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Using principles of asymptotic analysis, we derive the exact leading correction to the Thomas-Fermi ki-
netic energy approximation for Kohn-Sham electrons for slabs. This asymptotic expansion approximation
includes crucial quantum oscillations missed by standard semilocal density functionals. Because these
account for the derivative discontinuity, chemical accuracy is achieved at fourth-order. The implications
for both orbital-free electronic structure and exchange-correlation approximations are discussed.

Almost all modern density functional theory (DFT) cal-
culations use the Kohn-Sham (KS) scheme [1], where only
the exchange-correlation (XC) energy is approximated as a
density functional [2]. Accuracy comes at the cost of solving
self-consistently the KS equations for the orbitals. However,
the KS kinetic energy, Ts, is also a density functional [2, 3].
If it could be approximated with sufficient accuracy, with-
out incurring substantial additional computational cost, one
would bypass the KS equations [4], speeding up every DFT
calculation on the planet. The dream of orbital-free DFT
lives on [5].

Thomas-Fermi (TF) theory [6, 7], the original DFT, is
orbital-free, but is too crude for modern electronic struc-
ture calculations. First, Ts is typically far larger than the
XC energy, so a far smaller fractional error is required. Sec-
ond, via the Euler equation that follows from the variational
principle [8], the functional derivative of Ts determines the
density. In TF theory, the density errors dominate the en-
ergy error [9], while in KS calculations, the error in the
self-consistent density is often negligible [10].

Over the decades, many attempts have been made to
construct sufficiently accurate orbital-free approximations
[4, 11–13], often aimed at a limited set of circumstances
[14]. These include the original gradient expansion from
slowly-varying densities [2, 15–17], generalizations of that
expansion [14, 18], functionals designed for weakly interact-
ing subsystems such as water molecules [19], and two-point
functionals for use in materials calculations [20].

But Lieb and Simon showed long ago [21, 22] that, in
a very specific semiclassical limit, TF theory becomes rela-
tively exact. One approach to this Lieb-Simon (LS) limit is
to take ~→ 0, keeping µ, the chemical potential, fixed. Ex-
panding about this limit, potential functionals have been de-
veloped for the total energy of one-dimensional (1D) prob-
lems [23–26]. The dominant term is given by a TF calcu-
lation, but higher orders require subtle corrections to the
gradient expansion, and depend on both the Maslov indices
and whether the system is finite or extended. By resumming
this asymptotic series for a linear half-well, the total energy
of 10 non-interacting fermions was found to 33 digits [23].

Here, we demonstrate the capabilities of a potential func-
tional to yield chemical accuracy [errors below 1 milliHartree
(mH)] for a three-dimensional slab geometry, with a poten-
tial that varies in one direction but is uniform in the other
two. We find excellent results when the leading correction is
added to TF theory, and chemical accuracy when the next
order is included, providing a systematic, parameter-free ap-
proach to orbital-free calculations.
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FIG. 1. Slab kinetic energy versus electron number (each per
unit area) less its TF value (black), the second order gradi-
ent expansion approximation (gray), and its asymptotic ex-
pansion approximation (blue: crude, red: more accurate, see
text). Cusps occur whenever a new band starts to be filled,
i.e., derivative discontinuities.

Our calculation (a) shows how the asymptotic expansion
corrects standard semi-local functionals to account for the
derivative discontinuity [27, 28], (b) connects the rich field
of semiclassical analysis of eigenvalue problems, including
densities of states and the importance of Maslov indices
[29, 30], to the construction of approximate functionals
for non-trivial 3D problems, (c) explicitly connects the fail-
ures of semilocal functionals for stretched bonds (symme-
try breaking) to the divergence of the asymptotic expan-
sion [31], and (d) provides insight for creating functionals
of chemical accuracy [32]. Figure 1 illustrates (a) showing
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the deviation of the kinetic energy from its TF value, for
a Pöschl-Teller (PT) slab with well depth 10. The stan-
dard density functional approximation, the gradient expan-
sion (GEA), yields the smooth gray curve, which averages
over the density of states. Our methodology accounts for
the quantum oscillations characteristic of systems with dis-
crete states, with errors almost too small to be visible here.
It is unlikely any existing orbital-free appproximation can
compete.

Background: Standard approaches to quantum mechan-
ics yield functionals of the potential, such as approximate
ground-state energies, E[v]. Via the celebrated Hohenberg-
Kohn theorem [33], DFT uses functionals of the density,
ρ(r), instead. The semiclassical origin of any local den-
sity approximation begins, at least in one-dimensional cases,
with the WKB approximation for individual eigenvalues [34].
A careful semiclassical expansion for the sum of the low-
est eigenvalues yields expressions for the total energy of
N (same-spin) fermions, occupying the lowest N levels, as
a functional of the potential, v(x) [25]. In 1D, this has
been used to show the limitations of the gradient expansion
[24], the starting point of many modern density functional
approximations [35]. Moreover, asymptotic analysis shows
that incredible accuracy is possible when many orders of the
expansion are included [23].

However, almost all such previous work has been in 1D.
While providing an excellent proof-of-principle, such 1D for-
mulas cannot be directly applied to realistic electronic struc-
ture calculations. Here, we apply this technology to a three-
dimensional problem, namely a slab with a potential profile
v(x), but uniform in the other two directions. While some-
what artificial, this geometry allows comparison with any
existing orbital-free density functional [18]. By choosing a
v(x) that is the sum of two potential wells (a dimer), sep-
arated by a distance R, we mimic certain aspects of more
realistic calculations, such as binding energies as a function
of bond lengths in diatomics [36].

