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Exact conditions have long been used to guide the construction of density functional approxima-
tions. But hundreds of empirical-based approximations tailored for chemistry are in use, many of
which neglect these conditions in their design. We analyze well-known conditions and revive several
obscure ones. Two crucial distinctions are drawn: that between necessary and sufficient conditions,
and between all electronic densities and the subset of realistic Coulombic ground states. Simple
search algorithms find that many empirical approximations satisfy many exact conditions for real-
istic densities and non-empirical approximations satisfy even more conditions than those enforced
in their construction. The role of exact conditions in developing approximations is revisited.

Modern density functional theory (DFT) calculations
span many branches of the science of matter [1-4]. In the
standard Kohn-Sham approach [5], only the exchange-
correlation (XC) energy need be approximated as a func-
tional of the electronic (spin)-densities. Currently, hun-
dreds of distinct XC approximations are available in stan-
dard DFT codes [6, 7], reflecting the immense difficulty
in finding approximations that are generally accurate.

However, there is a huge divide between the materials
and molecular electronic structure communities, as they
typically use two different classes of density functional
approximations. Most materials calculations use non-
empirical semilocal approximations (generalized gradient
approximations (GGAs) or meta-GGAs), designed using
exact conditions (known analytical properties of the ex-
act functional), as most developers and users in materials
research believe that their enforcement improves perfor-
mance [8]. Such non-empirical functionals rely heavily
on such conditions and eschew fitting to any chemical
bonds. The recent “Strongly Constrained and Appro-
priately Normed” (SCAN) [9] semilocal functional at-
tributes much of its success to the satisfaction of “all
known” (17) exact conditions that such a functional can
satisfy.

Conversely, many empirical approximations tailored
for molecular chemistry applications blatantly ignore ex-
act conditions in their design [10]. Such approxima-
tions can be extremely accurate on molecular bench-
marks [11], often surpassing their more constrained coun-
terparts. Typically, such chemically trained functionals
behave poorly for materials where they are seldom used.

Attaining high-accuracy for both molecules and mate-
rials, e.g., for catalysis applications, is a major challenge
due to these seemingly disjoint design paradigms. We il-
lustrate this difference with the correlation energy of the
blue two-electron density in Fig. 1, calculated with two
GGAs. The first, the Perdew-Burke-Ernzerhof (PBE)
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FIG. 1. An unpolarized two-electron ground-state gedanken
density whose correlation energy is -21 mH in PBE, but +85
mH in LYP. For reference, the He atom density (divided by
7) is plotted.

correlation functional [12] adheres to many exact condi-
tions and automatically satisfies the basic requirement
that the correlation energy is never positive, yielding -21
mH. The second, the Lee-Yang-Parr (LYP) correlation
functional [13], does not explicitly enforce many exact
conditions and yields the nonsensical 485 mH. Yet LYP
has been used successfully in over 100,000 chemical ap-
plications [13].

Why are exact conditions so important for approxi-
mations in materials, and so often ignored in molecular
applications? We resolve this paradox by reassessing the
role of exact conditions in modern DFT approximations.
To do this, we develop several new (and not so new) tools.
We carefully parse the logic of exact conditions, finding



that many enforced conditions are too strong for real
matter. A computational scanning procedure finds vio-
lations, coupled with construction of corresponding rea-
sonable (but not realistic) densities, as in Fig. 1. Half
a dozen exact conditions and hundreds of approximate
functionals are analyzed. Several obscure conditions are
revived and analyzed, while even well-known conditions
yield surprising new twists. Finally, the role of exact
conditions in density functional development is revisited.

Begin with the correlation energy. In practice, approx-
imations (denoted by tilde) have the form:

Ec[n] = /dgrn(r) éc[n](r), (1)

where n(r) is an electronic density. While the develop-
ers define a conventional correlation energy per electron,
€c[n](r), that is often implemented explicitly in DFT
codes, other “gauges” exist yielding the same Eq, [n]. For
example, &.[n](r) and &:[n](r) + V2(n?/3)/n yield iden-
tical F[n] [14, 15]. We focus on semilocal functionals,
which dominate practical calculations and are written

€c[n](r) = éc(rs(r),¢(r), s(r), a(r), q(r)),  (2)

where 7, = (47n/3)~ /3 is the Wigner-Seitz radius, ¢ =
(n, —n,)/n is the (dimensionless) spin polarization, s =
|Vn|/(2(372)1/3n%/3) is the (dimensionless) reduced gra-
dient, a = (7—7VWV) /71> 0 with 7 = Y IVoisl*/2,
VW |vn|2/8n’ qunif — (3/20)(37’1’2)2/3%5/3 [(1+<)5/3+
(1—¢)>/3], and ¢ = V?n/(4(37%)*/3 n>/3) is the reduced
Laplacian. The local spin density approximations (LDA)
depends only on r; and ¢, GGAs add dependence on s,
while meta-GGAs can depend on all variables.

