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We present a Thomas-Fermi-inspired density scaling under which electron densities of atomic,
molecular, or condensed matter become both large and slowly varying, so that semiclassical approx-
imations and second-order density gradient expansions are asymptotically exact for the kinetic and
exchange energies. Thus, even for atoms and molecules, density-functional approximations should
recover the universal second-order gradient expansions in this limit. We also explain why common
generalized gradient approximations for exchange do not.
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In a remarkable series of papers towards the end of his
life, Schwinger [1] (sometimes with Englert [2]) put the
semiclassical theory of neutral atoms on a firm footing.
They carefully proved a variety of results, including a
clear-cut demonstration that the local density approxima-
tion (LDA) becomes exact for exchange as Z, the nuclear
charge, tends to1. The large-Z expansion of the energy of
atoms whose rigor they established,

 E � �0:7687Z7=3 � 0:5Z2 � 0:2699Z5=3 � . . . ; (1)

is extremely close to the total (Hartree-Fock) energies of
neutral atoms (less than 0.5% error for Ne), an example of
the ‘‘unreasonable utility of asymptotic estimates’’ [1]. But
their derivations are specific to neutral atoms, and they
eschew exploring any relation to ‘‘the density-functional
formalism’’ [2], preferring to express all quantities in terms
of the external potential. Their results are rarely used
within density-functional theory (DFT).

In the quarter century since, Kohn-Sham DFT has be-
come a widely used tool for electronic structure calcula-
tions of atoms, molecules, and solids [3]. Here, the
noninteracting kinetic energy TS is treated exactly, and
only the density functional for the exchange-correlation
energy, EXC�n�, must be approximated. For EXC, LDA [4]
is useful for solids but insufficiently accurate for chemical
bonding. The density gradient expansion can be derived
from the slowly varying electron gas, but fails for real
molecules and solids, whose gradients are not small. The
development of modern generalized gradient approxima-
tions (GGA) [5,6], using gradients beyond leading order,
improved accuracy and led to the widespread use of DFT in
many fields. Anomalously, modern successful GGAs for
exchange have gradient coefficients that are about double
that of the gradient expansion, and even the relevance of
LDA to exponentially localized densities is often ques-
tioned [7].

But Thomas-Fermi (TF) theory [8,9], with its local
approximation to TS, is the simplest, original form of
DFT, and yields the leading term in Eq. (1). Since E �

�T for atoms and correlation is O�Z�, Eq. (1) is an expan-
sion for TS. The Scott correction [10] (Z2 term) arises from
the 1s-region electrons [1], while the Z5=3 term includes
second-order gradient contributions to Ts [1].

We introduce a methodology that generalizes
Schwinger’s results to molecules and solids and to other
components of the energy. It explains why local approx-
imations become exact for large numbers of electrons, and
when the gradient expansion is accurate for real matter. It
explains the doubling of the coefficient for exchange, and
why the analog [(Eq. (5)] of Eq. (1) fails for correlation.

To begin, define the scaled density

 n� �r� � �2n��1=3r�; 0< � <1 (2)

for any electron density. If n�r� contains N electrons, n� �r�
contains �N electrons. We only ever consider integer �N,
but study energies as smooth functions of � . Changing � is
exactly equivalent to changing Z in TF theory, and ap-
proximately so in reality. This scaling is defined for all
systems, not just atoms. An example of our scaling is
shown in Fig. 1.

As � grows, the density becomes both large and slowly
varying on the scale of the local Fermi wavelength

 

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

4π
r2  n

ζ(
r)

r

He atom

ζ=1

ζ=2

FIG. 1. Scaled radial density of He atom.
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�F�r� � 2�=kF�r�, where kF�r� � �3�2n�r��1=3. Under
this scaling, the dimensionless gradients s �
jrnj=�2kFn� and q � r2n=�4k2

Fn� (commonly used in
gradient expansions) vary as

 s� �r� � s��1=3r�=�1=3; q� �r� � q��1=3r�=�2=3: (3)

In Fig. 2, we plot s for accurate densities [self-consistent
nonrelativistic ones, from the optimized effective potential
(OEP), the Kohn-Sham potential for exact exchange] of
both Kr and Rn. The gradient expansions for the kinetic
and exchange energies are expected [4] to become exact as
the density n�r� becomes slowly varying on the scale of �F,
i.e., when s! 0 and jq=sj ! 0 everywhere. The second
condition is needed because s! 0 for an infinitesimal
amplitude but rapid variation around a uniform density.