Theory: Consider a 1D well v(x), but uniform in the other
two directions (which have length L → ∞ and periodic
boundary conditions). The eigenstates are two-dimensional
free electron bands, with energies εj(K) = εj+K

2/2, where
εj is the j-th eigenvalue in the 1D well, and K is the parallel
wavevector (see Fig. S1 in the supplementary information).
Summing over parallel directions in the continuum limit,
assuming double occupation, yields

N(µ) =

∞∑
j=0

(µ− εj)+
π

, E(µ) =

∞∑
j=0

(µ2 − ε2j )+
2π

, (1)

where N and E are the particle number and energy per unit
area, respectively, and x+ = x for x > 0, and 0 otherwise.
The density of states, dN/dµ, consists of constants (2D
uniform gas), with steps up at each εj (Fig. S4). We use
atomic units (~ = me = 1), so energies are in Hartrees
and distances are in Bohr radii. We populate our slabs with
non-interacting KS electrons.

Semiclassical expansion of the eigenvalues yields [37]

s(0)(εj) + ∆s(2)(εj) + ∆s(4)(εj) + · · · = j +
1

2
, (2)

where j = 0, 1, · · · , labels the levels and 1/2 is the Maslov
index with two turning points. Here, s(0)(ε) is the classi-
cal action per unit of phase space,

∫
dx p(ε, x)/π, where

p(ε, x) =
√

2[ε− v(x)] is the momentum, and all x inte-
grals are understood to run only between classical turning
points. The first term is from WKB, while higher orders in-
volve higher derivatives of the potential. Using just the first
term, March and Plaskett [38] showed that, in the semi-
classical limit, non-interacting TF theory could be derived
(as a potential or a density functional) by summing the low-
est N energy levels, both for 1D and radial 3D problems.
Recently [23–26, 39], this procedure was generalized using
the Euler-Maclaurin summation formula, to yield the cor-
responding series for the sum of the lowest N eigenvalues,
order by order, but only for 1D.

We expand N(µ) and E(µ) order by order for a slab with
a symmetric single-well potential:

N(µ) = NTF(µ) + ∆N (2s)(µ) + ∆N (2o)(µ),

E(µ) = ETF(µ) + ∆E(2s)(µ) + ∆E(2o)(µ),
(3)

where s denotes a smooth correction, o an oscillating one.
Inversion, order-by-order, of N(µ) yields

µ(N) = µTF(N) + ∆µ(2s)(N) + ∆µ(2o)(N), (4)

which can be inserted, order-by-order, into E(µ) to gener-
ate the expansion of E(N), and likewise for T (N). Asymp-
totic expansion approximation (AEA) denotes application of
these expressions to a finite system. If the oscillatory terms
are neglected, AEA reduces to GEA. Such terms are in-
deed zero for a slowly-varying electron gas, where µ > v(x)
everywhere and there are no classical turning points. But
they occur and are important for all atoms and molecules
and solids with µ below the KS potential.

Using the Euler-Maclaurin formula to approximate sums,
yields the familiar TF theory to lowest order:

NTF =

∫
dx

3π2
p3F, E

TF =

∫
dx

3π2

[
3

10
p2F + v(x)

]
p3F,

(5)
where pF(x) = p(µ, x). The first term in the energy
is the kinetic contribution. The familiar results of (non-
interacting) TF DFT in 3D for spin-unpolarized systems
are recovered using ρ(x) = δE/δv(x) for fixed N , yielding
ρTF(x) = pF(x)3/(3π2), and isolating TTF[ρ]. Solution of
the Euler equation then yields identical results to those of
the potential functional.

A principal achievement of this work is the derivation
of the next terms in the semiclassical expansion. Earlier
summation techniques [23–25] become considerably more
involved, due to the extra integration over continuum states
in the perpendicular directions. The smooth corrections are

∆N (2s) = − 1

3π

dI

dµ
, ∆E(2s) = µ∆N (2s) − 2∆T (2s),

(6)
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Errors (mH)
Potential Functionals Density Functionals

M D N T/N TF GEA2 AEA2’ AEA2 AEA4’ TF GEA2 MGE2 GEA4
1 12.685 1.293 3.059 −87 −126 −29 −2.74 0.0889 −156 −41 −8 −2
2 36.000 6.525 8.728 −85 −125 −14 −0.92 0.0223 −159 −35 1 −6
3 70.971 18.318 17.233 −85 −125 −9 −0.46 0.0087 −162 −31 7 −7
4 117.599 39.293 28.573 −84 −125 −7 −0.28 0.0042 −164 −28 11 −6
5 175.883 72.075 42.748 −84 −125 −6 −0.18 0.0024 −165 −26 14 −6
6 245.824 119.288 59.757 −84 −125 −5 −0.13 0.0015 −166 −25 16 −6
7 327.422 183.555 79.602 −84 −125 −4 −0.10 0.0010 −167 −24 18 −6
8 420.677 267.500 102.281 −84 −125 −3 −0.08 0.0007 −168 −23 19 −6
9 525.589 373.746 127.795 −84 −125 −3 −0.06 0.0005 −168 −22 21 −5
10 642.157 504.918 156.145 −84 −125 −3 −0.05 0.0004 −169 −21 22 −5

TABLE I. Kinetic energy per particle for Pöschl-Teller slabs with D = 2εM and µ = D/2. Here G(A)EAp is the p-th
order gradient (asymptotic) expansion approximation, while MGE2 is a generalized gradient approximation (GGA) [18]. The
rightmost columns are density functionals evaluated on the exact density.

where ∆T (2s) = −I/(6π) and I =
∫
dx v′′(x)pF(x)/(8π).

The oscillating corrections are

∆N (2o) =
q

2τ
, ∆E(2o) =

µq

2τ
, ∆T (2o) =

πs(0)q

4τ2
, (7)

where τ = πs(0)′(µ) =
∫
dx/pF(x) is the classical time

to cross the well at energy µ, while q = 1/12 − 〈s〉2 os-
cillates between energy levels, i.e., contains the quantum
oscillations, and is entirely missed by the gradient expan-
sion. Here, 〈x〉 = x − bx + 1/2c so q oscillates between
1/12 and -1/6. These expressions are quite general, and
apply to any v(x) with two turning points. These ana-
lytic results can be favorably contrasted with the numerical
fitting of Ref. [40] for the leading corrections to LDA ex-
change. We define two AE approximations: AEA2’ uses

s(0) in q, [q = 1/12 −
〈
s(0)
〉2

], while AEA2 uses s(2) (see
appendix C in the supplemental information). Both capture
the leading asymptotic corrections to TF, but the latter is
more accurate away from the limit. As we illustrate below,
these are the exact asymptotic corrections to TF theory for
such problems. We believe this is the first time such a term
has been analytically derived for a functional in 3D.