A simple condition is correlation energy non-positivity,

which holds for any reasonable density, which we define
as being positive, integrating to a finite quantity N, and
have finite von Weizsécker kinetic energy (Zy of Ref. [16]
or Eq. 34 of Ref. [17]). This is routinely enforced via

éc[n](r) <0 for all r and any n(r). (4)

Clearly, satisfying this local condition guarantees Eq. (3),
but it is also excessive, i.e., not necessary. Moreover,
starting from any é.[n](r) that satisfies Eq (4), addition
of C'V?(n?/3)/n violates it for sufficiently large C. If
local violations of Eq. (4) do exist, then a counterexample
density that violates the exact condition in Eq. (3) might
be found. If it can be, the exact condition is violated
for that density in any gauge. If no such counterexample
can be found, the possibility that a gauge might be found
that satisfies Eq. (4) remains open.

Returning to the LYP GGA, we found instances where
€LYP(r,, ¢, s) > 0 for s > 1.74, thus allowing the possibil-
ity of a violating gedanken density. Gedanken densities
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FIG. 2. The distribution g(s)/N for various ground-state den-
sities: the gedanken density in Fig. 1, the He and N atoms,
and the N2 molecule. The absolute difference between the No
molecule and N atom distributions is also plotted.

are thought experiment densities that need not be real-
istic [14]. So we construct a gedanken density that has
large s > 1.74 values throughout its interior, violating
the local condition in Eq. (4) (Appendix ). Importantly,
we want such local violations to exist in energetically rel-
evant regions of the density, that is, spatial regions that
substantially contribute to the integral in Eq. 1. The
gedanken density of Fig. 1 is radial, nodeless, finite, con-
tinuous, differentiable to first and second order, and inte-
grates to 2 electrons. It is a reasonable density and is also
non-interacting v-representable, and when evaluated us-
ing the LYP correlation functional yields +85 mH. Thus,
LYP can violate correlation non-positivity.

But does LYP violate correlation non-positivity in the
restricted space of realistic Coulombic densities, i.e, those
ground-state densities of systems with Coulombic attrac-
tions to integer nuclear charges of small or no overall
charge? The gedanken density of Fig. 1 is not Coulom-
bic: for instance, it lacks nuclear cusps as required by
Kato’s theorem [18].

An important property of the gedanken density is that
it has energetically relevant regions with s > 2. The
distribution

o(s) = / rn(e) 6O (s — s(r)) (5)

was introduced in Refs. [19, 20], and g(s) ds is the number
of electrons in the system with reduced density gradient
between s and s+ ds, i.e, it is an analog of the density of
states for energy levels. In Fig. 2, we plot g(s)/N for vari-
ous ground-state densities: the gedanken density in Fig. 1
and calculated densities for the He and N atoms and the



Ns molecule. Hartree-Fock (HF) densities are sufficiently
accurate for our purposes. Unlike the Coulombic densi-
ties, the gedanken density g(s) is centered around s = 2,
as intended. For Coulombic systems [20], large s > 2
values are typically only found in the decaying tails of
the density, and are energetically irrelevant. In molec-
ular and extended systems, these tails (which may not
even be present in periodic systems) are even less ener-
getically relevant than their atomized counterparts [20]:
in Fig. 2 the distribution g(s)/N of Ny is shifted to lower
s than that of the atomized system (N atom) for s > 1.
The electrons in the bond between two (or more) atoms
have smaller values of s which even vanishes at the bond
center [20]. Although a single electron distributed across
an infinitely separated chain of many protons has ener-
getically relevant regions of large s, such a system is too
far from neutral for our set.

Do large s values contribute importantly to energy dif-
ferences, such as molecular binding energies? Valence
electrons change considerably but their differences tend
to be energetically relevant in regions of smaller s val-
ues : the difference |g[N2](s) —2¢[N](s)|, is prominent for
s < 2 (Fig. 2) [20]. In non-covalent bonding, s values
up to & 7 are relevant in binding energy differences for
van der Waals (vdW) complexes [21, 22], but typically a
non-semilocal correlation functional (such as DFT-D [23]
or vdW-DF [24]) provides the bulk of the energetics that
contributes to the binding [21].

Revisiting LYP correlation, we conjecture that no re-
alistic Coulombic density ever yields a positive correla-
tion energy. Such a density would need to have energet-
ically relevant regions of the density with large s > 1.74,
which is seldom observed in these systems. Over count-
less atomic and molecular densities, LYP correlation has
not yielded positive correlation energies [13, 25].

We perform an identical analysis on other represen-
tative and well-known approximations and tabulate the
results in the first row of Table I. For each exact condi-
tion (e.g. Eq. (3)), we check for violations of the cor-
responding local condition (e.g. Eq. (4)) for various
semilocal approximations. To locate violations, we use
a simple extensive grid search over applicable variables,
0<rys <50<(¢<1,0<5<5,0<a<5, where the
upper ranges are reasonably large to encapsulate relevant
regions of realistic Coulombic densities. This brute-force
numerical approach is necessary since analytical verifi-
cation is often impossible with the complicated forms of
modern XC approximations. We utilize the Libxc [7] im-
plementation of XC approximations to evaluate the XC
energy densities in Eq. (2).

