground-state potential em-
ployed.

Results for the Beryllium Atom

EXACT KOHN–SHAM POTENTIAL

The beryllium atom serves as a further standard
example for first-principles treatments: Besides nu-
merous quantum chemical studies (e.g., [52, 53]), a
highly accurate ground-state exchange–correlation
potential, obtained from quantum Monte Carlo
methods [54], is available for this system. With this
potential, we calculated accurate KS orbitals and
orbital energies of the beryllium atom. In each sym-
metry class (s, p, and d), up to 38 virtual states were

calculated on a radial grid similar to the one used in
the preceding section.

In Tables IX and X we report the excitation en-
ergies for the 11 lowest excitations of singlet and
triplet symmetry. As in helium, the orbital energies
of the accurate potential lie always in between the
experimental singlet and triplet energies. However,
the experimentally measured singlet–triplet sepa-
rations in beryllium are much larger than in the
helium atom (cf. the last columns given in Tables III
and XI). Accordingly, to achieve agreement with
the experimental data, appreciable shifts of the KS
eigenvalue differences are needed.

For the singlet excitation spectrum, given in Ta-
ble IX, the TDDFT corrections yield significantly
improved excitation energies compared to the spec-
trum of the bare KS eigenvalue differences, with
average errors reduced by a factor of about 3 re-
gardless of which kernel is used. The most distinct
improvement toward experiment is achieved for
the singlet 2P excitation, where the KS eigenvalue
difference is off by 32% (61 mHartree) from the ex-
perimental value.

For the remaining singlet excitations, the TDOEP-
SIC kernel yields the best improvement upon the
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TABLE IX
Singlet excitation energies for the Be atom, calculated from the exact XC potential by using approximate
XC kernels (in atomic units).

ALDA (XC) TDOEP (x-only) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1327 0.2078 0.1889 0.2040 0.1873 0.2013 0.1855 0.1939
2s→ 3s 0.2444 0.2526 0.2515 0.2574 0.2553 0.2566 0.2547 0.2491
2s→ 3p 0.2694 0.2690 0.2714 0.2748 0.2758 0.2739 0.2750 0.2742
2s→ 3d 0.2833 0.2783 0.2779 0.2851 0.2851 0.2843 0.2842 0.2936
2s→ 4s 0.2959 0.2983 0.2984 0.2994 0.2995 0.2993 0.2994 0.2973
2s→ 4p 0.3046 0.3045 0.3049 0.3063 0.3067 0.3061 0.3065 0.3063
2s→ 4d 0.3098 0.3084 0.3084 0.3106 0.3106 0.3104 0.3103 0.3134
2s→ 5s 0.3153 0.3163 0.3164 0.3168 0.3170 0.3167 0.3169 0.3159
2s→ 5p 0.3193 0.3192 0.3194 0.3201 0.3203 0.3200 0.3202 0.3195
2s→ 6s 0.3247 0.3252 0.3253 0.3254 0.3256 0.3254 0.3256 0.325
2s→ 6p 0.3269 0.3268 0.3269 0.3273 0.3274 0.3272 0.3273 0.327

Mean abs. dev.c 0.0081 0.0043 0.0031 0.0031 0.0028 0.0029 0.0029
Mean rel. dev. 3.75% 1.69% 1.15% 1.27% 1.09% 1.13% 1.15%
Abs. dev.d 0.0028 0.0033 0.0029 0.0025 0.0025 0.0024 0.0024
Rel. dev.d 0.97% 1.14% 1.01% 0.87% 0.86% 0.86% 0.83%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment (all states tabulated).
d Same as footnote c but excluding the 2s→ 2p transition.

TABLE X
Triplet excitation energies for the Be atom, calculated from the exact XC potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1327 0.0982 0.0902 0.0679 0.0000 0.0916 0.0795 0.1002
2s→ 3s 0.2444 0.2390 0.2387 0.2349 0.2338 0.2431 0.2430 0.2373
2s→ 3p 0.2694 0.2651 0.2651 0.2647 0.2652 0.2700 0.2705 0.2679
2s→ 3d 0.2833 0.2807 0.2805 0.2814 0.2813 0.2867 0.2865 0.2827
2s→ 4s 0.2959 0.2943 0.2943 0.2932 0.2934 0.2953 0.2953 0.2939
2s→ 4p 0.3046 0.3031 0.3032 0.3031 0.3034 0.3048 0.3049 0.3005
2s→ 4d 0.3098 0.3087 0.3087 0.3098 0.3089 0.3106 0.3107 0.3096
2s→ 5s 0.3153 0.3146 0.3146 0.3142 0.3143 0.3150 0.3150 0.3144
2s→ 5p 0.3193 0.3186 0.3187 0.3187 0.3188 0.3194 0.3194 0.3193
2s→ 6s 0.3247 0.3243 0.3243 0.3241 0.3242 0.3245 0.3245 0.3242
2s→ 6p 0.3269 0.3265 0.3265 0.3265 0.3266 0.3269 0.3269 0.3268