Pöschl-Teller slabs: Our next step is to apply these for-
mulas to a specific problem. Our prototypical well is the
Pöschl–Teller well, with v(x) = D tanh2x. Such potentials
have been used in semiconductor physics [41, 42], and are
chosen here for ease of computation. The TF PT particle
number and total energy are

NTF

√
2D3

=
c2(3− 2c)

3π
,

ETF

√
2D5

=
c3

3π

(
4− 9c

2
+

6c2

5

)
,

(8)

where c = 1−
√

1− µ/D, and TTF = 3(µNTF−ETF)/2.
The second order contributions are

∆N (2) =
√

2D[c (4− 3c)− 24 〈s〉2 (1− c)]/(48π),

∆E(2) = µ[∆N (2) +
√

2D(4− 6c+ 3c2)/(96π)],

∆T (2) = −
√

2D3[c2(4− 3c) + 96 〈s〉2 (1− c)2]c/(192π),

(9)

where ∆N (2) = ∆N (2s) + ∆N (2o). Here s(0) =
√

2Dc and
∆s(2) = 1/(8

√
2D).

Numerical results: We insert exact eigenvalues and eigen-
functions for the PT slab [43], and evaluate energies and
particle numbers. We approach the LS limit by deepening
the well while keeping µ/D fixed (at 1/2), which is a slightly
different approach to taking ~→ 0 and scaling the particle
number [44], and explains why the normalization is almost
(but not quite) fixed in the scaled densities of Fig. S6. We
set D = 2εM , so µ is just below the appearance of a new
level. Table I reports many approximations to the kinetic
energy for this sequence of ever deeper wells. Here T/N is
the exact kinetic energy per particle in Hartrees, but errors
are in milliHartrees. The next set of columns are errors of
approximate potential functionals calculated to that order
for the exact particle number N , i.e., finding the approxi-
mate µ that yields the correct N . The first column is the
error in the TF prediction, which starts out of order 3%, and
shrinks to less than 0.1%, consistent with the LS theorem
[21, 22]. TF is particularly good for our slab, due to the
smoothness of the density in the x-direction and uniformity
in the other two (see Fig. S6). The (2nd-order) gradient
expansion (GEA2) worsens the result, but AEA2 has much
smaller errors, especially for larger D. In fact, errors are
less than a mH for all but the shallowest well. The 4-th or-
der AEA has errors below 0.1 mH for all wells, reaching µH
accuracy for the deepest ones. This was calculated numer-
ically, as described in appendix C. This illustrates how just
a few terms in the asymptotic expansion can yield chemical
accuracy for non-interacting kinetic energies.

The right-hand set of columns are density functionals
evaluated on the exact density. Unusually, TF does bet-
ter self-consistently than on the exact density [10, 45], but
GEA2 is improved. The MGE2 (gradient expansion with co-
efficient modified to recover asymptotics of atoms) is better
for small wells, but comparable in the asymptotic limit. The
fourth-order GEA is better, but not nearly as good as AEA2.

This table only tests one value of µ/D, but similar trends
hold for any value. In Fig. 2, we plot errors for a shallow PT
slab, D = 3, as a function of N , far from the LS limit. Our
2nd order approximation is typically better than GEA2 and
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Errors (mH)
IP µ

M IP µ TF AEA2 TF AEA2
1 5.557 6.342 −63 −3 −242 0.010
2 17.607 18.000 −172 −131 −239 0.013
3 35.224 35.486 −204 −166 −238 0.009
4 58.603 58.799 −217 −180 −237 0.006
5 87.784 87.941 −224 −187 −237 0.004
6 122.781 122.912 −227 −191 −237 0.003
7 163.599 163.711 −230 −194 −237 0.003
8 210.240 210.339 −231 −196 −237 0.002
9 262.707 262.794 −232 −197 −237 0.002
10 321.000 321.079 −233 −198 −237 0.001

TABLE II. The ionization potential (double the energy
needed to lower N by 1/2) and the chemical potential for
the slabs of Table I. Table S1 shows more approximations to
these quantities.
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FIG. 2. Kinetic energy errors for a shallow PT slab (D = 3)
for variousN . Legend: TF (black), GEA2 (gray), MGE2 (ma-
genta), AEA2’ (orange), AEA2 (red), AEA4’ (blue). Dashed
lines denote density functionals acting on the exact density.

even MGE2 in this range, and all are beaten by inclusion of
the next order. Both this figure and Fig. 1 show that AEA2
includes cusps in the kinetic energy as a function of N , the
infamous derivative discontinuity that is the source of many
errors in modern DFT calculations [27, 28]. The resem-
blance with Fig. 9 of Ref. [46] (non-interacting electrons
in a Coulomb potential) is striking. But that work was for
a specific potential, whereas our expressions are potential
functionals.

Energy differences: While it is important to demonstrate
the validity of our expressions on total energies, essentially
all useful DFT calculations are of energy differences, such
as ionization potentials and binding energies of molecules
(infinitesimal differences determine bond lengths and lat-
tice parameters). The asymptotic behavior of ionization
potentials of neutral atoms was studied in Ref. [47], where
Dirac exchange (i.e., its local density approximation) in a KS
calculation was found to match the exact result (Hartree-
Fock), even capturing variations across a row of the (very
extended) non-relativistic periodic table. Moreover, the av-

erage over such a row matched that of extended interacting
TF theory. We know of no results finding corrections to the
LS limit for binding energies.