For a given local condition and approximation, if we
find no violations in our grid search, then we assume that
the approximation always satisfies the exact condition for
any reasonable density (denoted by a v in Table I). In
other cases (denoted v*), the corresponding local condi-
tion may be satisfied only for a restricted range of vari-

able values. For example, in B3LYP the local condition
in Eq. 4 is satisfied whenever s < 2.13 and we display the
bounds on s that ensure satisfaction. In some cases (de-
noted v**), we do not obtain a simple restricted range
of variable values, but we find that local violations are
exceedingly “rare” (less than 1% of the total number of
configurations considered).

The logic and concepts presented for correlation non-
positivity generalize to other exact conditions on energy
functionals. For instance, the Lieb-Ozford (LO) bound
extension to XC' energies exact condition [26, 27),

Exoln] > C&()j[d3rneinﬂbﬂ(r), (6)

yields the local condition

Fye < C(LO y (7)
where we use Cro = 2.27 in this work (although
tighter bounds have been proven [28, 29]), Fxc,[n](r) =
Exioy[n)(r)/ewif[n](r) is the exchange (correlation) en-
hancement factor with Fyxe = Fx + Fe. and €2if[n](r) =
—(3/47)(37%n)/3 is the exchange energy per particle of
an unpolarized uniform electron gas. Many approxima-
tions enforce the local Eq. (7) to ensure Eq. 6.

Since the combined XC energy is the object of inter-
est, some approximations fail to distinguish exchange and
correlation. In the exact functional, one can extract Eg
using uniform coordinate scaling [30, 31]:

= n] — lim LXC[WY]
Fefn] = Exor] = lim 272, (8)

where n,(r) = 7®n(yr) and v > 0. We apply this
“conventional” partitioning to extract correlation ener-
gies where none have been defined or whose partitioning
is ambiguous. E.g., for global hybrids, Eq. (8) yields
E. of the semilocal form in Eq. (2), e.g., eZ3YP =
0.405¢5YP 4+0.095¢Y WN5 [32]. This partitioning can differ
from the developer’s intentions or rationalizations (Ap-
pendix ). The LO bound applied to global hybrid func-
tionals is discussed in Appendix .

Besides Eq. (8), many other properties of the exact
functional are written in terms of uniform coordinate
scaling (or equivalently, through the adiabatic connec-
tion in DFT [33-35], see Appendix ). We simply list
these “obscure” conditions and their local forms (with
details and derivations in Appendix ). The correlation
uniform scaling inequality [30]

(v = 1)Eclny] = v(y = 1) Ecn] (9)
has a corresponding local condition,

aFC(TS7 C7 S7 a7 q) >
ors -

0. (10)



non-empirical empirical
local condition PBE|AMO05|SCAN| B3LYP |CASE21| SOGGA11l MO06 B97

Ec non-positivity (4) v v vo|vV* s<213 v v V¥ (=0,8<1.56 |V* s <142
Ec scaling inequality (10)| v v v |V* s<215 v v V¥ (=0,s<1.59 |V* s <152
Tc upper bound (13) v v v v v V¥ s <1.36|vV* (=0,5 <156 |/* s<1.62
Uc(A) monotonicity (15) | v v v vVE s<1.82 v X V¥, (=0, < 1.56 |[V* s <141
LO extension to Exc (7) | v v v v v v V¥ 0.04 < 5 < 3.62|V* s <4.46
LO (17) v v v o |V/* s<4.88 v V¥ s <4.98|v* 0.06 < s <3.62|vV* s< 443

TABLE I. For each condition, we assess if the local condition is satisfied (or partially satisfied) for an approximation (with

more given in Supplemental S1).

The kinetic contribution to the correlation energy, Tc, is
non-negative [30, 36]

dEc[n,]

Tcny =~ dy

— Eglny] >0, (11)

and shares the same local condition, Eq. 10. The Tg
upper bound [37, 38] reads

OE:[n]
Tl < (| ) v Bl (2)
with corresponding local condition,
OF, _ Fo(c0) — Fp
< = 13
Ors — Ty ’ (13)

where F(00) = Fu(ry — o0). Correlation energy adia-
batic connection curves, Us(X) = d(A?Ec[nq,,])/dA, sat-
isfy a monotonicity condition [31],

dUs(N)
<0, (14)

with corresponding local condition [31]

0 ( 5 F,
>0.
or, (TS or, ) 20

The LO bound [26], often generalized as Eq. 6, is precisely

(15)

Useln] 2 Cuo [ drneul), (10
where Uxc[n] = Exc[n]—Tc[n] is the potential correlation
energy. The corresponding local condition,
- OF,
Fye + Tsic < CLo,

or, (17)

is more restrictive than the commonly used Eq. (7). Ap-
proximations satisfying Eq. (7) need not satisfy Eq. (17),

such as B3LYP or SOGGA11 in Table I. Results for a
conjectured condition, T[n] < —F¢[n] [30, 36, 39], are
in Appendices and and Supplemental S1.