Mean abs. dev.c 0.0045 0.0012 0.0020 0.0040 0.0102 0.0026 0.0037
Mean rel. dev. 3.53% 0.56% 1.28% 3.31% 9.51% 1.44% 2.55%
Abs. dev.d 0.0017 0.0012 0.0012 0.0012 0.0013 0.0020 0.0020
Rel. dev.d 0.63% 0.42% 0.41% 0.42% 0.46% 0.72% 0.74%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment.
d Same as footnote c but excluding the 2s→ 2p transition.
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TABLE XI
Singlet–triplet separations in beryllium calculated
from the exact XC potential by using various
approximate XC kernels.a

ALDA TDOEP

State XCb x-only SIC Expt.c

2P 98.7 187.3 106.0 93.8
3S 12.8 21.5 11.8 11.8
3P 6.2 10.5 4.6 6.4
3D −2.6 3.8 −2.3 10.8
4S 4.1 6.1 4.1 3.4
4P 1.7 3.4 1.6 5.8
4D −0.2 1.7 −0.3 3.8
5S 1.8 2.7 1.9 2.4
5P 0.7 1.5 0.8 0.2
6S 1.0 1.4 1.0 0.6
6P 0.3 0.8 0.4 —

Dev.d 3.0 12.4 3.8
Rel. dev. 68% 128% 75%

a Calculated from Eq. (23), using the lowest 38 unoccupied
orbitals of s, p, and d symmetry. All values are in mhartrees.
b Including correlation contributions in the form of Vosko,
Wilk, and Nusair [49].
c Taken from Ref. [55].
d Mean absolute deviation from experiment, excluding the 6P
state.

bare KS spectrum. From Figure 2, where the errors
for each singlet excitation energy are plotted, we see
two competing effects: The errors increase with pro-
gressing angular momentum (with the error of the

3d states being largest), but decrease with progress-
ing principal quantum number n. Note that ALDA
has the largest errors for the d states, presumably
due to its inability to account for orbital nodes.

For the triplet spectrum given in Table X, the tran-
sition to the 2p state is clearly problematic, presum-
ably because of its small magnitude. In particular,
the TDOEP x-only calculation greatly underesti-
mates the downshift away from the KS eigenvalue
difference. Because of this effect, we also report av-
erage errors with this transition excluded. All KS
orbital excitations experience a downshift in the
ALDA and TDOEP x-only calculation. In ALDA,
this leads to an overall improvement of the spec-
trum by more than a factor of 2. The downshift in
TDOEP x-only results is too strong, and this behav-
ior is partly corrected in the TDOEP-SIC. However,
due to overcorrections for the higher excitation en-
ergies, the average reduction in error over the KS
excitation spectrum is only a factor of 1.2.

The errors for the triplet excitation energies are
plotted in Figure 3. Clearly, the errors of both the
KS eigenvalue spectrum and the corresponding cor-
rections decrease again with progressing quantum
number. Together with the errors plotted in Fig-
ure 2 this signals that the Rydberg-like transitions
to states with high principal quantum number n are
already close to the eigenvalue differences of the ac-
curate KS potential.

The singlet–triplet separations from Eq. (23) are
given in Table XI for the three different approxi-
mate XC kernels. As with helium, the singlet–triplet
splittings are overestimated by about a factor of 2

FIGURE 2. Errors of singlet excitation energies from the ground state of Be, calculated from the accurate, the
OEP-SIC, and x-only KLI exchange–correlation potential and with different approximations for the exchange–correlation
kernel (see text). The errors are given in mhartrees. To guide the eye, the errors of the discrete excitation energies were
connected with lines.
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FIGURE 3. Errors of triplet excitation energies from the ground state of Be, calculated from the accurate, OEP-SIC,
and x-only KLI exchange–correlation potential and with different approximations for the exchange–correlation kernel
(see text). The errors are given in mhartrees. To guide the eye, the errors of the discrete excitation energies were
connected with lines.