In Table II we calculate electron removal energies in two
distinct ways. To simulate an ionization potential (IP) of
a molecule, we remove 0.5 electrons per unit area, since
removal of a single electron is just given by µ (the true IP
of a metal). In the case closest to the limit (M = 10) this
removes just 0.1% of the particle number. The left-hand er-
rors are those found from total energy differences, in which
AEA2 is surprisingly poor. This is because the total energy
itself is a smooth function of N (see Figs. S9 and S10)
and AEA2 for E(N) has no oscillations (the cusps in Fig. 1
are in the kinetic energy, which does). On the other hand,
µAEA2(N) does contain quantum oscillations, as shown in
Fig. S11. The right-hand side of the table shows much
better results from µ in AEA2. This illustrates the sub-
tleties of taking derivatives of the oscillating terms, which
are typically one order larger than those of the correspond-
ing smooth terms. The origin of this phenomena can be
seen by considering the function Cx for x >> 1. Clearly
Cx >> C 〈x〉, but their derivatives are of comparable mag-
nitude.

Our last test is the most stringent. We consider the sum
of two identical PT slabs (the PT dimer) as a function of
their separation, R, as a mimic of the calculation of the
binding energy of a molecule. At R = 0, this is a single PT
slab of depth 2D, where D is the depth of each individual
PT slab. Up to Rc = 2 asech

√
2/3 = 1.31696, there is a

single minimum, but beyond Rc there is a double well (see
Fig. S8). We perform our calculation only for R up to Rc,
as the nature of the asymptotic expansion changes in the
double well regime. We keep N fixed throughout. Table
III shows the result. For R < Rc/2, our results for en-
ergy differences are similar to those for total energies, with
AEA4’ yielding chemical accuracy. However, as R → Rc,
the AEA4’ error grows vastly. This is because there are
turning points in the complex plane yielding sub-dominant
contributions. Usually these are tiny, but they become com-
parable to (and overwhelm) those of the real turning points,
eventually switching the asymptotic series to that of two
isolated PT slabs. This is analogous to the Coulson-Fischer
point as bonds are stretched for XC [48]. Here, we can
clearly identify this difficulty with the asymptotic nature of
the expansion. In fact, optimal truncation [39] dictates re-
placing AEA4’ with AEA2 at about R = 0.8Rc, thereby
avoiding the divergence. The failure in AEA4’ is due to the
failure of WKB which we show in Table S6, as our numer-
ical evaluation of AEA4’ uses the semiclassical eigenvalues
(see appendix C). Moreover the failure in WKB affects the
AEA4’ energy through the AEA4’ chemical potential. When
evaluated on the exact µ, AEA4’ yields chemical accuracy
(almost) everywhere.

Conclusions: The results shown here bring the proof-of-
principle from earlier 1D studies a significant step closer to
algorithms that might be employed for realistic orbital-free
electronic structure calculations. We have compared the
leading terms in the semiclassical expansion with modern
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Errors (mH)
Potential Functionals Exact Density or µ

R/Rc T − 2TA TF GEA2 AEA2’ AEA2 AEA4’ TF GEA2 MGE2 GEA4 AEA4’(µ)
0 0.792 27 29 32 6.1 −0.04 −23.8 −10.8 −7.1 −12 −0.23

0.1 0.783 29 31 33 6.9 −0.04 −23.0 −10.8 −7.2 −12 −0.24
0.2 0.759 32 36 33 7.1 −0.03 −20.5 −10.2 −7.3 −12 −0.24
0.25 0.742 34 39 32 7.1 −0.02 −18.8 −9.9 −7.3 −12 −0.25
0.3 0.722 35 42 32 7.1 0.01 −16.7 −9.4 −7.2 −12 −0.25
0.4 0.672 39 49 31 6.8 0.12 −11.8 −8.1 −7.1 −12 −0.25
0.5 0.613 42 56 29 6.0 0.51 −6.0 −6.4 −6.6 −11 −0.22
0.6 0.546 43 61 27 5.5 1.95 0.3 −4.5 −5.9 −9 −0.08
0.7 0.476 43 65 25 4.6 7.82 6.5 −2.4 −5.0 −8 0.27
0.75 0.441 42 65 24 4.1 16.49 9.5 −1.3 −4.5 −7 0.57
0.8 0.406 40 65 22 3.4 37.23 12.3 −0.3 −3.9 −6 0.95
0.9 0.337 36 63 20 2.7 315.82 17.3 1.6 −3.0 −4 2.00
1 0.271 30 60 19 2.3 −37.33 21.3 3.1 −2.2 −3 −0.69

TABLE III. The kinetic binding energies, T − 2TA, for a series of PT dimers made from 2, D = 3, PT slabs. T is the exact
kinetic energy and TA is the kinetic energy of an isolated D = 3 PT slab. The occupation in each well is fixed at N = 3/π.
AEA4’(µ) is the fourth order AEA evaluated on the exact chemical potential. All other approximations are defined as in
Table I. We increase the separation between the PT centers to model bond breaking. The depth of each dimer is given by
D = 6 sech2(R/2).

orbital-free density functionals, and shown how they achieve
much greater accuracy. Our potential functionals capture
the derivative discontinuities to which many of the failures
of modern density functionals are attributed. Moreover, we
have shown how inclusion of these step-like features gener-
ates quantum oscillations which reduce errors by orders of
magnitude over smooth approximations such as GGAs.

Does our potential functional work only for slabs? In
fact, it could be applied to any geometry at all, by simply
designating the direction of the gradient of the potential
as the local x-direction, and calculating a contribution to
the energy density at that point. Choices would need to be
made about effective Maslov indices, etc., so some exper-
imentation would be required. Such an application almost
certainly would not yield the exact semiclassical expansion
for an arbitrary geometry, but it might generate an excel-
lent approximation to it. After all, it is guaranteed to be
asymptotically exact for slabs. A simple test of this concept
would be spherical systems, i.e., atoms and ions, where the
asymptotic behavior of both TS and the XC energy has been
well studied [32, 40, 46, 48–50].