Under � scaling of a mono- or polyatomic density, as
� ! 1 and as s and jq=sj ! 0 (except in regions to be
discussed), the gradient expansion becomes asymptotically
exact so that (aside from possible oscillations [2])
 

TS�n� � � �7=3T�0�S �n� � �
5=3T�2�S �n� � �T

�4�
S �n� � . . . ;

EX�n� � � �5=3E�0�X �n� � �E
�2�
X �n� � . . . ; (4)

where T�j�S �n� is the jth order contribution to the gradient
expansion of TS (i.e., T�0�S is the TF kinetic energy, T�2�S is
1=9 the von Weizsäcker term [12], etc.), and similarly for
exchange [13]. The terms displayed in Eq. (4) are those of
the gradient expansion that remain finite for exponentially
localized densities, and also those for which the gradient
expansion becomes asymptotically exact as � ! 1 for
analytic densities (unless the density has nuclear cusps,
when T�4�S must be excluded). The gradient expansions of
Eq. (4) are ‘‘statistical’’ approximations in the sense that
their relative errors vanish as �N ! 1.

Evanescent regions are classically forbidden regions in
which the kinetic energy density �0�r� �

P
i 
�
i �r�

� 	
��r2=2� i�r� of the Kohn-Sham orbitals is negative and
the gradient expansion must fail. To investigate the con-
tributions to TS�n� � and EX�n� � from evanescent and nu-

clear cusp regions, we note that each can be represented by
an exponential density a exp��br�. For this density, the
evanescent region r > re��� is defined loosely by the con-
ditions s > 1 and jq=sj> 1 [found from the second-order
gradient expansion of �0�r�]. Its radius re��� decreases like
ln���=�1=3 as � ! 1. In this region, the considered terms
of the gradient expansion each contribute of order �2=3 to
TS, and of order �1=3 to EX [with the convention that ln���
is of order 1]. All of these contributions are of lower order
than those shown in Eq. (4), and thus asymptotically un-
important. Similarly, the nuclear cusp regions r < rc���
can be defined loosely by the condition jq=sj> 1; their
radii rc��� decrease like ��2=3 as � ! 1. In these regions,
the local contributions dominate. The local terms contrib-
ute of order �4=3 to TS and �2=3 to EX, and are again
asymptotically unimportant [once we truncate the gradient
expansions of Eq. (4)] at second order). Our evanescent
regions coincide with the edge surface of Ref. [14], but the
cusps do not.

The total electron number scales up as � , but in the
evanescent and cusp regions it remains of order �0. The
exact exchange energy contributions from evanescent and
cusp regions we estimate as �1=3 and (at most) �2=3, re-
spectively. All orders of � are unchanged if the bound 1 is
replaced by a smaller positive value, or if the spherical
evanescent region is replaced by a planar one.

To appreciate the significance of asymptotic exactness,
�-scale any density (even a single exponential). Using
modern linear response techniques, construct the KS po-
tential and orbitals for each value of � [15]. As � ! 1,
deduce the local and gradient expansion approximations
for TS and EX exactly, without ever studying the properties
of the uniform or slowly varying electron gas. The system
is becoming increasingly semiclassical, and the orbitals
well described by their WKB approximations. Semi-
classical approximations require only that the potential
be smooth locally, not globally.