for the S and P transitions if the (diagonal) TDOEP
x-only kernel is used. The splittings of the D lev-
els, however, appear too small by about a factor
of 2. By the inclusion of correlation contributions
to the kernels, the splittings of the S and P lev-
els are consistently (and usually correctly) reduced.
However, for the D states, this correction is always
too large and leads to a reversal of the singlet and
triplet energies.∗ From the singlet–triplet splitting
in Eq. (40), which, in the SPA, holds for any sys-
tem since the diagonal terms of fXC,σσ ′ cancel, this
behavior can be traced back to the overestimation
of correlation contributions in LDA (in small sys-
tems). Self-interaction corrections are not expected
to cure this shortcoming, for the reason that to lead-
ing order the self-interaction correction terms cancel
in the expressions for the splittings, similar to the
way shown above. Accordingly, the separations in
TDOEP-SIC and ALDA are of similar quality, which
can be seen from columns 1 and 3 in Table XI. The
TDOEP x-only results, on the other hand, although
too small, show the correct ordering of singlet and
triplet levels.

With increasing excitation energy, the difference
between the results in SPA and the full solution is
reduced, as was already observed in the case of he-
lium. The drastic change of the triplet 2P state in
TDOEP x-only seems to be an artifact of the specific
approximation to the exchange–correlation kernel,

∗This effect can also be observed in the helium atom. The exact
values of the singlet–triplet splittings of the D states in helium,
however, are by two orders of magnitude smaller than in beryl-
lium.

since the results in the SPA and the full calculation
for this particular excitation energy only differ by
10% if the ALDA is used for fXC,σσ ′ .

APPROXIMATE KOHN–SHAM POTENTIALS

The results from using different approximate
exchange–correlation potentials for the Be atom to
calculate the KS eigenvalues and orbitals are given
in Tables XII–XV.

The errors toward the experimental excitation en-
ergies are compiled in Figures 2 and 3 for the singlet
and triplet series. Looking first at the spectra of the
bare KS eigenvalues (represented in Figs. 2 and 3
by the points connected with thick lines), we notice
that the highest occupied and lowest unoccupied
molecular orbital (HOMO-LUMO) gap is almost in-
dependent of the approximation of vXC employed.
This is in sharp contrast with the He atom case.
The correlation contributions cancel for the lowest
excitation energy, and we must classify this as a
non-Rydberg state. For the higher states, the situa-
tion is different: Starting from the excitation to the
3s level, the series of single-particle energy differ-
ences appear almost uniformly shifted with respect
to the series of the exact potential, preserving the
typical pattern of their deviation from the experi-
mentally measured spectrum. The shifts amount to
−14 mH for the OEP-SIC potential and −34 mH for
the x-only KLI potential. As in helium, these shifts
are equal to the differences in the eigenvalues of
the highest occupied KS orbital: For the accurate
potential (εaccurate

2s = −0.3426 a.u. [56]), the high-
est occupied orbitals are more strongly bound than
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TABLE XII
Singlet excitation energies for the Be atom, calculated from the x-only KLI potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only)

k→ j ωjk SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1297 0.1990 0.1795 0.1958 0.1791 0.1939
2s→ 3s 0.2162 0.2245 0.2232 0.2288 0.2267 0.2491
2s→ 3p 0.2405 0.2415 0.2449 0.2465 0.2479 0.2742
2s→ 3d 0.2527 0.2480 0.2476 0.2541 0.2540 0.2936
2s→ 4s 0.2638 0.2663 0.2664 0.2674 0.2675 0.2973
2s→ 4p 0.2725 0.2727 0.2735 0.2745 0.2751 0.3063
2s→ 4d 0.2773 0.2758 0.2759 0.2780 0.2780 0.3134
2s→ 5s 0.2822 0.2833 0.2834 0.2838 0.2840 0.3159
2s→ 5p 0.2863 0.2864 0.2867 0.2872 0.2876 0.3195
2s→ 6s 0.2913 0.2918 0.2919 0.2921 0.2923 0.325
2s→ 6p 0.2935 0.2936 0.2937 0.2940 0.2942 0.327

Mean abs. dev.c 0.0372 0.0311 0.0317 0.0288 0.0299
Mean rel. dev.d 13.5% 10.4% 10.7% 9.5% 10.1%
Abs. dev.d 0.0345 0.0337 0.0334 0.0315 0.0314
Rel. dev.d 11.49% 11.18% 11.07% 10.39% 10.38%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment.
d Same as footnote c but excluding the 2s→ 2p transition.