Is it a problem that our functional is a potential func-
tional, and not a density functional? In principle, it is not,
as the ground-state density can be extracted from a to-
tal energy approximation by taking the functional derivative

with respect to the potential at fixed N . Then the Lieb
construction can be applied to create a density functional
from a potential functional [51, 52]. For a local density
approximation to Ts, it makes no difference whether you
choose to write it as a potential or a density functional, as
the resulting Euler equations are identical for either choice.
But for the GEA and the corrections discussed here, it does,
and we have no a priori way to know which form might be
more accurate (in general, densities are smoother than po-
tentials, and these ~ expansions are asymptotic, which may
make density functionals more accurate).

Could these techniques be applied to the XC energy? Yes,
but there is an important difficulty. Consider exchange. Our
most accurate results are currently obtained by fitting highly
accurate atomic data for atoms up to Z = 100, because we
do not have the analytic results given here [40]. The tech-
nology for generating asymptotic expansions for sums must
be generalized to do the double sum in the exchange energy,
but one also needs the semiclassical expansion for the KS
density matrix with real turning points [53]. Reference [23]
gives us a glimpse of the nirvana that might be achieved if
we could overcome that one difficulty.

We thank the NSF (CHE-2154371) for funding. A longer
paper including details of the derivations, exact results for
PT slabs, and limiting cases, is in preparation.
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Appendix A: Bands and density of states for PT
slabs

This section contains plots of the bands and density of
states (DOS) for a (single) Pöschl-Teller (PT) slab. It re-
lates the qualitative behavior of the kinetic energy to the
behavior of the DOS within various AE approximations.

Figure S1 shows the simple shape of the PT slab bands,
which are free-electron like in the two directions perpendic-
ular to v(x) and begin at each of the eigenvalues of the 1D
well. The system is a band metal.

Figure S2 shows the number staircase (integrated DOS)
for a given PT slab. The function is rather smooth, making
it difficult to see differences between approximations. How-
ever, there are kinks in the exact curve whenever a new band
begins to be occupied. Both the TF and GEA2 curves have
no such kinks. Although TF is often considered to give ’the’
smooth curve, there is a small but finite correction from the
second order GEA.

Figure S3 plots the errors (defined as approximate minus
exact) in the number staircase of the various approxima-
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FIG. S1. The eigenvalues of the, D = 6, PT slab as a function
of the parallel wave vector K.
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FIG. S2. The, D = 6, PT slab occupation (black), and its
TF (blue), GEA2 (gray), AEA2’ (orange), and AEA2 (red)
approximations.
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FIG. S3. The errors in Fig. S2.

tions. The TF and GEA2 error curves have kinks because
they are smooth, but the exact curve is not. The orange
curve is AEA2’, which only accounts for the leading be-
havior of the phase, while the red curve is AEA2, which
includes the next contribution to the phase. Their differ-
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ence becomes negligible for sufficiently large µ (both are
asymptotically correct), but AEA2 clearly has smaller errors
for small µ.
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FIG. S4. The, D = 6, PT slab density of states dN/dµ
(black), and its TF (blue), GEA2 (gray), AEA2’ (orange),
and AEA2 (red) approximations.
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FIG. S5. A zoomed in view of Fig. S4.

Figure S4 shows the density of states of a particular PT
slab. This is just the derivative of the number staircase given
in Eq. (1) of the main text and shown in Fig. S2. Both TF
and GEA2 yield smooth approximations to it, and miss the
discrete steps (the origin of the infamous DFT derivative
discontinuity [54]). Unlike how it is treated in many semi-
classical works [29], the smooth curve is not synonymous
with the TF contribution, as GEA2 makes a small but finite
correction. The asymptotic expansion approximation con-
tains approximate steps, with approximations to the plateau
in between. The exact DOS jumps discontinuously when
µ = εj where the εj are the exact 1D eigenvalues. Using
the definition of the saw-tooth function 〈x〉 = x−bx+1/2c
we can show that the AEA2’ approximation jumps when

s(0)(µ) = j +
1

2
, j = 0, 1, 2, · · · . (A1)

This is just the lowest order WKB quantization rule for a

single 1D well [55]. This means that AEA2’ jumps when

µ = ε
(0)
j , the jth WKB eigenvalue. Similar analysis shows

that AEA2 jumps when

s(2)(µ) = j +
1

2
, j = 0, 1, 2, · · · , (A2)

which is just the second order WKB quantization rule from
Eq. (2) of the main text. Thus AEA2 jumps when µ =

ε
(2)
j , the second order WKB eigenvalue. AEA2 is much

more accurate, as Fig. S5 shows, because ε
(2)
j is a better

approximation to εj than ε
(0)
j . The inaccuracies in both

second order AEAs vanish as µ becomes large. Neither
curve is quite flat, but AEA2 is flatter than AEA2’.

Appendix B: Densities and potentials

This section contains PT slab densities and PT dimer
potentials. Figure S6 shows exact densities, from Table I of

-1.0 -0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

x

ρ
/μ
3/
2

FIG. S6. Densities for M = 1 (orange), 2 (blue), 4 (red), and
their TF limiting value (black). The areas under the curves
are TF (0.0879), M = 1 (0.0809), M = 2 (0.0854), M = 4
(0.0871).

the main text, and their TF approximation–we scaled the
densities so that the TF density is the same for all values
of M . As M increases we approach the semiclassical limit
and these densities weakly approach their TF counterpart.
Because the chemical potential (relative to well-depth) is
held fixed but the particle number is not (unlike in Fig. 2 of
Ref. [44]), the normalization changes, but approaches that
of TF in the limit.

Figure S7 simply shows the differences from the TF curve
in Fig. S6, making the weak approach to zero evident. Here,
weak means that the integral over any well-behaved function
times the density approaches its TF counterpart [56].