This work does not provide a comprehensive study of
all known exact conditions in DFT. A unified subset of
several conditions (6) were chosen to illustrate the logic.
Other well-known deficiencies of semilocal approxima-
tions include the self-interaction error [40], the asymp-
totic behavior of exchange and correlation potentials [41],
or the flat-plane energy condition for fractional charges
and spins [42, 43]. We expect our logic can be fruitfully
applied to any exact condition in DFT.

We describe the conditions Eqs. 9 - 17 as obscure be-
cause, while proven several decades ago, none are deliber-
ately and generally enforced in modern approximations,
even those that strive to satisfy many exact conditions.
SCAN was designed to satisfy the correlation uniform
scaling inequality (Eq. (9)), but only in extreme limits,
v — 0,00 [8, 9]. The corresponding local condition in
Eq. (10) s satisfied in SCAN, but adjustments of its pa-
rameters chosen to fit appropriate norms can produce
violations (Appendix ). Norms refer to properties of spe-
cific (but not bonded) reference systems, such as the uni-
form gas, the hydrogen atom, or noble gas dimers [44, 45].
So, by enforcing appropriate norms, SCAN satisfies more
exact conditions than were explicitly included. Similarly,
LDA has long been known to inherit exact conditions
from its uniform gas norm [30, 31, 34, 35]. We find
that many parameterizations of LDA correlation, such as
PW92 [46] and VWN [47], also satisfy these obscure exact
conditions. Non-empirical approximations PBE, AMO05,
and SCAN functionals, which were designed to satisfy a
large set of exact conditions, also satisfy many additional
exact conditions outside of the original set (Table I).
CASE21, a recent machine-learned empirical functional
designed to adhere to many exact conditions [48], also
satisfies these obscure conditions.



In Table I, we find many empirical approximations sat-
isfy local conditions in energetically relevant regions of
realistic Coulombic densities, i.e., for moderate s val-
ues. When assessing exact conditions on coordinate-
scaled HF densities for atoms H-Ar and their cations, we
find that all are satisfied (Appendix ), suggesting that
these approximations will satisfy these conditions in the
space of realistic Coulombic densities (possibly except-
ing the monotonicity condition in SOGGA11). This is
intriguing because most such empirical approximations
were designed without explicit adherence to these exact
conditions. This finding appears to reinforce their im-
portance in approximations: satisfaction of such esoteric
conditions is hardly accidental. Furthermore, empirical
approximations often employ ingredients, such as the di-
mensionless quantities s, (, a, g, which themselves were
chosen to simplify satisfaction of exact conditions. In
consequence, nearly all empirical approximations satisfy
two simple exact conditions on the exchange energy: uni-
form coordinate scaling [30] and spin scaling [49].

Our results suggest a reassessment of the role of ex-
act conditions in modern density functional development.
Is it excessive to enforce strong local conditions to en-
sure the satisfaction of exact conditions? Flexible empir-
ical model approximations also satisfy many exact condi-
tions on the (highly relevant) space of realistic Coulom-
bic densities and achieve high accuracy for molecular
processes. However, when empirical functionals are lo-
cally constrained to satisfy many conditions, their molec-
ular benchmark performance is similar to the suboptimal
performance of their non-empirical counterparts, despite
the advantage of training on molecular data [48, 50, 51],
and the resulting functionals tend to closely mimic non-
empirical counterparts, such as SCAN [50, 51].

So when is the enforcement of local conditions help-
ful? The answer appears to lie in the paucity of high-
accuracy data for solids. Empirical approximations are
mostly developed for molecules, where copious bench-
mark data is now available. Alternatively, non-empirical
functionals that dominate materials calculations include
norms such as the uniform gas limit, which substitute
for high-accuracy data. By reducing to this limit, non-
empirical functionals are guaranteed to yield moderately
accurate results for solids. Moreover, the leading correc-
tions in the asymptotic limit differ qualitatively between
molecules and solids, because all molecules have turn-
ing surfaces at the Kohn-Sham HOMO energy, while few
solids do [52]. This produces conflicting requirements on
the gradient expansion of the approximation, as shown in
the differences between PBE (good for atomic and molec-
ular energies) and PBEsol (good for solid geometries and
vibrations [53]). Such conflicts are resolved in SCAN,
yielding improved results for both. Even in the presence
of high-accuracy data for solids, approximations that fit
their data will worsen their results for molecules.