in OEP-SIC (εOEP-SIC
2s = −0.3285 a.u.) and in x-

only KLI (εx-onlyKLI
2s = −0.3089 a.u.). Thus, among

the virtual states, only the 2p orbital is appreciably
influenced by the details of the ground-state po-
tential. For the higher lying states, the long-range
behavior of the KS potential dominates. Its−1/r be-
havior is correctly reproduced both in x-only KLI as
well as in OEP-SIC. For larger systems, more low-
lying excitations can be accurately approximated,
but eventually, for any finite system, the Rydberg
excitations will show errors due to errors in the
ionization potential. Casida et al. [23] have studied
which excitations can be well-approximated with
present functional approximations to the poten-
tial.

Regarding the corrections for the singlet exci-
tation energies calculated from Eq. (23), the first
excited state (2p) experiences the largest correc-
tion, irrespective of the exchange–correlation poten-
tial employed. Moreover, the results using differ-
ent approximate exchange–correlation kernels agree
within 10 mH. For the remaining singlet excitation
energies, the calculated corrections using the ap-
proximate KS orbitals are almost identical to the

corrections obtained from using the accurate KS
orbitals. Hence, in Figure 2 the errors for the exci-
tations to 3s through 6p show the same pattern of
deviations, only shifted by the error in the respec-
tive eigenvalue of the 2s orbital. On average, the
resulting singlet excitation energies are closest to ex-
periment, if the approximate exchange–correlation
potential vXC is combined with the correspond-
ing approximation of the exchange–correlation ker-
nel fXC,σσ ′ .

From Tables XIII and XV as well as from Fig-
ure 3, the behavior of the triplet spectra is similar
but less unequivocal for the triplet 2p state. For
this particular state, the corrections spread on the
order of 100 mH, prevalently due to the signifi-
cant overcorrection of the x-only TDOEP kernels.
However, the resulting triplet 2p excitation energy
almost exclusively depends on the approximation to
the exchange–correlation kernel rather than on the
exchange–correlation potential employed. On the
average, apart from the higher excitations in OEP-
SIC (cf. Table XIV), the best triplet spectra are
obtained if the ALDA is used for the exchange–
correlation kernel, but this appears to be a fortuitous
cancellation of errors. The approximate KS excita-
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TABLE XIII
Triplet excitation energies for the Be atom, calculated from the x-only KLI potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (x-only)

k→ j ωjk SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1297 0.0980 0.0907 0.0692 0.0158 0.1002
2s→ 3s 0.2162 0.2112 0.2108 0.2069 0.2057 0.2373
2s→ 3p 0.2405 0.2362 0.2363 0.2353 0.2361 0.2679
2s→ 3d 0.2527 0.2506 0.2505 0.2512 0.2511 0.2827
2s→ 4s 0.2638 0.2622 0.2622 0.2611 0.2613 0.2939
2s→ 4p 0.2725 0.2710 0.2711 0.2709 0.2712 0.3005
2s→ 4d 0.2773 0.2763 0.2763 0.2765 0.2765 0.3096
2s→ 5s 0.2822 0.2815 0.2816 0.2811 0.2812 0.3144
2s→ 5p 0.2863 0.2856 0.2857 0.2856 0.2857 0.3193
2s→ 6s 0.2913 0.2909 0.2909 0.2907 0.2908 0.3242
2s→ 6p 0.2935 0.2931 0.2932 0.2931 0.2932 0.3268

Mean abs. dev.c 0.0300 0.0291 0.0298 0.0323 0.0371
Mean rel. dev. 11.8% 9.9% 10.6% 12.8% 17.6%
Abs. dev.d 0.0300 0.0318 0.0318 0.0324 0.0324
Rel. dev.d 10.1% 10.7% 10.7% 11.0% 11.0%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment.
d Same as footnote c but excluding the 2s→ 2p transition.

tion energies, except for the 2p state, are already
incorrectly lower than the experimental triplet lev-
els. Any further lowering, although correct for the
eigenvalue differences of the exact KS potential,
actually worsens the triplet spectra, which are cal-
culated on the basis of an approximate exchange–
correlation potential. Since the shifts are reduced
by correlation contributions in the kernels, the over-
corrections become less severe for the ALDA and
TDOEP-SIC kernels. Another apparent error cancel-
lation is that when calculating the lowest excitation
energy (2s → 2p) from approximate exchange–
correlation potentials, the SPA results are always
closer to experiment than the full results. This might
be related to the fact that for TDOEP x-only, SPA
yields the exact first-order shift in energy levels in
Görling–Levy perturbation theory [57], while the
“full” calculation does not [48]. In cases where
there are large differences between SPA and full
results, the SPA might be more reliable for these rea-
sons.