The behavior of correlation under this scaling is, how-
ever, recalcitrant. The gradient relative to the screening
length t � jrnj=�2ksn�, where ks�r� �

��������������������
4kF�r�=�

p
, con-

trols gradient corrections to correlation. But t� �r� �
t��1=3r� does not change under our scaling, so that the
density does not become slowly varying for correlation.
Nonetheless, the local approximation still becomes exact,
if the PBE GGA [6] is a reliable guide (as motivated later):

 EC�n� � � AC� ln� � BC� � . . . (5)

where AC � �0:02072 is correctly given by LDA, while
BLDA
C � �0:00452 and BPBE

C � 0:039 36. These numbers
can be found by applying these approximations to the TF
density. Because t never gets small, BC has not only LDA
and GEA (gradient expansion to second order) contribu-
tions, but higher-order contributions too. This expansion is
far more slowly converging than those of TS and EX, and
much less relevant to real systems.
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FIG. 2. Reduced density gradient for noble gas atoms.
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In Table I, we list the exact [16], LDA, and GEA results
for the noble gas atoms using the known second-order
gradient terms [13,17]. LDA gets relatively better and
better as Z grows, and the GEA for exchange does even
better, but the GEA for correlation strongly overcorrects
the LDA, making correlation energies positive [17]. Thus
this simple analysis explains why the gradient expansion
yields good answers for TS and EX, but bad ones for
correlation. These explanations complement those already
existing based on holes and sum rules [18], but add the
crucial ingredient that under this scaling the gradient ex-
pansion becomes asymptotically exact for TS and EX.

But Eq. (4) for either EX or TS is far less accurate at � �
1 than Eq. (1) is for E at Z � 1. Careful inspection of the
origin in Fig. 2 shows that the exact curves approach a
finite s value at the origin, about 0.376, the hydrogenic
value. The large-Z expansion is not the same as scaling to
large � , except in TF theory. The gradients near the nucleus
do not become small on the Fermi wavelength scale, no
matter how large Z is. This region will contribute a term of
order Z2 to the kinetic energy and of order Z to the
exchange energy at all levels, from LDA to exact. LDA
applied to the TF density produces the leading term in EX,
0:2208Z5=3. Gradient corrections are of order Z, but so too
is the cusp correction, i.e., the asymptotic expansion in
large Z inextricably mixes these contributions (unlike in
TS). Table I lists EX for noble gas atoms, calculated at the
self-consistent nonrelativistic OEP level. We fit �Ex �
0:2208Z5=3�=Z as a function of Z�1=3, finding EX�Z� �
�0:2208Z5=3 � �CLDA ��C�Z� . . . .

Extraction of CLDA from LDA energies is difficult,
because of shell-structure oscillations. We estimate 0 *

CLDA * �0:03. However, for any other calculation of EX,
we find �EX � ELDA

X �=Z is smooth, with fit results shown in
Table II. The large underestimate of GEA shows that
gradient corrections from the slowly varying gas account
for only half the entire contribution. Assuming CLDA � 0,
EX�Z� 
 �0:2208Z5=3 � 0:196Z. This yields less than
10% error for He, and less than 2% for Ne.

Popular GGAs such as PBE and B88 [5] have second-
order gradient coefficients that are about twice the correct
coefficient for a slowly varying density, as they must to
reproduce accurate exchange energies of atoms. But with
an incorrect coefficient, they cannot predict accurate sur-

face energies for metals [19]. The origin of the enhanced
gradient coefficient of the GGA for exchange now has a
simple explanation. In order to be asymptotically exact for
large Z, and hence accurate for most finite Z, the functional
accounts for both the slowly varying term and the cusp
correction. No GGA can get both effects right individually.
B88 is closest to being exact for �C, because of the fitting
to noble gas atoms [5].

PBE preserves the nearly correct uniform-gas linear
response of LDA for XC together [6], which produces a
�C also close to exact, and a GGA close to that of a hole
model [18]. A ‘‘buried 1s’’ region has small s, looking to a
GGA like a region of slowly varying density. However, a
meta-GGA that employs ��r� can recognize that this is a
rapidly varying region, and thus get both aforementioned
effects right. The TPSS meta-GGA [20] recovers the gra-
dient expansion to fourth order, while yielding a good
estimate for �C (Table II).