Even for molecules, non-empirical approximations may

also outperform empirical counterparts, especially for
systems or properties outside their training [8, 54, 55].
For instance, for the artificial molecules in the MB16
benchmark [11, 56] (never used to parameterize empirical
functionals), SCAN tends to outperform empirical ap-
proximations, including hybrids [8], suggesting a greater
ability to extrapolate.

This work resolves a central tension of DFT develop-
ment: Why are exact conditions so important for DFT
in materials, and so often ignored in molecular applica-
tions? In molecules, vast reliable databases implicitly
enforce relevant conditions on realistic densities. But the
dearth of such databases for materials is overcome by
the enforcement of conditions on all possible densities,
ensuring reasonable (if not highly accurate) results for
materials.

Why is this important? First, we have shown that
enforcing conditions locally (to guarantee satisfaction)
is typically excessive. Second, we have found that even
forgotten conditions are often automatically satisfied by
non-empirical functionals, suggesting consistency in their
design. Lastly, this work suggests that imposition of se-
lect exact conditions (and appropriate norms) can substi-
tute for materials reference data and maintain the trans-
ferability of resulting approximations across molecules,
solids, and everything in between, e.g., interfaces and
clusters.
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ings of this study are available at https://github.com/
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Gedanken density details

The Gedanken density used in the main text has the
radial form

C—2cos™? (1—n)sin(2¥—g)> r<r,

n(r) o«
—ar?+brtc

e >
(18)

where the density is a dampened triangle wave starting

from the origin where > 0 controls the smoothness of

the waveform (where n = 0 produces a triangle wave),



T > 0 is the period of the waveform, N, > 0 is an inte-
ger that controls the number of peaks in the waveform,
A > 0 is the amplitude, and C' > 0 is an offset. At
rp = (N, —3/4)T, the density transitions to a Gaussian,
where a, b, and ¢ are determined by ensuring continu-
ity and first and second derivative continuity. The final
gedanken density is then normalized to the desired num-
ber of electrons (2 here). Specific variable values used
for the gedanken density in the main text are provided
in Table . In Fig. 3 we plot this gedanken density and its
corresponding Kohn-Sham (KS) potential,

| —

ve(r) = .

d2
= (r n(r)) 19
T (19)

0.2387324146
0.1679968844
0.05
0.3105085788
5
22.0154308155
51.4622187780
22 x 107

) @mg’ﬂd = Q

TABLE II. Variable values used in the example gedanken den-
sity.
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FIG. 3. The example Gedanken density considered in the
main text and its corresponding KS potential. The potential
is continuous everywhere.

In Table III, the exchange energy for the gedanken
density is given for different exchange approximations,
including B88 exchange [57], which was explicitly de-
signed to the correct large r behavior for Coulombic sys-
tems. Two-electron densities, such as the gedanken den-
sity, follow a tight Lieb-Oxford (LO) bound for exchange,

6

Ex[n] > 1.174 EEPA[n] [14]. For the gedanken density,
1.174 ELPA = —0.925 and we see that PBE and B8S8 ex-
change violate this exact condition. On the other hand,
SCAN explicitly enforces this tight bound condition and
does not violate it.

| exact |[SCAN| LDA | PBE | B88 |
-0.832|-0.898|-0.788 |-1.062-1.136 |

TABLE III. Exchange energies (in atomic units) computed on
the two-electron Gedanken density.

computational details

All atomic calculations were performed using the
PySCF code [58] with the aug-pcseg-4 basis set. The
distribution g(s) was computed using a fermi distribu-
tion smoothening with fictitious temperature 7" = 0.05
(following Ref. [19]). For some systems, increased radial
grids (up to 500) were used in the Gauss-Chebyshev grid
scheme [59] to maintain high fidelity of g(s) at large s val-
ues. Further details can be found in our public code [60].

Local conditions derivations and relations

We derive several of the local conditions used in the
main text which have not been previously reported in
the literature to our knowledge. We start with the Tt
upper bound exact condition [37]

Tcny] < _V<8E5ﬁ[yn,y] "Y—>O> + Ecn,], (20)
where [36]
Tofny) = vaE;W ~ Folns). (21)

For the semilocal approximations considered here,

Bef) =7 [ @ n)a™n)(x) Fore/7.¢,5.0,0),

(22)
This is due to the fact that the dimensionless quantities ¢,
s, o, and ¢ are all scale-invariant, i.e. ([n,|(r) = {[n](yr),
s[ny](r) = s[n](yr), and so on. Thus the y-dependence
in the approximation only shows up in the local quantity,
rs[ny](r) = rs[n](yr) /. For compactness, in the follow-
ing we drop the explicit dependence on scale-invariant
quantities. Substituting in Eq. (22) into Eq. (12) and
enforcing the inequality on the integrands (that is, the
local enforcement the exact condition) yields

VPO heoo) + Butri) 09



Using the chain rule and rearranging we obtain the fol-
lowing local condition

OF, - Fe(00) — Fe
ory — T '

(24)

The limit F.(co) is the strictly correlated electron [61]
limit, which is discussed further in Section .
The LO bound [26] exact condition reads