The fact that the corrections to the KS eigenvalue
differences only weakly depend on the approxima-
tion of the exchange–correlation potential vXC, is
also reflected in Table XVI, where the singlet–triplet

separations in Be, calculated using the x-only KLI
and OEP-SIC potentials are given. The numerical
values are close to the results for the accurate Be ex-
change correlation potential in Table XI. Again, the
obtained splittings are more sensitive to the approx-
imation of fXC,σσ ′ than to the approximation of the
potential vXC.

Summary and Conclusion

In this work we aimed at an assessment of the
influence of the three different types of approxima-
tions [i.e., (i) the XC potential vXC, (ii) the XC kernel
fXC, and (iii) truncation of the space of virtual ex-
citations] inherent in the calculation of excitation
energies from TDDFT. We calculated the discrete
optical spectra of helium and beryllium, two of
the spectroscopically best known elements, using
the exact exchange–correlation potential, the KLI–x-
only potential, and the KLI-SIC potential for vXC (all
three potentials are falling off like −1/r as r → ∞).
These were combined with three approximations
for the XC kernel: The adiabatic LDA (ALDA), the
TDOEP x-only kernel, and the TDOEP-SIC kernel.
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TABLE XIV
Singlet excitation energies for the Be atom, calculated from the SIC-KLI potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1314 0.2030 0.1839 0.1968 0.1811 0.1939
2s→ 3s 0.2300 0.2390 0.2377 0.2429 0.2409 0.2491
2s→ 3p 0.2561 0.2566 0.2596 0.2614 0.2627 0.2742
2s→ 3d 0.2684 0.2632 0.2628 0.2694 0.2693 0.2936
2s→ 4s 0.2820 0.2844 0.2846 0.2855 0.2856 0.2973
2s→ 4p 0.2909 0.2910 0.2916 0.2926 0.2931 0.3063
2s→ 4d 0.2956 0.2943 0.2943 0.2961 0.2962 0.3134
2s→ 5s 0.3013 0.3023 0.3025 0.3028 0.3030 0.3159
2s→ 5p 0.3054 0.3054 0.3056 0.3062 0.3064 0.3195
2s→ 6s 0.3106 0.3112 0.3113 0.3114 0.3116 0.325
2s→ 6p 0.3129 0.3129 0.3130 0.3133 0.3134 0.327

Mean abs. dev.c 0.0210 0.0155 0.0153 0.0130 0.0138
Mean rel. dev.d 8.07% 5.29% 5.25% 4.32% 4.78%
Abs. dev.d 0.0168 0.0161 0.0158 0.0140 0.0139
Rel. dev.d 5.65% 5.35% 5.26% 4.60% 4.60%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment.
d Same as footnote c but excluding the 2s→ 2p transition.

The results are given both in the single-pole approx-
imation (SPA) and for a “full” calculation, where
as many virtual states as possible (typically about
30–40) entered the calculation. The analysis of these
combinations reveals the following trends: First of
all, the choice of vXC on the calculated spectrum has
the largest effect on the calculated spectra. The in-
accuracies introduced by approximate ground-state
KS potentials (even those including exact exchange)
can be quite substantial. This is especially true for
the higher excited states, which appear almost uni-
formly shifted from the true excitation energies. We
observe that this shift is closely related to the ab-
solute value of the highest occupied eigenvalue,
which, in exact DFT, is equal to the first ionization
potential of the system at hand.

For the lower excitation energies, an error cancel-
lation occurs, making these excitations less sensitive
to the choice of the exchange–correlation potential.
This error cancellation, however, ceases to work
the more the excited states behave like Rydberg
states. For helium, this is already the case for the
first excited state. Hence, improving the calcula-
tion of excitation energies from TDDFT requires

an improved exchange–correlation potential in the
first place. The most important requirement for
such a potential would be that its highest occu-
pied eigenvalue reproduces the experimental ion-
ization potential as closely as possible. Empirically,
one could introduce a “scissors-operator” similar
to the one introduced by Levine and Allan [58],
which shifts the Rydberg states by a constant be-
ing equal to the difference between the highest
occupied eigenvalue and the negative of the exper-
imental ionization potential. But such a procedure
would not produce a first-principles calculation. In
our opinion, however, the construction of approxi-
mate exchange–correlation potentials based on or-
bital functionals would be the method of choice for
the future.