Figure S8 shows the various potentials of the PT dimer
slabs as a function of their separation, given in units of the
critical separation at which the second derivative of the mid-
point potential vanishes. Beyond this critical value, there
are two wells, and the form of the semiclassical asymptotic
expansion presented in this work fails.
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FIG. S7. The deviation of the exact scaled densities in Fig.
S6 from the scaled TF density. The exact chemical potential
is µ and µTF is its TF approximation.
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FIG. S8. Several PT dimer potentials made from 2, D = 3,
PT slabs at various separations: R/Rc = 0, 0.5, 1, 3 (black,

blue, magenta, red), Rc = 2 asech
√

2/3 = 1.31696.

Appendix C: Expansion of the 1D action and the
derivation and numerical calculation of AEA

approximations

The number staircase for the 1D potential v(x) is

n(µ) =

∞∑
j=0

Θ(µ− εj), (C1)

where Θ(x) is the Heaviside step function. It counts the
number of occupied levels in a 1D well for a given µ. It can
also be written as [24]

n(µ) = s(µ)− 〈s(µ)〉 . (C2)

This form is more useful for deriving semiclassical approxi-
mations to n(µ) order by order. To derive such approxima-
tions we need to expand s(µ). To fourth order the expansion

of the action is [37]

s(0)(µ) =

∫
dx

pF(x)

π
, ∆s(2)(µ) = −I

′′(µ)

3
,

∆s(4)(µ) =
J ′′′(µ)

5760
,

(C3)

where I is in the main text and

J =

∫
dx

7v′′(x)2 − 5v(4)(x)pF(x)2

π pF(x)
, (C4)

where again all integration is between the two classical turn-
ing points and v(n)(x) is the n-th derivative of v(x).

We define two M -th order 1D number staircase expan-
sions

n(M
′)(µ) = s(M)(µ)−

〈
s(M−2)(µ)

〉
,

n(M)(µ) = s(M)(µ)−
〈
s(M)(µ)

〉
,

(C5)

and n(0
′)(µ) = s(0)(µ).

The slab particle number is related to the 1D number
staircase via

N(µ) =

∫ µ

0

dε
n(ε)

π
. (C6)

Plugging in n(2) (n(2
′)) and collecting the second order

terms yields the AEA2(2’) approximation to N .

In this paper we calculate NAEA4′(µ), the AEA4’ approx-

imation to N(µ), numerically. We start by plugging n(4
′)

into Eq.(C6) to derive

πNAEA4′ =

∫ µ

0

dε∆s(4)(ε) +

∫ µ

0

dε n(2)(ε). (C7)

The integral over n(2) is easy to evaluate numerically be-
cause n(2)(ε) always equals an integer. To evaluate the
integral over n(2)(ε) we need the ε values where n(2)(ε)
jumps discontinuously between integer values. From the
definition of the saw-tooth function 〈x〉 in the main text
and Eq. (C5), we find that it jumps when

s(2)(εj) = j +
1

2
, j = 0, 1, 2, · · · . (C8)

This is just the second order eigenvalue expansion from Eq.
(2) of the main text. More commonly this is called the
second order WKB series quantization rule [37]. Inverting

this equation numerically yields ε
(2)
j , the second order WKB

series approximation to εj . The other integral in Eq. (C7)
is ∫ µ

0

dε∆s(4)(ε) =
J ′′(µ)− J ′′(0)

5760
. (C9)

To evaluate J ′′(0) we carefully take the limit of J ′′(µ) as
µ→ 0 to derive

J ′′(0) =
821v(4)(0)2 − 344v′′(0)v(6)(0)

384v′′(0)5/2
. (C10)
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We calculate µAEA4′(N) by inverting NAEA4′(µ) numeri-
cally. The expression above diverges as v′′(0) → 0. This
would happen for the pure quartic oscillator, v(x) = x4/2.
If it diverges we just set J ′′(0) to 0.

The exact slab energy is completely specified by the 1D
number staircase via Eq. (C6) and

E(µ) = µN(µ)−
∫ µ

0

dεN(ε). (C11)

Plugging in n(2) (n(2
′)) and collecting second order terms

yields EAEA2(2′)(µ). Plugging in n(4
′) yields

EAEA4′(µ) = EAEA2(µ) +
µJ ′′(µ)− J ′(µ) + J ′(0)

5760π
,

(C12)
where

EAEA2(µ) = µNAEA2(µ)−
∫ µ

0

dεNAEA2(ε), (C13)

where

NAEA2(µ) =

∫ µ

0

dε
n(2)(ε)

π
. (C14)

To compute EAEA2(µ) numerically we only need the second
order WKB series eigenvalues. In the limit µ→ 0 we derive

J ′(0) =
9v(4)(0)

8
√
v′′(0)

. (C15)

If v′′(0) = 0 we just set J ′(0) to 0. We set the particle num-

ber by plugging µAEA4′(N) into EAEA4′(µ): EAEA4′(N) =

EAEA4′ [µAEA4′(N)].
We approximated the AEA4’ kinetic energy in Table I,

of the main text, by subtracting away the AEA4’ potential
energy from the AEA4’ total energy. The slab potential
energy is related to the 1D potential energy via

V (µ) =

∫ µ

0

dε
V1D(ε)

π
. (C16)

To evaluate V AEA4′(µ) numerically we plugged

V AEA4′

1D (µ) = V TF[n(4
′)(µ)] + ∆V (2)[n(2

′)(µ)]+

∆V (4)[n(0
′)(µ)],

(C17)

into the integral above. V TF(n), ∆V (2)(n), and ∆V (4)(n)
are the lowest, second, and fourth order terms in the LS
expansion of the 1D potential energy as a function of the
exact 1D particle number, n. For the PT slab these terms
are

V TF(n) =

√
D

2

n2

2
, ∆V (2)(n) = − n2

32
√

2D
,

∆V (4)(n) =
3n2

1024
√

2D3
,

(C18)

Everywhere except Table I we approximated the AEA4’ ki-
netic energy by subtracting the exact potential energy from
the AEA4’ total energy.