Usoln] = Cro / drn ™ [n](r), (25)

where Uxc[n] = Exc[n]—T¢[n]. For the semilocal approx-
imations considered here, utilizing Eq. (21) evaluated at
v =1 we have

- . - OF,
Uxc[n] = /dgr n(r)ei™i[n)(r) {FXC + 7 arc] . (26)

Enforcing the LO bound locally yields the following local
condition,

(1 + Tsa)ﬁ’xc <CrLo- (27)
or

S

It is also known that Tg[n] > 0, and Eq. (21) yields
the following condition

OEc[n,]
FYTY — Eq[n,] > 0. (28)

However one can show that this condition is automati-
cally satisfied under the correlation uniform scaling in-
equality exact condition [30],

Eq[ny] = v Ecln]
Ec[n,] < v Ec[n]

(v>1),
(v<1). #9)

Let v > 0 be arbitrary, € > 0, with vy = 1 + ¢/ and
v— =1—¢€/~, such that /7 << 0 (infinitesimal). From
Eq. (9) we have

Eo[nqyy,] = Eo[nqyy ] 2 74 Ecny] — v-Ecln,] . (30)

Simplifying yields
Eq [”ﬂ/—e}

’YEC e

o > Eoln,]. (31)

Applying the definition of a derivative and identifying
Tc[n] we obtain T, non-negativity:

OEc[n,]

TC [n’Y] =7 a,_y

— E¢[ny] > 0. (32)
Enforcing this condition locally yields the following local
condition for approximations

aFC(T‘%CaSaOéaq) >0
Ors -

(33)

which is the same one that corresponds to Eq. (9).

The two inequalities in Eq. (9) are equivalent. For
instance, let 4/ < 1 be arbitrary (but strictly positive)
and take v = 1/9' > 1. Take n — n, in Eq. (9) and
we have Eq[n,.| > vEc[n,]. Substituting for v and
rearranging we have Eg[n./] < v Eg[n] with 4 < 1.

Finally, we note that if the local conditions in Egs. (10)
and (13) are satisfied, then we have

OF
* Org

Since the exchange energy follows the simple scaling re-
lation, Fx[n,] = vEx[n], Fx needs to be scale-invariant
and thus independent of r;. The rightmost side of the
inequality, Fy + Fc(oo), is then the maximum value that
FXC can take (assuming all other variables besides 7, are
fixed). Therefore, if an approximation satisfies Egs. (10)

and (13), then the local condition

Fye < Fxc +r

SFX+FC(OO)' (34)

Fyie < Cro, (35)

which is the standard one that corresponds to the LO
bound on Fxq, will imply Eq. (17). In Table 1 in the
main text, indeed we see that functionals like PBE,
AMO05, PBE, and CASE21, which simultaneously satisfy
Egs. (10), (13), and (7), automatically satisfy the LO
in Eq. (16).

We also remark that an enhancement factor F, that
satisfies the conditions in Egs.(10), (13), and (7) is mono-
tonic and Lipschitz continuous in rg, i.e., the derivative is
bounded, 0 < aﬁc /Ors < K, where K is a finite constant
known as the Lipschitz constant. Such a property of the
enhancement factor may help assuage possible issues dur-
ing numerical integration [62]. However, this property is
only with respect to the r; variable and is clearly not
sufficient to ensure stability.

conventional exchange and correlation partitioning

We define a global hybrid functional approximation as
ENP[n] = Exc[n] + aBx[n] (36)

where @ > 0,Ex[n] is the exact exchange energy, and
FEyc[n] is the remaining semilocal density functional that
can be expressed as

Exc[n] = /d3r n(r)éxc(rs, ¢, s,a,q) . (37)

Note the difference between o and other usual definitions
for the mixing parameter in global hybrids.

In hybrid XC functionals and other available approx-
mations, the partitioning of the exchange and correlation
may be ambiguous or not defined. In these cases, we use
the following conventional partitioning

Exc[n]

Eeln] = Bxcln] — lim =210 (38)



which holds for the exact functional [31]. In global hy-
brid functionals, the exact exchange contributions cancel
out in Eq. (8), since Ex[n,] = vEx[n], and do not con-
tribute to the correlation energy. Here the conventional
partitioning for the correlation energy can be expressed
as a semilocal density functional with the following cor-
relation energy per electron
& [n](r) _ gxc(’l“s, C, s,a, q) _ ’YlLH;O €xc(7's/77 Ca s, Q, Q) ]
(39)
In many cases, the conventional partitioning is consis-
tent with the one defined by the authors of the approx-
imation (if one exists). This agreement occurs when-
ever an approximation satisfies: Fx[n,] = vEx[n] and
lim, o0 Ec[n,]/y — 0. The latter is satisfied when
Ec[n,] goes to a finite constant as v — oo, but also
for approximations of the form

E. [n] = /d37° n(r) e‘énif[n} é((, s,0,q), (40)
where €2[n] is a suitable parameterization for the cor-
relation energy per electron of the uniform gas that
has logarithmic divergence in the high-density limit (e.g.
PW92 [46] or VWN [47]) and G(C, s, a,q) depends only
on dimensionless variables. In general, the conventional
partitioning we use may differ from the developer’s inten-
tions or rationalizations. For instance, approximations
that consider a portion of exact exchange to be part of the
correlation energy will not be consistent with our conven-
tional partitioning, since such energy contributions will
cancel out in Eq. (8).