The effect of the choice of the exchange–corre-
lation kernel on the calculated spectra, in turn, is
much less pronounced. However, its relative impor-
tance increases whenever the “first-order” effects,
originating from vXC cancel. This is the case for the
values of the singlet–triplet splittings and the lower
excitation energies of Be. For these “second-order
effects,” the correlation contributions contained in
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TABLE XV
Triplet excitation energies for the Be atom, calculated from the SIC-KLI potential by using approximate XC
kernels (in atomic units).

ALDA (XC) TDOEP (SIC)

k→ j ωjk SPA Fulla SPA Fulla Expt.b

2s→ 2p 0.1314 0.0987 0.0912 0.0925 0.0811 0.1002
2s→ 3s 0.2300 0.2245 0.2241 0.2284 0.2283 0.2373
2s→ 3p 0.2561 0.2515 0.2515 0.2563 0.2569 0.2679
2s→ 3d 0.2684 0.2658 0.2656 0.2720 0.2718 0.2827
2s→ 4s 0.2820 0.2804 0.2804 0.2814 0.2814 0.2939
2s→ 4p 0.2909 0.2894 0.2895 0.2910 0.2911 0.3005
2s→ 4d 0.2956 0.2946 0.2946 0.2965 0.2965 0.3096
2s→ 5s 0.3013 0.3006 0.3006 0.3010 0.3011 0.3144
2s→ 5p 0.3054 0.3047 0.3048 0.3055 0.3055 0.3193
2s→ 6s 0.3106 0.3103 0.3103 0.3105 0.3105 0.3242
2s→ 6p 0.3129 0.3125 0.3126 0.3129 0.3129 0.3268

Mean abs. dev.c 0.0141 0.0131 0.0138 0.0117 0.0127
Mean rel. dev. 6.58% 4.52% 5.22% 4.39% 5.41%
Abs. dev.d 0.0123 0.0142 0.0143 0.0121 0.0121
Rel. dev.d 4.13% 4.83% 4.84% 4.06% 4.04%

a Using the lowest 38 unoccupied orbitals of s, p, and d symmetry, respectively.
b Experimental values from Ref. [55].
c Mean value of the absolute deviations from experiment.
d Same as footnote c but excluding the 2s→ 2p transition.

TABLE XVI
Singlet–triplet separations in beryllium calculated from the x-only potential and the SIC potential and by using
various approximateb XC kernels.a Calculated Eq. (23), using the lowest 38 unoccupied orbitals of s, p, and d
symmetry, respectively.

x-only SIC

State fALDA
XC fTDOEP

x fALDA
XC fTDOEP-SIC

XC Expt.c

2P 88.9 163.3 92.7 100.1 93.8
3S 12.4 21.0 13.6 12.5 11.8
3P 8.6 11.8 8.0 5.9 6.4
3D −2.9 2.9 −2.8 −2.5 10.8
4S 4.1 6.2 4.2 4.2 3.4
4P 2.4 3.9 2.1 2.0 5.8
4D −0.4 1.4 −0.2 −0.4 3.8
5S 1.9 2.7 1.8 1.9 2.4
5P 1.0 1.8 0.8 0.9 0.2
6S 1.0 1.5 1.0 0.4 0.6
6P 0.5 1.0 0.4 0.5 —

Dev.d 3.1 10.2 2.8 3.1
Rel. dev. 85% 145% 75% 75%

a All values are in mhartrees.
b LDA correlation contributions in the form of Vosko, Wilk, and Nusair [49].
c Taken from Ref. [55].
d Mean absolute deviation from the exact values.
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fXC are important. We observe that the ALDA for
the XC kernels already leads to quite reasonable re-
sults, which are only marginally improved by using
the more complicated TDOEP-SIC kernel. Besides
the missing frequency dependence, correlation con-
tributions are hard to model on top of an exact
exchange treatment, and one might speculate that
the ALDA takes advantage from a fortuitous error
cancellation between exchange and correlation ef-
fects. Again, we expect only orbital functionals to
manage a marked improvement over the ALDA,
which, up to now, has been the workhorse of
TDDFT.

Finally, the inevitable truncation of the space of
virtual excitations is appreciable only for the low-
est lying states. In most cases, the results of the
single-pole approximation (SPA), which, in the non-
degenerate case, merely requires a pair of “initial”
and “final” KS states are close to the results obtained
from using more configurations.
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