Appendix D: Differences between electron removal
energies and chemical potentials

This section is devoted to showing how oscillating con-
tributions can give rise to wildly differing accuracies of es-
timates for electron removal energies, depending on if the
total energy curve or the chemical potential is used.
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FIG. S9. The exact energy (black) and its AEA2 (red)
and AEA4’ (blue) approximations (with the TF energy sub-
tracted), for the M = 5 PT slab in Table I of the main text.

Figure S9 shows the exact and several approximate energy
curves, each with the TF curve subtracted, as a function
of N . The black curve (exact) is oscillating, as is the blue
(AEA4’) approximation. But the red curve (AEA2) contains
no oscillations, as the oscillations cancel out of the total
energy curve to 2nd order [which means that EAEA2(µ) =

EAEA2′(µ)].
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FIG. S10. A zoomed in view of Fig. S9. The gray line marks
the occupation we examined in Table I of the main text.

Figure S10 simply zooms in on the energy curve in the
region of the particle number corresponding to µ = D/2,
marked by the vertical line. Clearly the oscillations play a
large role in the energy change if you remove 1/2 an elec-
tron when µ = D/2. The red curve yields a very poor
approximation to this energy difference. The exact energy

10

http://dft.uci.edu
http://dft.uci.edu/publications.php


Orbital-free functional with sub-milliHartree errors for slabs

satisfies E′(N) = µ, but dEAEA2/dN yields a poor ap-
proximation to the chemical potential. Instead we derive
µAEA2(N) by inverting NAEA2(µ). The blue AEA4’ curve
will clearly yield almost exact answers.
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FIG. S11. The exact chemical potential for a PT slab with
D = 10 (black), dEAEA2/dN (red), and µAEA2(N) (magenta).
We have subtracted the TF chemical potential from all curves.

Table S1 contains many different approximations, for to-
tal energy differences and chemical potentials. Figure S11
shows the exact chemical potential and two approxima-
tions to it. The AEA2 chemical potential, calculated by
inverting NAEA2(µ), captures the derivative discontinuities,
while dEAEA2/dN , does not. This shows that relationships
which hold exactly, for TF theory, and for GEA2, namely
E′(N) = µ, may fail at any given order when oscillatory
terms are involved.

Appendix E: Breakdown of the AEA4’
approximation in our bond stretching table

Figure S12 plots several of the errors listed in Table III
of the main text as functions of the separation between the
PT centers.

Appendix F: Tables of energies for PT slabs and PT
dimers

This section contains tables that supplement those in the
main text.

Table S2 shows the total energies (not just the kinetic
energies) of the calculations in Table I of the main text.
In this case, any functionals evaluated on the exact density
include the exact potential energy by construction. Just as
in the self-consistent TF calculation, we expect errors on
(some version of) self-consistent densities to be larger.

Tables S3-S5 supplement Table III of the main text,
showing total kinetic energies of the PT dimer slabs, not
just binding energies, so that approximations cannot ben-
efit from cancellation of errors between the PT dimer slab

0.0 0.2 0.4 0.6 0.8 1.0

-20

-10
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R/Rc

E
rr
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(m
H
)

FIG. S12. The errors in Table III of the main text. Legend:
TF (black), GEA2 (gray), MGE2 (magenta), AEA2 (red),
AEA4’ (blue). Functionals acting on the exact density are
denoted with dashed lines.

and the separated ’atomic’ slabs. We also give the corre-
sponding total energy and binding energy.

Table S6 shows the 1D ground state WKB eigenvalues
and their leading corrections for the PT dimer as a function
of well-separation. By R = 0.8Rc, the leading correction
has a larger error than WKB itself, signaling the incipient
failure of the asymptotic series.
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Errors (mH)
IP µ

M IP µ TF AEA2 AEA4’ TF AEA2’ AEA2 AEA4’
1 5.557 6.342 −63 −3 0.0622 −242 −41 0.010 −0.0532
2 17.607 18.000 −172 −131 0.0168 −239 −21 0.013 −0.0126
3 35.224 35.486 −204 −166 0.0061 −238 −14 0.009 −0.0048
4 58.603 58.799 −217 −180 0.0028 −237 −11 0.006 −0.0023
5 87.784 87.941 −224 −187 0.0015 −237 −9 0.004 −0.0013
6 122.781 122.912 −227 −191 0.0009 −237 −7 0.003 −0.0008
7 163.599 163.711 −230 −194 0.0006 −237 −6 0.003 −0.0005
8 210.240 210.339 −231 −196 0.0004 −237 −5 0.002 −0.0004
9 262.707 262.794 −232 −197 0.0003 −237 −5 0.002 −0.0003
10 321.000 321.079 −233 −198 0.0002 −237 −4 0.001 −0.0002

TABLE S1. Same as Table II of the main text but with the AEA2’ and AEA4’ approximations.

Errors (mH)
Potential Functionals Density Functionals

M D N E/N TF AEA2 AEA4’ TF GEA2 MGE2 GEA4
1 12.685 1.293 4.312 −192 9.2 0.02522 −156 −41 −8 −2
2 36.000 6.525 12.189 −190 3.1 0.00298 −159 −35 1 −6
3 70.971 18.318 24.005 −189 1.6 0.00076 −162 −31 7 −7
4 117.599 39.293 39.759 −189 0.9 0.00027 −164 −28 11 −6
5 175.883 72.075 59.451 −189 0.6 0.00012 −165 −26 14 −6
6 245.824 119.288 83.082 −189 0.4 0.00006 −166 −25 16 −6
7 327.422 183.555 110.651 −189 0.3 0.00004 −167 −24 18 −6
8 420.677 267.500 142.159 −189 0.3 0.00002 −168 −23 19 −6
9 525.589 373.746 177.605 −189 0.2 0.00001 −168 −22 21 −5
10 642.157 504.918 216.990 −189 0.2 0.00001 −169 −21 22 −5

TABLE S2. Same as Table I of the main text, but for the total energy.