Throughout, conventional partitioning is utilized
whenever the exchange and correlation partitioning is not
available in the Libxc library [7]. In our analysis, we do
not consider range-separated hybrid functionals, double-
hybrid functionals, or functionals that contain non-local
correlation. Therefore, the correlation energy functional
is always expressed in the standard semilocal form con-
sidered in this work.

Lieb-Oxford bound for hybrid functionals

A global hybrid functional satisfies the XC energy LO
bound when

FExo[n] > Cro EXPA[n] — aFx[n)]. (41)
The exchange energy alone follows a tighter bound
Ex[n] > Cfo BXPAn), (42)

with coefficient Cfy < CLo. Therefore, we can ensure
the LO bound with a semilocal functional satisfying

Exc [n] > (CLo — dCﬁ‘O) E;%DA [n]

> Cro EXPA[n) — aEx[n]. (43)
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Thus, it is sufficient (but not necessary) that Ey.[n]
satisfy a LO-like bound with coefficient Cro — aCfg.
A larger coefficient could result in a violation of the
XC energy LO bound in Eq. (41). To see this, let
A > 0 and let nf, be a density such that Ex[nfy] =
Cro E}(‘DA[n)ﬁo], then (Cro — ELCEO + A)E)I(‘DA [nfo] <
Cro EXPA Y o] — aBx[nfo]. A smaller coefficient would
also ensure Eq. (41), but it would be over-restrictive.
The corresponding local condition is straightforward

Fxe <Cro —aC, . (44)

The corresponding local condition for the LO bound in-
volving Ubyb [n] is found by using the conventional parti-
tioning in Eq. (39) and applying Eq. (21) to yield
- OF,
Fyc + s -
or

<Cro —aCfy.- (45)
S

In practice, CLo and Cf are not known precisely and
need to be approximated with proven (but not opti-
mal) bounds. To give the most benefit of the doubt
when assessing approximations, we use Cf, = 1.174
(the conjectured tight exchange LO coefficient [63]) and
Cro = 2.27 (which is the same value we use to evaluate
non-hybrids).

Local condition for the conjecture: Tc < —FE¢

While unproven, it has been conjectured [30, 36, 39]
that
Tc[n] < —Eq[n]  (conjecture). (46)

One can employ the definition in Eq. (21) and arrive at
the following local condition

oF. _F.
ors — 71

(conjecture). (47)

In Appendix and Supplemental S1 we explore the sat-
isfaction of Eqs. (46) and (47), respectively, in approxi-
mate functionals.

Relation to adiabatic connection

Uniform coordinate scaling is closely related to the adi-
abatic connection in DF'T, which has long been an illu-
minating concept for rationalizing and improving density
functional approximations [64]. The formalism developed
has also revealed many useful exact conditions.

In the adiabatic connection formalism [33-35], we in-
sert a variable coupling constant A > 0 for Coulomb-
interacting electrons with

FAln] = min (U] T + A Ve |¥) (48)

v—n



where 7' is the usual total kinetic energy operator, Veo
is the two-body electron-electron repulsion operator, and
the minimization is over all antisymmetric wavefunctions
that yield the density n. For A = 1 and ground-state
density n(r), we have our real physical system. Taking
A = 0, we have the KS system, and F*=°[n] = T,[n],
where Ts[n] is the kinetic energy of the non-interacting
KS system with ground-state density n(r). In all cases
A > 0, the ground-state density remains fixed to that of
the physical system n(r).

The adiabatic connection is directly coupled to uniform
coordinate scaling by

F/\W = )\QF[nl/,\} . (49)

This relation also extends to any other energy functional

component, e.g., EA[n] = A2E[ny,,]. Therefore, exact

conditions written in terms of uniform coordinate scaling

can be recast in terms of adiabatic connection quantities.
Eq. (9) is rewritten as

E2[n] > XEcn]  ( ;
EXn] < AEc[n) (50)
Using
OEc[nyx] _ 0B2[n) | B[N
D (51)

we recast the exact condition in Eq. (12) as

OB, (OB )|

ox  —
and applying L’Hospital’s rule we obtain

OE2[n) S OE2[n]
oN T 0O\

(53)

‘)\—mo ’

This equation can also be rewritten as a simple statement
in the strictly correlated electron (SCE) [61] limit (A —
00),

(U Mn]| Vee |22 [n]) > (A7 [n]| Ve [T [n]) . (54)
In the SCE limit, the kinetic energy component is sub-

leading and W*~°°[n] minimizes Vi, thus Eq. (54) is
clear.