Figure 3 plots the difference in exchange energy den-
sities relative to LDA in the different approximations. PBE
simply mimics GEA, being almost a factor of 2 larger
everywhere. But TPSS produces a much greater contribu-
tion from the region near the nucleus (via Fig. 1 of
Ref. [20]), while reverting to the GEA value at the inner
radii of the other atomic shells, where s is small.

In Fig. 4, we plot the correlation energy in three different
approximations: LDA, PBE, and Moller-Plesset second-
order perturbation theory (MP2) [21]. (TPSS is almost
identical on this scale to PBE.) Also included are dashed
lines that correspond to the high-density limit of Eq. (5)
using LDA and PBE inputs for BC. Real atoms are so far

TABLE I. Noble gas atomic XC energies compared with local
and gradient expansion approximations (Hartree).

EX EC

Atom LDA GEA Exact LDA GEA Exact
He �0:884 �1:007 �1:026 �0:113 0.103 �0:042
Ne �11:03 �11:77 �12:10 �0:746 0.559 �0:390
Ar �27:86 �29:29 �30:17 �1:431 1.09 �0:722
Kr �88:62 �91:65 �93:83 �3:284 2.06 � � �

Xe �170:6 �175:3 �179:1 �5:199 3.15 � � �

Rn �373:0 �380:8 �387:4 �9:026 4.78 � � �

TABLE II. �C � limZ!1�EX � E
LDA
X �=Z (Hartree). The

‘‘gradient’’ contribution arises from the expansion to order r2,
while the remainder is the ‘‘cusp.’’

�C GEA PBE B88 TPSS Exact

Total �0:098 �0:174 �0:202 �0:159 �0:196
Gradient �0:098 �0:174 �0:217 �0:0977 �0:0977
Cusp 0.00 �0:000 �0:015 �0:0617 �0:0979
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from the asymptotic limit for correlation that asymptotic
exactness is much less relevant in this case.

Table III shows the correlation energies of closed-shell
atoms as predicted by PBE, TPSS, and MP2 [21], along
with essentially exact values [16] where known. The agree-
ment among these values is generally good.

Last, we relate this scaling to others. The most standard
is uniform coordinate scaling [23] [(�3n��r�], under which
TS=�

2 and EX=� remain unchanged. More recently, num-
ber scaling, in which n�r� becomes �n�r�, has been pro-
posed [24]. In the large � limit, all gradients in the bulk
become small on both local length scales, making even the
gradient expansion for correlation asymptotically exact.
The present scaling can be regarded as a product of these,
with � � �3 � � . A slowly varying product with bounded
density is n���1=3r�, �! 1.

Our � scaling allows the results of Schwinger’s deriva-
tions to be applied throughout DFT, yielding insight into
the performance of approximate functionals. Even for un-
condensed matter, such functionals should incorporate the

second-order gradient expansions (although GGA total
exchange energies then degrade due to 1s regions).
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FIG. 4. Scaled correlation energies for noble gas atoms
(Hartree). The dashed lines correspond to the high-density limit
of Eq. (5) for LDA (lower) and PBE (upper curve).

TABLE III. Noble gas atomic correlation energies (Hartree).
The fixed-node Diffusion Monte Carlo (DMC) values [22] are
upper bounds.

Atom LDA PBE TPSS MP2 DMC exact

He �0:113 �0:042 �0:043 � � � �0:042 �0:042
Ne �0:743 �0:351 �0:354 �0:388 �0:376 �0:390
Ar �1:424 �0:707 �0:711 �0:709 �0:667 �0:722
Kr �3:269 �1:767 �1:771 �1:890 �1:688 � � �

Xe �5:177 �2:918 �2:920 �3:089 �2:647 � � �

Rn �9:026 �5:325 �5:33 �5:745 � � �
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