Errors (mH)
Potential Functionals Exact Density or µ

R/Rc T TF GEA2 AEA2’ AEA2 AEA4’ TF GEA2 MGE2 GEA4 AEA4’(µ)
0 1.890 34 −19 11.84 3.1 0.02 −77 −22 −5.5 −12 0.20

0.1 1.881 36 −16 12.51 3.9 0.02 −76 −21 −5.6 −12 0.20
0.2 1.858 39 −12 12.24 4.1 0.04 −74 −21 −5.6 −12 0.19
0.25 1.840 40 −9 11.90 4.1 0.05 −72 −21 −5.6 −12 0.19
0.3 1.820 42 −6 11.48 4.0 0.07 −70 −20 −5.6 −12 0.18
0.4 1.770 46 1 10.31 3.8 0.18 −65 −19 −5.4 −11 0.18
0.5 1.711 49 8 8.39 2.9 0.57 −59 −17 −5.0 −10 0.21
0.6 1.644 50 14 6.74 2.5 2.01 −53 −15 −4.3 −9 0.35
0.7 1.575 50 17 4.49 1.5 7.89 −47 −13 −3.4 −7 0.71
0.75 1.539 49 18 3.32 1.0 16.56 −44 −12 −2.8 −7 1.00
0.8 1.504 47 17 2.00 0.4 37.29 −41 −11 −2.3 −6 1.38
0.9 1.435 43 16 −0.02 −0.3 315.89 −36 −9 −1.3 −4 2.43
1 1.369 37 12 −1.79 −0.8 −37.27 −32 −8 −0.6 −3 −0.26

TABLE S3. Same as Table III of the main text, but showing the total kinetic energies, not the kinetic binding energies.
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Errors (mH)
Potential Functionals Exact Density or µ

R/Rc E − 2EA TF AEA2 AEA4’ TF GEA2 MGE2 GEA4 AEA4’(µ)
0 1.174 −39 −9.2 −0.04 −23.8 −10.8 −7.1 −12 −0.23

0.1 1.162 −39 −9.4 −0.04 −23.0 −10.8 −7.2 −12 −0.24
0.2 1.127 −36 −9.7 −0.03 −20.5 −10.2 −7.3 −12 −0.24
0.25 1.100 −34 −9.9 −0.02 −18.8 −9.9 −7.3 −12 −0.25
0.3 1.068 −32 −10.0 0.01 −16.7 −9.4 −7.2 −12 −0.25
0.4 0.988 −27 −10.1 0.12 −11.8 −8.1 −7.1 −12 −0.25
0.5 0.887 −21 −9.7 0.51 −6.0 −6.4 −6.6 −11 −0.22
0.6 0.767 −13 −8.7 1.95 0.3 −4.5 −5.9 −9 −0.08
0.7 0.630 −6 −7.2 7.82 6.5 −2.4 −5.0 −8 0.27
0.75 0.556 −2 −6.3 16.49 9.5 −1.3 −4.5 −7 0.57
0.8 0.479 2 −5.3 37.23 12.3 −0.3 −3.9 −6 0.95
0.9 0.315 9 −3.4 315.82 17.3 1.6 −3.0 −4 2.00
1 0.143 15 −1.7 −37.33 21.3 3.1 −2.2 −3 −0.69

TABLE S4. Same as Table III of the main text, but with the total binding energy.

Errors (mH)
Potential Functionals Exact Density or µ

R/Rc E TF AEA2 AEA4’ TF GEA2 MGE2 GEA4 AEA4’(µ)
0 2.845 −99 −7.0 0.02 −77 −22 −5.48 −12 0.20

0.1 2.833 −98 −7.1 0.02 −76 −21 −5.60 −12 0.20
0.2 2.798 −95 −7.4 0.04 −74 −21 −5.64 −12 0.19
0.25 2.772 −94 −7.6 0.05 −72 −21 −5.65 −12 0.19
0.3 2.740 −92 −7.7 0.07 −70 −20 −5.62 −12 0.18
0.4 2.659 −86 −7.8 0.18 −65 −19 −5.44 −11 0.18
0.5 2.558 −80 −7.4 0.57 −59 −17 −4.96 −10 0.21
0.6 2.438 −73 −6.5 2.01 −53 −15 −4.29 −9 0.35
0.7 2.301 −65 −5.0 7.89 −47 −13 −3.36 −7 0.71
0.75 2.227 −61 −4.0 16.56 −44 −12 −2.84 −7 1.00
0.8 2.150 −57 −3.1 37.29 −41 −11 −2.31 −6 1.38
0.9 1.986 −51 −1.2 315.89 −36 −9 −1.33 −4 2.43
1 1.814 −45 0.5 −37.27 −32 −8 −0.56 −3 −0.26

TABLE S5. Same as Table III of the main text, but with the total energy relative to the bottom of the well. The dimer well
depth is D = 6 sech2(R/2).
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Errors
R/Rc ε0 WKB0 WKB2

0 1.500 0.107 −0.00056
0.1 1.489 0.106 −0.00061
0.2 1.456 0.101 −0.00078
0.25 1.431 0.097 −0.00094
0.3 1.402 0.093 −0.00116
0.4 1.329 0.083 −0.00194
0.5 1.239 0.069 −0.00347
0.6 1.134 0.053 −0.00640
0.7 1.016 0.034 −0.01186
0.75 0.954 0.024 −0.01604
0.8 0.890 0.013 −0.02153
0.9 0.756 −0.011 −0.03734
1 0.618 −0.036 −0.06000
∞ 2.000 0.199 −0.00208

TABLE S6. The exact ground state eigenvalues (relative to
the bottom of the well) and their zeroth and second order
WKB approximations for the PT dimers in Table III of the
main text. The last row, R/Rc =∞, corresponds to 2, D = 3,
PT slabs infinity far apart (so all of the quantities are double
those of a single PT slab).
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