Analytical derivation: PBE satisfies the correlation
uniform scaling inequality exact condition

The PBE correlation energy functional has the
form [12]

EFBE (] — / @ n(e) (EV2(ry, ) + H(ra (1)) (55)
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where €£W92 is the PW92 [46] parameterized correlation
energy per electron of the uniform gas and H(rs, (,t) is
defined in Ref. [12] along with the dimensionless gradient
t. For simplicity, we set all positive constants in H to
unity, as the final conclusion will not depend on their
specific values. With this,

1+ At?

2
H=In {14—1& [1+At2+A2t4” >0,  (56)

where
A= [exp(—et™V2) —1]7' > 0. (57)

In the following, we show that PBE correlation satisfies
Eq. (10), and thus the correlation uniform scaling in-
equality exact condition in Eq. (9). Since PW92 already
satisfies Eq. (10), proving the following condition,

9 (W)zo, (58)

877"5 6\)1(1’1if(7~3)

is sufficient to ensure that PBE satisfies the exact condi-
tion.
To show this, we start with

0 (Hiro¢0)\ _ Gef) | Gea™H o
87”5 Ggl(nif(’l’s) - 6;1(11if (einif)2
Since emif = —(3/4)(3/2m)*/3r; 1, the second term in

Eq. (59) is positive. Next we evaluate the first term,

oH 1 Ox 0A 0ebWo2

= x ot 60
or. " T3z <94 < awe X 5. (60)
where
1+ At?
2
S P e — . 1
* {1+At2+A2t4] =0 (61)

The intermediate derivatives are derived analytically:

ox —t*A(t2A + 2)
i < 2
0A  (t*A2+t2A+1)2 — 0, (62)
A _ _PW92
04 _ew(ce™) g
OeFVTE ~ fexp(—cT W) 1)
and
8E£W92
>0. 4
ors — 0 (64)
Therefore,
OH
<
or. = 0, (65)

and the first term in Eq. (59) is also positive and thus
the exact condition is satisfied.



Readjusting parameters in the SCAN functional

While the local condition in Eq. (10) is satisfied in the
published SCAN functional, reasonable adjustments of
the parameters designated for the fitting of the “appro-
priate norms” can result in violations of the local condi-
tion. Specifically, we adjust the b, = 0.02858 parameter
in SCAN, which was fit to match the correlation energy
of the Z — oo limit of two-electron ions (one of the five
appropriate norms in SCAN, see the supplementary ma-
terial in Ref. [9]). By evaluating SCAN analytically, we
find that using by, > 0.2 results in violations of Eq. (10).
Under this single parameter modification, the other ex-
act conditions that SCAN satisfies are still satisfied by
construction. Therefore, by virtue of fitting to various
appropriate norms, the SCAN functional satisfies more
exact conditions than were explicitly enforced.

exact conditions on atomic system densities

In this assessment, we first calculate Hartree-Fock
(HF) densities and orbitals for neutral atoms H-Ar and
their cations. The fixed HF densities and orbitals are
then used to evaluate the energies (non-self-consistently)
from different DFT approximations. HF densities are
used because they provide high quality densities and an
equal footing across different approximations. We also
performed separate calculations using self-consistent den-
sities and observed marginal differences. The absolute
errors from the experimental ionization energies are pro-
vided in Fig. 4. In addition to established approxima-
tions, we also test a very simple modified B3LYP (MOD-
B3LYP) which satisfies the correlation exact conditions
discussed for any density,

eMOD-BSLYP (. ¢ 5) = O(s—1.82) B3YP (1 (,5), (66
c ) Cv c ) C? )

where €23MYFP = 0.405¢5YF 4+ 0.095¢Y WN5 [32].The step
function eliminates the local condition violations found
in Table 1 of the main text. As argued in the main text,
energy contributions from such large s values are less rel-
evant in Coulombic systems, and indeed in Fig. 4 we see
that BSLYP and MOD-B3LYP have MAEs that differ
only by 0.1 kcal/mol. Our modified functional is con-
structed for demonstration purposes only.

For each HF density (a total of 35 atomic systems), we
scale the density n., with v € [0.01,2] (50 evenly spaced
values) and evaluate whether an exact condition is satis-
fied. Indeed, in Fig. 5 we see that the exact conditions
tested are all satisfied within our set of functional ap-
proximations and atomic systems. We also test the con-
jecture T, < —F, and find instances of violation for PBE
and M08-HX.
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FIG. 4. Ionization energy errors for atomic systems H-Ar.
All approximations are evaluated using non-self-consistent
ASCF [65] with HF neutral and +1 cationic densities and
orbitals.
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FIG. 5. The number of HF atomic densities tested which
satisfy a given exact condition. A total of 35 atomic systems
are tested: H-Ar and their cations.
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